Metamath Proof Explorer


Theorem ubthlem1

Description: Lemma for ubth . The function A exhibits a countable collection of sets that are closed, being the inverse image under t of the closed ball of radius k , and by assumption they cover X . Thus, by the Baire Category theorem bcth2 , for some n the set An has an interior, meaning that there is a closed ball { z e. X | ( y D z ) <_ r } in the set. (Contributed by Mario Carneiro, 11-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ubth.1 X=BaseSetU
ubth.2 N=normCVW
ubthlem.3 D=IndMetU
ubthlem.4 J=MetOpenD
ubthlem.5 UCBan
ubthlem.6 WNrmCVec
ubthlem.7 φTUBLnOpW
ubthlem.8 φxXctTNtxc
ubthlem.9 A=kzX|tTNtzk
Assertion ubthlem1 φnyXr+zX|yDzrAn

Proof

Step Hyp Ref Expression
1 ubth.1 X=BaseSetU
2 ubth.2 N=normCVW
3 ubthlem.3 D=IndMetU
4 ubthlem.4 J=MetOpenD
5 ubthlem.5 UCBan
6 ubthlem.6 WNrmCVec
7 ubthlem.7 φTUBLnOpW
8 ubthlem.8 φxXctTNtxc
9 ubthlem.9 A=kzX|tTNtzk
10 rzal T=tTNtzk
11 10 ralrimivw T=zXtTNtzk
12 rabid2 X=zX|tTNtzkzXtTNtzk
13 11 12 sylibr T=X=zX|tTNtzk
14 13 eqcomd T=zX|tTNtzk=X
15 14 eleq1d T=zX|tTNtzkClsdJXClsdJ
16 iinrab TtTzX|Ntzk=zX|tTNtzk
17 16 adantl φkTtTzX|Ntzk=zX|tTNtzk
18 id TT
19 7 sselda φtTtUBLnOpW
20 eqid IndMetW=IndMetW
21 eqid MetOpenIndMetW=MetOpenIndMetW
22 eqid UBLnOpW=UBLnOpW
23 bnnv UCBanUNrmCVec
24 5 23 ax-mp UNrmCVec
25 3 20 4 21 22 24 6 blocn2 tUBLnOpWtJCnMetOpenIndMetW
26 1 3 cbncms UCBanDCMetX
27 5 26 ax-mp DCMetX
28 cmetmet DCMetXDMetX
29 metxmet DMetXD∞MetX
30 27 28 29 mp2b D∞MetX
31 4 mopntopon D∞MetXJTopOnX
32 30 31 ax-mp JTopOnX
33 eqid BaseSetW=BaseSetW
34 33 20 imsxmet WNrmCVecIndMetW∞MetBaseSetW
35 6 34 ax-mp IndMetW∞MetBaseSetW
36 21 mopntopon IndMetW∞MetBaseSetWMetOpenIndMetWTopOnBaseSetW
37 35 36 ax-mp MetOpenIndMetWTopOnBaseSetW
38 iscncl JTopOnXMetOpenIndMetWTopOnBaseSetWtJCnMetOpenIndMetWt:XBaseSetWxClsdMetOpenIndMetWt-1xClsdJ
39 32 37 38 mp2an tJCnMetOpenIndMetWt:XBaseSetWxClsdMetOpenIndMetWt-1xClsdJ
40 25 39 sylib tUBLnOpWt:XBaseSetWxClsdMetOpenIndMetWt-1xClsdJ
41 19 40 syl φtTt:XBaseSetWxClsdMetOpenIndMetWt-1xClsdJ
42 41 simpld φtTt:XBaseSetW
43 42 adantlr φktTt:XBaseSetW
44 43 ffvelcdmda φktTxXtxBaseSetW
45 44 biantrurd φktTxXNtxktxBaseSetWNtxk
46 fveq2 y=txNy=Ntx
47 46 breq1d y=txNykNtxk
48 47 elrab txyBaseSetW|NyktxBaseSetWNtxk
49 45 48 bitr4di φktTxXNtxktxyBaseSetW|Nyk
50 49 pm5.32da φktTxXNtxkxXtxyBaseSetW|Nyk
51 2fveq3 z=xNtz=Ntx
52 51 breq1d z=xNtzkNtxk
53 52 elrab xzX|NtzkxXNtxk
54 53 a1i φktTxzX|NtzkxXNtxk
55 ffn t:XBaseSetWtFnX
56 elpreima tFnXxt-1yBaseSetW|NykxXtxyBaseSetW|Nyk
