Metamath Proof Explorer


Theorem symggen

Description: The span of the transpositions is the subgroup that moves finitely many points. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses symgtrf.t T=ranpmTrspD
symgtrf.g G=SymGrpD
symgtrf.b B=BaseG
symggen.k K=mrClsSubMndG
Assertion symggen DVKT=xB|domxIFin

Proof

Step Hyp Ref Expression
1 symgtrf.t T=ranpmTrspD
2 symgtrf.g G=SymGrpD
3 symgtrf.b B=BaseG
4 symggen.k K=mrClsSubMndG
5 elex DVDV
6 2 symggrp DVGGrp
7 6 grpmndd DVGMnd
8 3 submacs GMndSubMndGACSB
9 acsmre SubMndGACSBSubMndGMooreB
10 7 8 9 3syl DVSubMndGMooreB
11 5 10 syl DVSubMndGMooreB
12 1 2 3 symgtrf TB
13 12 a1i DVTB
14 2onn 2𝑜ω
15 nnfi 2𝑜ω2𝑜Fin
16 14 15 ax-mp 2𝑜Fin
17 eqid pmTrspD=pmTrspD
18 17 1 pmtrfb xTDVx:D1-1 ontoDdomxI2𝑜
19 18 simp3bi xTdomxI2𝑜
20 enfi domxI2𝑜domxIFin2𝑜Fin
21 19 20 syl xTdomxIFin2𝑜Fin
22 21 adantl DVxTdomxIFin2𝑜Fin
23 16 22 mpbiri DVxTdomxIFin
24 13 23 ssrabdv DVTxB|domxIFin
25 2 3 symgfisg DVxB|domxIFinSubGrpG
26 subgsubm xB|domxIFinSubGrpGxB|domxIFinSubMndG
27 25 26 syl DVxB|domxIFinSubMndG
28 4 mrcsscl SubMndGMooreBTxB|domxIFinxB|domxIFinSubMndGKTxB|domxIFin
29 11 24 27 28 syl3anc DVKTxB|domxIFin
30 vex xV
31 30 a1i domxIFinxV
32 finnum domxIFindomxIdomcard
33 domfi domxIFindomyIdomxIdomyIFin
34 2 3 symgbasf1o yBy:D1-1 ontoD
35 34 adantl domyIFinyBy:D1-1 ontoD
36 f1ofn y:D1-1 ontoDyFnD
37 fnnfpeq0 yFnDdomyI=y=ID
38 35 36 37 3syl domyIFinyBdomyI=y=ID
39 2 3 elbasfv yBDV
40 39 adantl domyIFinyBDV
41 2 symgid DVID=0G
42 40 41 syl domyIFinyBID=0G
43 40 10 syl domyIFinyBSubMndGMooreB
44 4 mrccl SubMndGMooreBTBKTSubMndG
45 43 12 44 sylancl domyIFinyBKTSubMndG
46 eqid 0G=0G
47 46 subm0cl KTSubMndG0GKT
48 45 47 syl domyIFinyB0GKT
49 42 48 eqeltrd domyIFinyBIDKT
50 eleq1a IDKTy=IDyKT
51 49 50 syl domyIFinyBy=IDyKT
52 38 51 sylbid domyIFinyBdomyI=yKT
53 52 adantr domyIFinyBzdomzIdomyIzBzKTdomyI=yKT
54 n0 domyIuudomyI
55 40 adantr domyIFinyBudomyIDV
56 simpr domyIFinyBudomyIudomyI
57 f1omvdmvd y:D1-1 ontoDudomyIyudomyIu
58 35 57 sylan domyIFinyBudomyIyudomyIu
59 58 eldifad domyIFinyBudomyIyudomyI
60 56 59 prssd domyIFinyBudomyIuyudomyI
61 difss yIy
62 dmss yIydomyIdomy
63 61 62 ax-mp domyIdomy
64 f1odm y:D1-1 ontoDdomy=D
65 35 64 syl domyIFinyBdomy=D
66 63 65 sseqtrid domyIFinyBdomyID
67 66 adantr domyIFinyBudomyIdomyID
68 60 67 sstrd domyIFinyBudomyIuyuD
69 vex uV
70 fvex yuV
71 35 adantr domyIFinyBudomyIy:D1-1 ontoD
72 71 36 syl domyIFinyBudomyIyFnD
73 66 sselda domyIFinyBudomyIuD
74 fnelnfp yFnDuDudomyIyuu
75 72 73 74 syl2anc domyIFinyBudomyIudomyIyuu
76 56 75 mpbid domyIFinyBudomyIyuu
