| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nllytop |
⊢ ( 𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ Top ) |
| 2 |
|
elinel1 |
⊢ ( 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) → 𝑆 ∈ ran 𝑘Gen ) |
| 3 |
|
kgentop |
⊢ ( 𝑆 ∈ ran 𝑘Gen → 𝑆 ∈ Top ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) → 𝑆 ∈ Top ) |
| 5 |
|
txtop |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 6 |
1 4 5
|
syl2an |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 7 |
|
simplll |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑅 ∈ 𝑛-Locally Comp ) |
| 8 |
|
eqid |
⊢ ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) = ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) |
| 9 |
8
|
mptpreima |
⊢ ( ◡ ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) “ 𝑥 ) = { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } |
| 10 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑅 ∈ Top ) |
| 11 |
|
toptopon2 |
⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) |
| 12 |
10 11
|
sylib |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) |
| 13 |
|
idcn |
⊢ ( 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) → ( I ↾ ∪ 𝑅 ) ∈ ( 𝑅 Cn 𝑅 ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( I ↾ ∪ 𝑅 ) ∈ ( 𝑅 Cn 𝑅 ) ) |
| 15 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) |
| 16 |
15 4
|
syl |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑆 ∈ Top ) |
| 17 |
|
toptopon2 |
⊢ ( 𝑆 ∈ Top ↔ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
| 18 |
16 17
|
sylib |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
| 19 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
| 20 |
|
simplr |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) |
| 21 |
|
elunii |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) → 𝑦 ∈ ∪ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) |
| 22 |
19 20 21
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ∪ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) |
| 23 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
| 24 |
|
eqid |
⊢ ∪ 𝑆 = ∪ 𝑆 |
| 25 |
23 24
|
txuni |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 26 |
10 16 25
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 27 |
10 16 5
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 28 |
|
eqid |
⊢ ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) |
| 29 |
28
|
kgenuni |
⊢ ( ( 𝑅 ×t 𝑆 ) ∈ Top → ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) |
| 30 |
27 29
|
syl |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) |
| 31 |
26 30
|
eqtrd |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) |
| 32 |
22 31
|
eleqtrrd |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 33 |
|
xp2nd |
⊢ ( 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) |
| 34 |
32 33
|
syl |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) |
| 35 |
|
cnconst2 |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ∧ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ∧ ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) → ( ∪ 𝑅 × { ( 2nd ‘ 𝑦 ) } ) ∈ ( 𝑅 Cn 𝑆 ) ) |
| 36 |
12 18 34 35
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ∪ 𝑅 × { ( 2nd ‘ 𝑦 ) } ) ∈ ( 𝑅 Cn 𝑆 ) ) |
| 37 |
|
fvresi |
⊢ ( 𝑡 ∈ ∪ 𝑅 → ( ( I ↾ ∪ 𝑅 ) ‘ 𝑡 ) = 𝑡 ) |
| 38 |
|
fvex |
⊢ ( 2nd ‘ 𝑦 ) ∈ V |
| 39 |
38
|
fvconst2 |
⊢ ( 𝑡 ∈ ∪ 𝑅 → ( ( ∪ 𝑅 × { ( 2nd ‘ 𝑦 ) } ) ‘ 𝑡 ) = ( 2nd ‘ 𝑦 ) ) |
| 40 |
37 39
|
opeq12d |
⊢ ( 𝑡 ∈ ∪ 𝑅 → 〈 ( ( I ↾ ∪ 𝑅 ) ‘ 𝑡 ) , ( ( ∪ 𝑅 × { ( 2nd ‘ 𝑦 ) } ) ‘ 𝑡 ) 〉 = 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) |
| 41 |
40
|
mpteq2ia |
⊢ ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 ( ( I ↾ ∪ 𝑅 ) ‘ 𝑡 ) , ( ( ∪ 𝑅 × { ( 2nd ‘ 𝑦 ) } ) ‘ 𝑡 ) 〉 ) = ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) |
| 42 |
41
|
eqcomi |
