Metamath Proof Explorer


Theorem ubthlem1

Description: Lemma for ubth . The function A exhibits a countable collection of sets that are closed, being the inverse image under t of the closed ball of radius k , and by assumption they cover X . Thus, by the Baire Category theorem bcth2 , for some n the set An has an interior, meaning that there is a closed ball { z e. X | ( y D z ) <_ r } in the set. (Contributed by Mario Carneiro, 11-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ubth.1 X = BaseSet U
ubth.2 N = norm CV W
ubthlem.3 D = IndMet U
ubthlem.4 J = MetOpen D
ubthlem.5 U CBan
ubthlem.6 W NrmCVec
ubthlem.7 φ T U BLnOp W
ubthlem.8 φ x X c t T N t x c
ubthlem.9 A = k z X | t T N t z k
Assertion ubthlem1 φ n y X r + z X | y D z r A n

Proof

Step Hyp Ref Expression
1 ubth.1 X = BaseSet U
2 ubth.2 N = norm CV W
3 ubthlem.3 D = IndMet U
4 ubthlem.4 J = MetOpen D
5 ubthlem.5 U CBan
6 ubthlem.6 W NrmCVec
7 ubthlem.7 φ T U BLnOp W
8 ubthlem.8 φ x X c t T N t x c
9 ubthlem.9 A = k z X | t T N t z k
10 rzal T = t T N t z k
11 10 ralrimivw T = z X t T N t z k
12 rabid2 X = z X | t T N t z k z X t T N t z k
13 11 12 sylibr T = X = z X | t T N t z k
14 13 eqcomd T = z X | t T N t z k = X
15 14 eleq1d T = z X | t T N t z k Clsd J X Clsd J
16 iinrab T t T z X | N t z k = z X | t T N t z k
17 16 adantl φ k T t T z X | N t z k = z X | t T N t z k
18 id T T
19 7 sselda φ t T t U BLnOp W
20 eqid IndMet W = IndMet W
21 eqid MetOpen IndMet W = MetOpen IndMet W
22 eqid U BLnOp W = U BLnOp W
23 bnnv U CBan U NrmCVec
24 5 23 ax-mp U NrmCVec
25 3 20 4 21 22 24 6 blocn2 t U BLnOp W t J Cn MetOpen IndMet W
26 1 3 cbncms U CBan D CMet X
27 5 26 ax-mp D CMet X
28 cmetmet D CMet X D Met X
29 metxmet D Met X D ∞Met X
30 27 28 29 mp2b D ∞Met X
31 4 mopntopon D ∞Met X J TopOn X
32 30 31 ax-mp J TopOn X
33 eqid BaseSet W = BaseSet W
34 33 20 imsxmet W NrmCVec IndMet W ∞Met BaseSet W
35 6 34 ax-mp IndMet W ∞Met BaseSet W
36 21 mopntopon IndMet W ∞Met BaseSet W MetOpen IndMet W TopOn BaseSet W
37 35 36 ax-mp MetOpen IndMet W TopOn BaseSet W
38 iscncl J TopOn X MetOpen IndMet W TopOn BaseSet W t J Cn MetOpen IndMet W t : X BaseSet W x Clsd MetOpen IndMet W t -1 x Clsd J
39 32 37 38 mp2an t J Cn MetOpen IndMet W t : X BaseSet W x Clsd MetOpen IndMet W t -1 x Clsd J
40 25 39 sylib t U BLnOp W t : X BaseSet W x Clsd MetOpen IndMet W t -1 x Clsd J
41 19 40 syl φ t T t : X BaseSet W x Clsd MetOpen IndMet W t -1 x Clsd J
42 41 simpld φ t T t : X BaseSet W
43 42 adantlr φ k t T t : X BaseSet W
44 43 ffvelrnda φ k t T x X t x BaseSet W
45 44 biantrurd φ k t T x X N t x k t x BaseSet W N t x k
46 fveq2 y = t x N y = N t x
47 46 breq1d y = t x N y k N t x k
48 47 elrab t x y BaseSet W | N y k t x BaseSet W N t x k
49 45 48 bitr4di φ k t T x X N t x k t x y BaseSet W | N y k
50 49 pm5.32da φ k t T x X N t x k x X t x y BaseSet W | N y k
51 2fveq3 z = x N t z = N t x
52 51 breq1d z = x N t z k N t x k
53 52 elrab x z X | N t z k x X N t x k
54 53 a1i φ k t T x z X | N t z k x X N t x k
55 ffn t : X BaseSet W t Fn X
56 elpreima t Fn X x t -1 y BaseSet W | N y k x X t x y BaseSet W | N y k
57 43 55 56 3syl φ k t T x t -1 y BaseSet W | N y k x X t x y BaseSet W | N y k
58 50 54 57 3bitr4d φ k t T x z X | N t z k x t -1 y BaseSet W | N y k
59 58 eqrdv φ k t T z X | N t z k = t -1 y BaseSet W | N y k