77 76 necomd domyIFinyBudomyIuyu
78 enpr2 uVyuVuyuuyu2𝑜
79 69 70 77 78 mp3an12i domyIFinyBudomyIuyu2𝑜
80 17 1 pmtrrn DVuyuDuyu2𝑜pmTrspDuyuT
81 55 68 79 80 syl3anc domyIFinyBudomyIpmTrspDuyuT
82 12 81 sselid domyIFinyBudomyIpmTrspDuyuB
83 simplr domyIFinyBudomyIyB
84 eqid +G=+G
85 2 3 84 symgov pmTrspDuyuByBpmTrspDuyu+Gy=pmTrspDuyuy
86 82 83 85 syl2anc domyIFinyBudomyIpmTrspDuyu+Gy=pmTrspDuyuy
87 86 oveq2d domyIFinyBudomyIpmTrspDuyu+GpmTrspDuyu+Gy=pmTrspDuyu+GpmTrspDuyuy
88 40 6 syl domyIFinyBGGrp
89 88 adantr domyIFinyBudomyIGGrp
90 3 84 grpcl GGrppmTrspDuyuByBpmTrspDuyu+GyB
91 89 82 83 90 syl3anc domyIFinyBudomyIpmTrspDuyu+GyB
92 86 91 eqeltrrd domyIFinyBudomyIpmTrspDuyuyB
93 2 3 84 symgov pmTrspDuyuBpmTrspDuyuyBpmTrspDuyu+GpmTrspDuyuy=pmTrspDuyupmTrspDuyuy
94 82 92 93 syl2anc domyIFinyBudomyIpmTrspDuyu+GpmTrspDuyuy=pmTrspDuyupmTrspDuyuy
95 coass pmTrspDuyupmTrspDuyuy=pmTrspDuyupmTrspDuyuy
96 17 1 pmtrfinv pmTrspDuyuTpmTrspDuyupmTrspDuyu=ID
97 81 96 syl domyIFinyBudomyIpmTrspDuyupmTrspDuyu=ID
98 97 coeq1d domyIFinyBudomyIpmTrspDuyupmTrspDuyuy=IDy
99 f1of y:D1-1 ontoDy:DD
100 fcoi2 y:DDIDy=y
101 71 99 100 3syl domyIFinyBudomyIIDy=y
102 98 101 eqtrd domyIFinyBudomyIpmTrspDuyupmTrspDuyuy=y
103 95 102 eqtr3id domyIFinyBudomyIpmTrspDuyupmTrspDuyuy=y
104 87 94 103 3eqtrd domyIFinyBudomyIpmTrspDuyu+GpmTrspDuyu+Gy=y
105 104 adantlr domyIFinyBzdomzIdomyIzBzKTudomyIpmTrspDuyu+GpmTrspDuyu+Gy=y
106 45 ad2antrr domyIFinyBzdomzIdomyIzBzKTudomyIKTSubMndG
107 4 mrcssid SubMndGMooreBTBTKT
108 43 12 107 sylancl domyIFinyBTKT
109 108 adantr domyIFinyBudomyITKT
110 109 81 sseldd domyIFinyBudomyIpmTrspDuyuKT
111 110 adantlr domyIFinyBzdomzIdomyIzBzKTudomyIpmTrspDuyuKT
112 86 difeq1d domyIFinyBudomyIpmTrspDuyu+GyI=pmTrspDuyuyI
113 112 dmeqd domyIFinyBudomyIdompmTrspDuyu+GyI=dompmTrspDuyuyI
114 simpll domyIFinyBudomyIdomyIFin
115 mvdco dompmTrspDuyuyIdompmTrspDuyuIdomyI
116 17 pmtrmvd DVuyuDuyu2𝑜dompmTrspDuyuI=uyu
117 55 68 79 116 syl3anc domyIFinyBudomyIdompmTrspDuyuI=uyu
118 117 60 eqsstrd domyIFinyBudomyIdompmTrspDuyuIdomyI
119 ssidd domyIFinyBudomyIdomyIdomyI
120 118 119 unssd domyIFinyBudomyIdompmTrspDuyuIdomyIdomyI
121 115 120 sstrid domyIFinyBudomyIdompmTrspDuyuyIdomyI
122 fvco2 yFnDuDpmTrspDuyuyu=pmTrspDuyuyu
123 72 73 122 syl2anc domyIFinyBudomyIpmTrspDuyuyu=pmTrspDuyuyu
124 prcom uyu=yuu
125 124 fveq2i pmTrspDuyu=pmTrspDyuu
126 125 fveq1i pmTrspDuyuyu=pmTrspDyuuyu
127 67 59 sseldd domyIFinyBudomyIyuD
128 17 pmtrprfv DVyuDuDyuupmTrspDyuuyu=u
129 55 127 73 76 128 syl13anc domyIFinyBudomyIpmTrspDyuuyu=u
130 126 129 eqtrid domyIFinyBudomyIpmTrspDuyuyu=u