⊢ ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) = ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 ( ( I ↾ ∪ 𝑅 ) ‘ 𝑡 ) , ( ( ∪ 𝑅 × { ( 2nd ‘ 𝑦 ) } ) ‘ 𝑡 ) 〉 ) |
| 43 |
23 42
|
txcnmpt |
⊢ ( ( ( I ↾ ∪ 𝑅 ) ∈ ( 𝑅 Cn 𝑅 ) ∧ ( ∪ 𝑅 × { ( 2nd ‘ 𝑦 ) } ) ∈ ( 𝑅 Cn 𝑆 ) ) → ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) ∈ ( 𝑅 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 44 |
14 36 43
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) ∈ ( 𝑅 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 45 |
|
llycmpkgen |
⊢ ( 𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ ran 𝑘Gen ) |
| 46 |
45
|
ad3antrrr |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑅 ∈ ran 𝑘Gen ) |
| 47 |
6
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 48 |
|
kgencn3 |
⊢ ( ( 𝑅 ∈ ran 𝑘Gen ∧ ( 𝑅 ×t 𝑆 ) ∈ Top ) → ( 𝑅 Cn ( 𝑅 ×t 𝑆 ) ) = ( 𝑅 Cn ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ) |
| 49 |
46 47 48
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅 Cn ( 𝑅 ×t 𝑆 ) ) = ( 𝑅 Cn ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ) |
| 50 |
44 49
|
eleqtrd |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) ∈ ( 𝑅 Cn ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ) |
| 51 |
|
cnima |
⊢ ( ( ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) ∈ ( 𝑅 Cn ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) → ( ◡ ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) “ 𝑥 ) ∈ 𝑅 ) |
| 52 |
50 20 51
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ◡ ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) “ 𝑥 ) ∈ 𝑅 ) |
| 53 |
9 52
|
eqeltrrid |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∈ 𝑅 ) |
| 54 |
|
opeq1 |
⊢ ( 𝑡 = ( 1st ‘ 𝑦 ) → 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 55 |
54
|
eleq1d |
⊢ ( 𝑡 = ( 1st ‘ 𝑦 ) → ( 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ↔ 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) ) |
| 56 |
|
xp1st |
⊢ ( 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ) |
| 57 |
32 56
|
syl |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ) |
| 58 |
|
1st2nd2 |
⊢ ( 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 59 |
32 58
|
syl |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 60 |
59 19
|
eqeltrrd |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) |
| 61 |
55 57 60
|
elrabd |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 1st ‘ 𝑦 ) ∈ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ) |
| 62 |
|
nlly2i |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∈ 𝑅 ∧ ( 1st ‘ 𝑦 ) ∈ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ) → ∃ 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∃ 𝑢 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) |
| 63 |
7 53 61 62
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∃ 𝑢 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) |
| 64 |
10
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑅 ∈ Top ) |
| 65 |
16
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑆 ∈ Top ) |
| 66 |
|
simprlr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑢 ∈ 𝑅 ) |
| 67 |
|
ssrab2 |
⊢ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ⊆ ∪ 𝑆 |
| 68 |
67
|
a1i |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ⊆ ∪ 𝑆 ) |
| 69 |
|
incom |
⊢ ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∩ 𝑘 ) = ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) |
| 70 |
|
simprll |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ) |
| 71 |
70
|
elpwid |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑠 ⊆ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ) |
| 72 |
|
ssrab2 |
⊢ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ⊆ ∪ 𝑅 |
| 73 |
71 72
|
sstrdi |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑠 ⊆ ∪ 𝑅 ) |
| 74 |
73
|