60 imaeq2 x = y BaseSet W | N y k t -1 x = t -1 y BaseSet W | N y k
61 60 eleq1d x = y BaseSet W | N y k t -1 x Clsd J t -1 y BaseSet W | N y k Clsd J
62 41 simprd φ t T x Clsd MetOpen IndMet W t -1 x Clsd J
63 62 adantlr φ k t T x Clsd MetOpen IndMet W t -1 x Clsd J
64 nnre k k
65 64 ad2antlr φ k t T k
66 65 rexrd φ k t T k *
67 eqid 0 vec W = 0 vec W
68 33 67 nvzcl W NrmCVec 0 vec W BaseSet W
69 6 68 ax-mp 0 vec W BaseSet W
70 33 67 2 20 nvnd W NrmCVec y BaseSet W N y = y IndMet W 0 vec W
71 6 70 mpan y BaseSet W N y = y IndMet W 0 vec W
72 xmetsym IndMet W ∞Met BaseSet W 0 vec W BaseSet W y BaseSet W 0 vec W IndMet W y = y IndMet W 0 vec W
73 35 69 72 mp3an12 y BaseSet W 0 vec W IndMet W y = y IndMet W 0 vec W
74 71 73 eqtr4d y BaseSet W N y = 0 vec W IndMet W y
75 74 breq1d y BaseSet W N y k 0 vec W IndMet W y k
76 75 rabbiia y BaseSet W | N y k = y BaseSet W | 0 vec W IndMet W y k
77 21 76 blcld IndMet W ∞Met BaseSet W 0 vec W BaseSet W k * y BaseSet W | N y k Clsd MetOpen IndMet W
78 35 69 77 mp3an12 k * y BaseSet W | N y k Clsd MetOpen IndMet W
79 66 78 syl φ k t T y BaseSet W | N y k Clsd MetOpen IndMet W
80 61 63 79 rspcdva φ k t T t -1 y BaseSet W | N y k Clsd J
81 59 80 eqeltrd φ k t T z X | N t z k Clsd J
82 81 ralrimiva φ k t T z X | N t z k Clsd J
83 iincld T t T z X | N t z k Clsd J t T z X | N t z k Clsd J
84 18 82 83 syl2anr φ k T t T z X | N t z k Clsd J
85 17 84 eqeltrrd φ k T z X | t T N t z k Clsd J
86 4 mopntop D ∞Met X J Top
87 30 86 ax-mp J Top
88 32 toponunii X = J
89 88 topcld J Top X Clsd J
90 87 89 ax-mp X Clsd J
91 90 a1i φ k X Clsd J
92 15 85 91 pm2.61ne φ k z X | t T N t z k Clsd J
93 92 9 fmptd φ A : Clsd J
94 93 frnd φ ran A Clsd J
95 88 cldss2 Clsd J 𝒫 X
96 94 95 sstrdi φ ran A 𝒫 X
97 sspwuni ran A 𝒫 X ran A X
98 96 97 sylib φ ran A X
99 arch c k c < k
100 99 adantl φ x X c k c < k
101 simpr φ x X c c
102 ltle c k c < k c k
103 101 64 102 syl2an φ x X c k c < k c k
104 103 impr φ x X c k c < k c k
105 104 adantr φ x X c k c < k t T c k
106 42 ffvelrnda φ t T x X t x BaseSet W
107 106 an32s φ x X t T t x BaseSet W
108 33 2 nvcl W NrmCVec t x BaseSet W N t x
109 6 107 108 sylancr φ x X t T N t x
110 109 adantlr φ x X c t T N t x
111 110 adantlr φ x X c k c < k t T N t x
112 simpllr φ x X c k c < k t T c
113 simplrl φ x X c k c < k t T k
114 113 64 syl φ x X c k c < k t T k
115 letr N t x c k N t x c c k N t x k
116 111 112 114 115 syl3anc φ x X c k c < k t T N t x c c k N t x k
117 105 116 mpan2d φ x X c k c < k t T N t x c N t x k
118 117 ralimdva φ x X c k c < k t T N t x c t T N t x k
119 118 expr φ x X c k c < k t T N t x c t T N t x k
120 1 fvexi X V
121 120 rabex z X | t T N t z k V
122 9 fvmpt2 k z X | t T N t z k V A k = z X | t T N t z k
123 121 122 mpan2 k A k = z X | t T N t z k
124 123 eleq2d k x A k x z X | t T N t z k
125 52 ralbidv z = x t T N t z k t T N t x k
126 125 elrab x z X | t T N t z k x X t T N t x k
127 124 126 bitrdi k x A k x X t T N t x k
128 simpr φ x X x X
129 128 biantrurd φ x X t T N t x k x X t T N t x k
130 129 bicomd φ x X x X t T N t x k t T N t x k
131 127 130 sylan9bbr φ x X k x A k t T N t x k
132 93 ffnd φ A Fn
133 132 adantr φ x X A Fn
134 fnfvelrn A Fn k A k ran A
135 elssuni A k ran A A k ran A
136 134 135 syl A Fn k A k ran A
137 136 sseld A Fn k x A k x ran A