131 123 130 eqtrd domyIFinyBudomyIpmTrspDuyuyu=u
132 2 3 symgbasf1o pmTrspDuyuyBpmTrspDuyuy:D1-1 ontoD
133 f1ofn pmTrspDuyuy:D1-1 ontoDpmTrspDuyuyFnD
134 92 132 133 3syl domyIFinyBudomyIpmTrspDuyuyFnD
135 fnelnfp pmTrspDuyuyFnDuDudompmTrspDuyuyIpmTrspDuyuyuu
136 135 necon2bbid pmTrspDuyuyFnDuDpmTrspDuyuyu=u¬udompmTrspDuyuyI
137 134 73 136 syl2anc domyIFinyBudomyIpmTrspDuyuyu=u¬udompmTrspDuyuyI
138 131 137 mpbid domyIFinyBudomyI¬udompmTrspDuyuyI
139 121 56 138 ssnelpssd domyIFinyBudomyIdompmTrspDuyuyIdomyI
140 php3 domyIFindompmTrspDuyuyIdomyIdompmTrspDuyuyIdomyI
141 114 139 140 syl2anc domyIFinyBudomyIdompmTrspDuyuyIdomyI
142 113 141 eqbrtrd domyIFinyBudomyIdompmTrspDuyu+GyIdomyI
143 142 adantlr domyIFinyBzdomzIdomyIzBzKTudomyIdompmTrspDuyu+GyIdomyI
144 91 adantlr domyIFinyBzdomzIdomyIzBzKTudomyIpmTrspDuyu+GyB
145 ovex pmTrspDuyu+GyV
146 difeq1 z=pmTrspDuyu+GyzI=pmTrspDuyu+GyI
147 146 dmeqd z=pmTrspDuyu+GydomzI=dompmTrspDuyu+GyI
148 147 breq1d z=pmTrspDuyu+GydomzIdomyIdompmTrspDuyu+GyIdomyI
149 eleq1 z=pmTrspDuyu+GyzBpmTrspDuyu+GyB
150 eleq1 z=pmTrspDuyu+GyzKTpmTrspDuyu+GyKT
151 149 150 imbi12d z=pmTrspDuyu+GyzBzKTpmTrspDuyu+GyBpmTrspDuyu+GyKT
152 148 151 imbi12d z=pmTrspDuyu+GydomzIdomyIzBzKTdompmTrspDuyu+GyIdomyIpmTrspDuyu+GyBpmTrspDuyu+GyKT
153 145 152 spcv zdomzIdomyIzBzKTdompmTrspDuyu+GyIdomyIpmTrspDuyu+GyBpmTrspDuyu+GyKT
154 153 ad2antlr domyIFinyBzdomzIdomyIzBzKTudomyIdompmTrspDuyu+GyIdomyIpmTrspDuyu+GyBpmTrspDuyu+GyKT
155 143 144 154 mp2d domyIFinyBzdomzIdomyIzBzKTudomyIpmTrspDuyu+GyKT
156 84 submcl KTSubMndGpmTrspDuyuKTpmTrspDuyu+GyKTpmTrspDuyu+GpmTrspDuyu+GyKT
157 106 111 155 156 syl3anc domyIFinyBzdomzIdomyIzBzKTudomyIpmTrspDuyu+GpmTrspDuyu+GyKT
158 105 157 eqeltrrd domyIFinyBzdomzIdomyIzBzKTudomyIyKT
159 158 ex domyIFinyBzdomzIdomyIzBzKTudomyIyKT
160 159 exlimdv domyIFinyBzdomzIdomyIzBzKTuudomyIyKT
161 54 160 biimtrid domyIFinyBzdomzIdomyIzBzKTdomyIyKT
162 53 161 pm2.61dne domyIFinyBzdomzIdomyIzBzKTyKT
163 162 exp31 domyIFinyBzdomzIdomyIzBzKTyKT
164 163 com23 domyIFinzdomzIdomyIzBzKTyByKT
165 33 164 syl domxIFindomyIdomxIzdomzIdomyIzBzKTyByKT
166 165 3impia domxIFindomyIdomxIzdomzIdomyIzBzKTyByKT
167 eleq1w y=zyBzB
168 eleq1w y=zyKTzKT
169 167 168 imbi12d y=zyByKTzBzKT
170 eleq1w y=xyBxB
171 eleq1w y=xyKTxKT
172 170 171 imbi12d y=xyByKTxBxKT
173 difeq1 y=zyI=zI
174 173 dmeqd y=zdomyI=domzI
175 difeq1 y=xyI=xI
176 175 dmeqd y=xdomyI=domxI
177 31 32 166 169 172 174 176 indcardi domxIFinxBxKT
178 177 impcom xBdomxIFinxKT
179 178 3adant1 DVxBdomxIFinxKT
180 179 rabssdv DVxB|domxIFinKT
181 29 180 eqssd DVKT=xB|domxIFin