57 43 55 56 3syl φktTxt-1yBaseSetW|NykxXtxyBaseSetW|Nyk
58 50 54 57 3bitr4d φktTxzX|Ntzkxt-1yBaseSetW|Nyk
59 58 eqrdv φktTzX|Ntzk=t-1yBaseSetW|Nyk
60 imaeq2 x=yBaseSetW|Nykt-1x=t-1yBaseSetW|Nyk
61 60 eleq1d x=yBaseSetW|Nykt-1xClsdJt-1yBaseSetW|NykClsdJ
62 41 simprd φtTxClsdMetOpenIndMetWt-1xClsdJ
63 62 adantlr φktTxClsdMetOpenIndMetWt-1xClsdJ
64 nnre kk
65 64 ad2antlr φktTk
66 65 rexrd φktTk*
67 eqid 0vecW=0vecW
68 33 67 nvzcl WNrmCVec0vecWBaseSetW
69 6 68 ax-mp 0vecWBaseSetW
70 33 67 2 20 nvnd WNrmCVecyBaseSetWNy=yIndMetW0vecW
71 6 70 mpan yBaseSetWNy=yIndMetW0vecW
72 xmetsym IndMetW∞MetBaseSetW0vecWBaseSetWyBaseSetW0vecWIndMetWy=yIndMetW0vecW
73 35 69 72 mp3an12 yBaseSetW0vecWIndMetWy=yIndMetW0vecW
74 71 73 eqtr4d yBaseSetWNy=0vecWIndMetWy
75 74 breq1d yBaseSetWNyk0vecWIndMetWyk
76 75 rabbiia yBaseSetW|Nyk=yBaseSetW|0vecWIndMetWyk
77 21 76 blcld IndMetW∞MetBaseSetW0vecWBaseSetWk*yBaseSetW|NykClsdMetOpenIndMetW
78 35 69 77 mp3an12 k*yBaseSetW|NykClsdMetOpenIndMetW
79 66 78 syl φktTyBaseSetW|NykClsdMetOpenIndMetW
80 61 63 79 rspcdva φktTt-1yBaseSetW|NykClsdJ
81 59 80 eqeltrd φktTzX|NtzkClsdJ
82 81 ralrimiva φktTzX|NtzkClsdJ
83 iincld TtTzX|NtzkClsdJtTzX|NtzkClsdJ
84 18 82 83 syl2anr φkTtTzX|NtzkClsdJ
85 17 84 eqeltrrd φkTzX|tTNtzkClsdJ
86 4 mopntop D∞MetXJTop
87 30 86 ax-mp JTop
88 32 toponunii X=J
89 88 topcld JTopXClsdJ
90 87 89 ax-mp XClsdJ
91 90 a1i φkXClsdJ
92 15 85 91 pm2.61ne φkzX|tTNtzkClsdJ
93 92 9 fmptd φA:ClsdJ
94 93 frnd φranAClsdJ
95 88 cldss2 ClsdJ𝒫X
96 94 95 sstrdi φranA𝒫X
97 sspwuni ranA𝒫XranAX
98 96 97 sylib φranAX
99 arch ckc<k
100 99 adantl φxXckc<k
101 simpr φxXcc
102 ltle ckc<kck
103 101 64 102 syl2an φxXckc<kck
104 103 impr φxXckc<kck
105 104 adantr φxXckc<ktTck
106 42 ffvelcdmda φtTxXtxBaseSetW
107 106 an32s φxXtTtxBaseSetW
108 33 2 nvcl WNrmCVectxBaseSetWNtx
109 6 107 108 sylancr φxXtTNtx
110 109 adantlr φxXctTNtx
111 110 adantlr φxXckc<ktTNtx
112 simpllr φxXckc<ktTc
113 simplrl φxXckc<ktTk
114 113 64 syl φxXckc<ktTk
115 letr NtxckNtxcckNtxk
116 111 112 114 115 syl3anc φxXckc<ktTNtxcckNtxk
117 105 116 mpan2d φxXckc<ktTNtxcNtxk
118 117 ralimdva φxXckc<ktTNtxctTNtxk
119 118 expr φxXckc<ktTNtxctTNtxk
120 1 fvexi XV
121 120 rabex zX|tTNtzkV
122 9 fvmpt2 kzX|tTNtzkVAk=zX|tTNtzk
123 121 122 mpan2 kAk=zX|tTNtzk
124 123 eleq2d kxAkxzX|tTNtzk
125 52 ralbidv z=xtTNtzktTNtxk
126 125 elrab xzX|tTNtzkxXtTNtxk
127 124 126 bitrdi kxAkxXtTNtxk
128 simpr φxXxX
129 128 biantrurd φxXtTNtxkxXtTNtxk
130 129 bicomd φxXxXtTNtxktTNtxk
131 127 130 sylan9bbr φxXkxAktTNtxk