adantr |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑠 ⊆ ∪ 𝑅 ) |
| 75 |
|
elpwi |
⊢ ( 𝑘 ∈ 𝒫 ∪ 𝑆 → 𝑘 ⊆ ∪ 𝑆 ) |
| 76 |
75
|
ad2antrl |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑘 ⊆ ∪ 𝑆 ) |
| 77 |
|
eldif |
⊢ ( 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ↔ ( 𝑡 ∈ ( 𝑠 × 𝑘 ) ∧ ¬ 𝑡 ∈ 𝑥 ) ) |
| 78 |
77
|
anbi1i |
⊢ ( ( 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ↔ ( ( 𝑡 ∈ ( 𝑠 × 𝑘 ) ∧ ¬ 𝑡 ∈ 𝑥 ) ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ) |
| 79 |
|
anass |
⊢ ( ( ( 𝑡 ∈ ( 𝑠 × 𝑘 ) ∧ ¬ 𝑡 ∈ 𝑥 ) ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ↔ ( 𝑡 ∈ ( 𝑠 × 𝑘 ) ∧ ( ¬ 𝑡 ∈ 𝑥 ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ) ) |
| 80 |
78 79
|
bitri |
⊢ ( ( 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ↔ ( 𝑡 ∈ ( 𝑠 × 𝑘 ) ∧ ( ¬ 𝑡 ∈ 𝑥 ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ) ) |
| 81 |
80
|
rexbii2 |
⊢ ( ∃ 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ↔ ∃ 𝑡 ∈ ( 𝑠 × 𝑘 ) ( ¬ 𝑡 ∈ 𝑥 ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ) |
| 82 |
|
ancom |
⊢ ( ( ¬ 𝑡 ∈ 𝑥 ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ↔ ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ∧ ¬ 𝑡 ∈ 𝑥 ) ) |
| 83 |
|
fveqeq2 |
⊢ ( 𝑡 = 〈 𝑎 , 𝑢 〉 → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ↔ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ) ) |
| 84 |
|
eleq1 |
⊢ ( 𝑡 = 〈 𝑎 , 𝑢 〉 → ( 𝑡 ∈ 𝑥 ↔ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) |
| 85 |
84
|
notbid |
⊢ ( 𝑡 = 〈 𝑎 , 𝑢 〉 → ( ¬ 𝑡 ∈ 𝑥 ↔ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) |
| 86 |
83 85
|
anbi12d |
⊢ ( 𝑡 = 〈 𝑎 , 𝑢 〉 → ( ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ∧ ¬ 𝑡 ∈ 𝑥 ) ↔ ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) ) |
| 87 |
82 86
|
bitrid |
⊢ ( 𝑡 = 〈 𝑎 , 𝑢 〉 → ( ( ¬ 𝑡 ∈ 𝑥 ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ↔ ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) ) |
| 88 |
87
|
rexxp |
⊢ ( ∃ 𝑡 ∈ ( 𝑠 × 𝑘 ) ( ¬ 𝑡 ∈ 𝑥 ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ↔ ∃ 𝑎 ∈ 𝑠 ∃ 𝑢 ∈ 𝑘 ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) |
| 89 |
81 88
|
bitri |
⊢ ( ∃ 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ↔ ∃ 𝑎 ∈ 𝑠 ∃ 𝑢 ∈ 𝑘 ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) |
| 90 |
|
simpl |
⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → 𝑠 ⊆ ∪ 𝑅 ) |
| 91 |
90
|
sselda |
⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) → 𝑎 ∈ ∪ 𝑅 ) |
| 92 |
91
|
adantr |
⊢ ( ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) ∧ 𝑢 ∈ 𝑘 ) → 𝑎 ∈ ∪ 𝑅 ) |
| 93 |
|
simplr |
⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) → 𝑘 ⊆ ∪ 𝑆 ) |
| 94 |
93
|
sselda |
⊢ ( ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) ∧ 𝑢 ∈ 𝑘 ) → 𝑢 ∈ ∪ 𝑆 ) |
| 95 |
92 94
|
opelxpd |
⊢ ( ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) ∧ 𝑢 ∈ 𝑘 ) → 〈 𝑎 , 𝑢 〉 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 96 |
95
|
fvresd |
⊢ ( ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) ∧ 𝑢 ∈ 𝑘 ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = ( 2nd ‘ 〈 𝑎 , 𝑢 〉 ) ) |
| 97 |
|
vex |
⊢ 𝑎 ∈ V |
| 98 |
|
vex |
⊢ 𝑢 ∈ V |
| 99 |
97 98
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑢 |
| 100 |
96 99
|
eqtrdi |
⊢ ( ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) ∧ 𝑢 ∈ 𝑘 ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑢 ) |
| 101 |
100
|
eqeq1d |
⊢ ( ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) ∧ 𝑢 ∈ 𝑘 ) → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ↔ 𝑢 = 𝑏 ) ) |
| 102 |
101
|
anbi1d |
⊢ ( ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) ∧ 𝑢 ∈ 𝑘 ) → ( ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ↔ ( 𝑢 = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) ) |
| 103 |
102
|
rexbidva |
⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) → ( ∃ 𝑢 ∈ 𝑘 ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ↔ ∃ 𝑢 ∈ 𝑘 ( 𝑢 = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) ) |