138 133 137 sylan φ x X k x A k x ran A
139 131 138 sylbird φ x X k t T N t x k x ran A
140 139 adantlr φ x X c k t T N t x k x ran A
141 119 140 syl6d φ x X c k c < k t T N t x c x ran A
142 141 rexlimdva φ x X c k c < k t T N t x c x ran A
143 100 142 mpd φ x X c t T N t x c x ran A
144 143 rexlimdva φ x X c t T N t x c x ran A
145 144 ralimdva φ x X c t T N t x c x X x ran A
146 8 145 mpd φ x X x ran A
147 dfss3 X ran A x X x ran A
148 146 147 sylibr φ X ran A
149 98 148 eqssd φ ran A = X
150 eqid 0 vec U = 0 vec U
151 1 150 nvzcl U NrmCVec 0 vec U X
152 ne0i 0 vec U X X
153 24 151 152 mp2b X
154 4 bcth2 D CMet X X A : Clsd J ran A = X n int J A n
155 27 153 154 mpanl12 A : Clsd J ran A = X n int J A n
156 93 149 155 syl2anc φ n int J A n
157 ffvelrn A : Clsd J n A n Clsd J
158 95 157 sseldi A : Clsd J n A n 𝒫 X
159 158 elpwid A : Clsd J n A n X
160 93 159 sylan φ n A n X
161 88 ntrss3 J Top A n X int J A n X
162 87 160 161 sylancr φ n int J A n X
163 162 sseld φ n y int J A n y X
164 88 ntropn J Top A n X int J A n J
165 87 160 164 sylancr φ n int J A n J
166 4 mopni2 D ∞Met X int J A n J y int J A n x + y ball D x int J A n
167 30 166 mp3an1 int J A n J y int J A n x + y ball D x int J A n
168 165 167 sylan φ n y int J A n x + y ball D x int J A n
169 elssuni int J A n J int J A n J
170 169 88 sseqtrrdi int J A n J int J A n X
171 165 170 syl φ n int J A n X
172 171 sselda φ n y int J A n y X
173 88 ntrss2 J Top A n X int J A n A n
174 87 160 173 sylancr φ n int J A n A n
175 sstr2 y ball D x int J A n int J A n A n y ball D x A n
176 174 175 syl5com φ n y ball D x int J A n y ball D x A n
177 176 ad2antrr φ n y X x + y ball D x int J A n y ball D x A n
178 simpr φ n y X y X
179 178 30 jctil φ n y X D ∞Met X y X
180 rphalfcl x + x 2 +
181 180 rpxrd x + x 2 *
182 rpxr x + x *
183 rphalflt x + x 2 < x
184 181 182 183 3jca x + x 2 * x * x 2 < x
185 eqid z X | y D z x 2 = z X | y D z x 2
186 4 185 blsscls2 D ∞Met X y X x 2 * x * x 2 < x z X | y D z x 2 y ball D x
187 179 184 186 syl2an φ n y X x + z X | y D z x 2 y ball D x
188 sstr2 z X | y D z x 2 y ball D x y ball D x A n z X | y D z x 2 A n
189 187 188 syl φ n y X x + y ball D x A n z X | y D z x 2 A n
190 180 adantl φ n y X x + x 2 +
191 breq2 r = x 2 y D z r y D z x 2
192 191 rabbidv r = x 2 z X | y D z r = z X | y D z x 2
193 192 sseq1d r = x 2 z X | y D z r A n z X | y D z x 2 A n
194 193 rspcev x 2 + z X | y D z x 2 A n r + z X | y D z r A n
195 194 ex x 2 + z X | y D z x 2 A n r + z X | y D z r A n
196 190 195 syl φ n y X x + z X | y D z x 2 A n r + z X | y D z r A n
197 177 189 196 3syld φ n y X x + y ball D x int J A n r + z X | y D z r A n
198 197 rexlimdva φ n y X x + y ball D x int J A n r + z X | y D z r A n
199 172 198 syldan φ n y int J A n x + y ball D x int J A n r + z X | y D z r A n
200 168 199 mpd φ n y int J A n r + z X | y D z r A n
201 200 ex φ n y int J A n r + z X | y D z r A n
202 163 201 jcad φ n y int J A n y X r + z X | y D z r A n
203 202 eximdv φ n y y int J A n y y X r + z X | y D z r A n
204 n0 int J A n y y int J A n
205 df-rex y X r + z X | y D z r A n y y X r + z X | y D z r A n
206 203 204 205 3imtr4g φ n int J A n y X r + z X | y D z r A n
207 206 reximdva φ n int J A n n y X r + z X | y D z r A n
208 156 207 mpd φ n y X r + z X | y D z r A n