132 93 ffnd φAFn
133 132 adantr φxXAFn
134 fnfvelrn AFnkAkranA
135 elssuni AkranAAkranA
136 134 135 syl AFnkAkranA
137 136 sseld AFnkxAkxranA
138 133 137 sylan φxXkxAkxranA
139 131 138 sylbird φxXktTNtxkxranA
140 139 adantlr φxXcktTNtxkxranA
141 119 140 syl6d φxXckc<ktTNtxcxranA
142 141 rexlimdva φxXckc<ktTNtxcxranA
143 100 142 mpd φxXctTNtxcxranA
144 143 rexlimdva φxXctTNtxcxranA
145 144 ralimdva φxXctTNtxcxXxranA
146 8 145 mpd φxXxranA
147 dfss3 XranAxXxranA
148 146 147 sylibr φXranA
149 98 148 eqssd φranA=X
150 eqid 0vecU=0vecU
151 1 150 nvzcl UNrmCVec0vecUX
152 ne0i 0vecUXX
153 24 151 152 mp2b X
154 4 bcth2 DCMetXXA:ClsdJranA=XnintJAn
155 27 153 154 mpanl12 A:ClsdJranA=XnintJAn
156 93 149 155 syl2anc φnintJAn
157 ffvelcdm A:ClsdJnAnClsdJ
158 95 157 sselid A:ClsdJnAn𝒫X
159 158 elpwid A:ClsdJnAnX
160 93 159 sylan φnAnX
161 88 ntrss3 JTopAnXintJAnX
162 87 160 161 sylancr φnintJAnX
163 162 sseld φnyintJAnyX
164 88 ntropn JTopAnXintJAnJ
165 87 160 164 sylancr φnintJAnJ
166 4 mopni2 D∞MetXintJAnJyintJAnx+yballDxintJAn
167 30 166 mp3an1 intJAnJyintJAnx+yballDxintJAn
168 165 167 sylan φnyintJAnx+yballDxintJAn
169 elssuni intJAnJintJAnJ
170 169 88 sseqtrrdi intJAnJintJAnX
171 165 170 syl φnintJAnX
172 171 sselda φnyintJAnyX
173 88 ntrss2 JTopAnXintJAnAn
174 87 160 173 sylancr φnintJAnAn
175 sstr2 yballDxintJAnintJAnAnyballDxAn
176 174 175 syl5com φnyballDxintJAnyballDxAn
177 176 ad2antrr φnyXx+yballDxintJAnyballDxAn
178 simpr φnyXyX
179 178 30 jctil φnyXD∞MetXyX
180 rphalfcl x+x2+
181 180 rpxrd x+x2*
182 rpxr x+x*
183 rphalflt x+x2<x
184 181 182 183 3jca x+x2*x*x2<x
185 eqid zX|yDzx2=zX|yDzx2
186 4 185 blsscls2 D∞MetXyXx2*x*x2<xzX|yDzx2yballDx
187 179 184 186 syl2an φnyXx+zX|yDzx2yballDx
188 sstr2 zX|yDzx2yballDxyballDxAnzX|yDzx2An
189 187 188 syl φnyXx+yballDxAnzX|yDzx2An
190 180 adantl φnyXx+x2+
191 breq2 r=x2yDzryDzx2
192 191 rabbidv r=x2zX|yDzr=zX|yDzx2
193 192 sseq1d r=x2zX|yDzrAnzX|yDzx2An
194 193 rspcev x2+zX|yDzx2Anr+zX|yDzrAn
195 194 ex x2+zX|yDzx2Anr+zX|yDzrAn
196 190 195 syl φnyXx+zX|yDzx2Anr+zX|yDzrAn
197 177 189 196 3syld φnyXx+yballDxintJAnr+zX|yDzrAn
198 197 rexlimdva φnyXx+yballDxintJAnr+zX|yDzrAn
199 172 198 syldan φnyintJAnx+yballDxintJAnr+zX|yDzrAn
200 168 199 mpd φnyintJAnr+zX|yDzrAn
201 200 ex φnyintJAnr+zX|yDzrAn
202 163 201 jcad φnyintJAnyXr+zX|yDzrAn
203 202 eximdv φnyyintJAnyyXr+zX|yDzrAn
204 n0 intJAnyyintJAn
205 df-rex yXr+zX|yDzrAnyyXr+zX|yDzrAn
206 203 204 205 3imtr4g φnintJAnyXr+zX|yDzrAn
207 206 reximdva φnintJAnnyXr+zX|yDzrAn
208 156 207 mpd φnyXr+zX|yDzrAn