| 104 |
|
opeq2 |
⊢ ( 𝑢 = 𝑏 → 〈 𝑎 , 𝑢 〉 = 〈 𝑎 , 𝑏 〉 ) |
| 105 |
104
|
eleq1d |
⊢ ( 𝑢 = 𝑏 → ( 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 106 |
105
|
notbid |
⊢ ( 𝑢 = 𝑏 → ( ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ↔ ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 107 |
106
|
ceqsrexbv |
⊢ ( ∃ 𝑢 ∈ 𝑘 ( 𝑢 = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ↔ ( 𝑏 ∈ 𝑘 ∧ ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 108 |
103 107
|
bitrdi |
⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) → ( ∃ 𝑢 ∈ 𝑘 ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ↔ ( 𝑏 ∈ 𝑘 ∧ ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) ) |
| 109 |
108
|
rexbidva |
⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑢 ∈ 𝑘 ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ↔ ∃ 𝑎 ∈ 𝑠 ( 𝑏 ∈ 𝑘 ∧ ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) ) |
| 110 |
|
r19.42v |
⊢ ( ∃ 𝑎 ∈ 𝑠 ( 𝑏 ∈ 𝑘 ∧ ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ↔ ( 𝑏 ∈ 𝑘 ∧ ∃ 𝑎 ∈ 𝑠 ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 111 |
109 110
|
bitrdi |
⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑢 ∈ 𝑘 ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ↔ ( 𝑏 ∈ 𝑘 ∧ ∃ 𝑎 ∈ 𝑠 ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) ) |
| 112 |
89 111
|
bitrid |
⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( ∃ 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ↔ ( 𝑏 ∈ 𝑘 ∧ ∃ 𝑎 ∈ 𝑠 ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) ) |
| 113 |
|
f2ndres |
⊢ ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) : ( ∪ 𝑅 × ∪ 𝑆 ) ⟶ ∪ 𝑆 |
| 114 |
|
ffn |
⊢ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) : ( ∪ 𝑅 × ∪ 𝑆 ) ⟶ ∪ 𝑆 → ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) Fn ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 115 |
113 114
|
ax-mp |
⊢ ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) Fn ( ∪ 𝑅 × ∪ 𝑆 ) |
| 116 |
|
difss |
⊢ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ⊆ ( 𝑠 × 𝑘 ) |
| 117 |
|
xpss12 |
⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( 𝑠 × 𝑘 ) ⊆ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 118 |
116 117
|
sstrid |
⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ⊆ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 119 |
|
fvelimab |
⊢ ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) Fn ( ∪ 𝑅 × ∪ 𝑆 ) ∧ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ⊆ ( ∪ 𝑅 × ∪ 𝑆 ) ) → ( 𝑏 ∈ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ↔ ∃ 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ) |
| 120 |
115 118 119
|
sylancr |
⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( 𝑏 ∈ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ↔ ∃ 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ) |
| 121 |
|
eldif |
⊢ ( 𝑏 ∈ ( 𝑘 ∖ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ↔ ( 𝑏 ∈ 𝑘 ∧ ¬ 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) |
| 122 |
|
simpr |
⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → 𝑘 ⊆ ∪ 𝑆 ) |
| 123 |
122
|
sselda |
⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑏 ∈ 𝑘 ) → 𝑏 ∈ ∪ 𝑆 ) |
| 124 |
|
sneq |
⊢ ( 𝑣 = 𝑏 → { 𝑣 } = { 𝑏 } ) |
| 125 |
124
|
xpeq2d |
⊢ ( 𝑣 = 𝑏 → ( 𝑠 × { 𝑣 } ) = ( 𝑠 × { 𝑏 } ) ) |
| 126 |
125
|
sseq1d |
⊢ ( 𝑣 = 𝑏 → ( ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 ↔ ( 𝑠 × { 𝑏 } ) ⊆ 𝑥 ) ) |
| 127 |
|
dfss3 |
⊢ ( ( 𝑠 × { 𝑏 } ) ⊆ 𝑥 ↔ ∀ 𝑘 ∈ ( 𝑠 × { 𝑏 } ) 𝑘 ∈ 𝑥 ) |
| 128 |
|
eleq1 |
⊢ ( 𝑘 = 〈 𝑎 , 𝑡 〉 → ( 𝑘 ∈ 𝑥 ↔ 〈 𝑎 , 𝑡 〉 ∈ 𝑥 ) ) |
| 129 |
128
|
ralxp |
⊢ ( ∀ 𝑘 ∈ ( 𝑠 × { 𝑏 } ) 𝑘 ∈ 𝑥 ↔ ∀ 𝑎 ∈ 𝑠 ∀ 𝑡 ∈ { 𝑏 } 〈 𝑎 , 𝑡 〉 ∈ 𝑥 ) |
| 130 |
|
vex |
⊢ 𝑏 ∈ V |
| 131 |
|
opeq2 |
⊢ ( 𝑡 = 𝑏 → 〈 𝑎 , 𝑡 〉 = 〈 𝑎 , 𝑏 〉 ) |
| 132 |
131
|
eleq1d |
⊢ ( 𝑡 = 𝑏 → ( 〈 𝑎 , 𝑡 〉 ∈ 𝑥 ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 133 |
130 132
|
ralsn |
⊢ ( ∀ 𝑡 ∈ { 𝑏 } 〈 𝑎 , 𝑡 〉 ∈ 𝑥 ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) |
| 134 |
133
|
ralbii |
⊢ ( ∀ 𝑎 ∈ 𝑠 ∀ 𝑡 ∈ { 𝑏 } 〈 𝑎 , 𝑡 〉 ∈ 𝑥 ↔ ∀ 𝑎 ∈ 𝑠 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) |
| 135 |
127 129 134
|
3bitri |
⊢ ( ( 𝑠 × { 𝑏 } ) ⊆ 𝑥 ↔ ∀ 𝑎 ∈ 𝑠 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) |
| 136 |
126 135
|
bitrdi |
⊢ ( 𝑣 = 𝑏 → ( ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 ↔ ∀ 𝑎 ∈ 𝑠 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 137 |
136
|
elrab3 |
⊢ ( 𝑏 ∈ ∪ 𝑆 → ( 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ↔ ∀ 𝑎 ∈ 𝑠 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 138 |
123 137
|
syl |
⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑏 ∈ 𝑘 ) → ( 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ↔ ∀ 𝑎 ∈ 𝑠 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 139 |
138
|
notbid |
⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑏 ∈ 𝑘 ) → ( ¬ 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ↔ ¬ ∀ 𝑎 ∈ 𝑠 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 140 |
|
rexnal |
⊢ ( ∃ 𝑎 ∈ 𝑠 ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ↔ ¬ ∀ 𝑎 ∈ 𝑠 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) |
| 141 |
139 140
|
bitr4di |
⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑏 ∈ 𝑘 ) → ( ¬ 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ↔ ∃ 𝑎 ∈ 𝑠 ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 142 |
141
|
pm5.32da |
⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( ( 𝑏 ∈ 𝑘 ∧ ¬ 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ↔ ( 𝑏 ∈ 𝑘 ∧ ∃ 𝑎 ∈ 𝑠 ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) ) |
| 143 |
121 142
|
bitrid |
⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( 𝑏 ∈ ( 𝑘 ∖ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ↔ ( 𝑏 ∈ 𝑘 ∧ ∃ 𝑎 ∈ 𝑠 ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) ) |
| 144 |
112 120 143
|
3bitr4d |
⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( 𝑏 ∈ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ↔ 𝑏 ∈ ( 𝑘 ∖ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ) |
| 145 |
144
|
eqrdv |
⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) = ( 𝑘 ∖ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) |
| 146 |
74 76 145
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) = ( 𝑘 ∖ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) |
| 147 |
|
difin |
⊢ ( 𝑘 ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) = ( 𝑘 ∖ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) |
| 148 |
65
|
adantr |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑆 ∈ Top ) |
| 149 |
24
|
restuni |
⊢ ( ( 𝑆 ∈ Top ∧ 𝑘 ⊆ ∪ 𝑆 ) → 𝑘 = ∪ ( 𝑆 ↾t 𝑘 ) ) |
| 150 |
148 76 149
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑘 = ∪ ( 𝑆 ↾t 𝑘 ) ) |
| 151 |
150
|
difeq1d |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑘 ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) = ( ∪ ( 𝑆 ↾t 𝑘 ) ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ) |
| 152 |
147 151
|
eqtr3id |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑘 ∖ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) = ( ∪ ( 𝑆 ↾t 𝑘 ) ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ) |
| 153 |
146 152
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) = ( ∪ ( 𝑆 ↾t 𝑘 ) ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ) |
| 154 |
15
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) |
| 155 |
154
|
elin2d |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑆 ∈ Haus ) |
| 156 |
|
df-ima |
⊢ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) = ran ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ↾ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) |
| 157 |
|
resres |
⊢ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ↾ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) = ( 2nd ↾ ( ( ∪ 𝑅 × ∪ 𝑆 ) ∩ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) |
| 158 |
|
inss2 |
⊢ ( ( ∪ 𝑅 × ∪ 𝑆 ) ∩ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) |
| 159 |
158 116
|
sstri |
⊢ ( ( ∪ 𝑅 × ∪ 𝑆 ) ∩ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ( 𝑠 × 𝑘 ) |
| 160 |
|
ssres2 |
⊢ ( ( ( ∪ 𝑅 × ∪ 𝑆 ) ∩ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ( 𝑠 × 𝑘 ) → ( 2nd ↾ ( ( ∪ 𝑅 × ∪ 𝑆 ) ∩ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) ⊆ ( 2nd ↾ ( 𝑠 × 𝑘 ) ) ) |
| 161 |
159 160
|
ax-mp |
⊢ ( 2nd ↾ ( ( ∪ 𝑅 × ∪ 𝑆 ) ∩ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) ⊆ ( 2nd ↾ ( 𝑠 × 𝑘 ) ) |
| 162 |
157 161
|
eqsstri |
⊢ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ↾ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ( 2nd ↾ ( 𝑠 × 𝑘 ) ) |
| 163 |
162
|
rnssi |
⊢ ran ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ↾ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ran ( 2nd ↾ ( 𝑠 × 𝑘 ) ) |
| 164 |
156 163
|
eqsstri |
⊢ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ran ( 2nd ↾ ( 𝑠 × 𝑘 ) ) |
| 165 |
|
f2ndres |
⊢ ( 2nd ↾ ( 𝑠 × 𝑘 ) ) : ( 𝑠 × 𝑘 ) ⟶ 𝑘 |
| 166 |
|
frn |
⊢ ( ( 2nd ↾ ( 𝑠 × 𝑘 ) ) : ( 𝑠 × 𝑘 ) ⟶ 𝑘 → ran ( 2nd ↾ ( 𝑠 × 𝑘 ) ) ⊆ 𝑘 ) |
| 167 |
165 166
|
ax-mp |
⊢ ran ( 2nd ↾ ( 𝑠 × 𝑘 ) ) ⊆ 𝑘 |
| 168 |
164 167
|
sstri |
⊢ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ 𝑘 |
| 169 |
168 76
|
sstrid |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ∪ 𝑆 ) |
| 170 |
12
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) |
| 171 |
148 17
|
sylib |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
| 172 |
|
tx2cn |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ∧ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) → ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |
| 173 |
170 171 172
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |
| 174 |
27
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 175 |
116
|
a1i |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ⊆ ( 𝑠 × 𝑘 ) ) |
| 176 |
|
vex |
⊢ 𝑠 ∈ V |
| 177 |
|
vex |
⊢ 𝑘 ∈ V |
| 178 |
176 177
|
xpex |
⊢ ( 𝑠 × 𝑘 ) ∈ V |
| 179 |
178
|
a1i |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑠 × 𝑘 ) ∈ V ) |
| 180 |
|
restabs |
⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ⊆ ( 𝑠 × 𝑘 ) ∧ ( 𝑠 × 𝑘 ) ∈ V ) → ( ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) = ( ( 𝑅 ×t 𝑆 ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) |
| 181 |
174 175 179 180
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) = ( ( 𝑅 ×t 𝑆 ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) |
| 182 |
64
|
adantr |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑅 ∈ Top ) |
| 183 |
154 4
|
syl |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑆 ∈ Top ) |
| 184 |
176
|
a1i |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑠 ∈ V ) |
| 185 |
|
simprl |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑘 ∈ 𝒫 ∪ 𝑆 ) |
| 186 |
|
txrest |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑠 ∈ V ∧ 𝑘 ∈ 𝒫 ∪ 𝑆 ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) = ( ( 𝑅 ↾t 𝑠 ) ×t ( 𝑆 ↾t 𝑘 ) ) ) |
| 187 |
182 183 184 185 186
|
syl22anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) = ( ( 𝑅 ↾t 𝑠 ) ×t ( 𝑆 ↾t 𝑘 ) ) ) |
| 188 |
|
simprr3 |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑅 ↾t 𝑠 ) ∈ Comp ) |
| 189 |
188
|
adantr |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑅 ↾t 𝑠 ) ∈ Comp ) |
| 190 |
|
simprr |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑆 ↾t 𝑘 ) ∈ Comp ) |
| 191 |
|
txcmp |
⊢ ( ( ( 𝑅 ↾t 𝑠 ) ∈ Comp ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) → ( ( 𝑅 ↾t 𝑠 ) ×t ( 𝑆 ↾t 𝑘 ) ) ∈ Comp ) |
| 192 |
189 190 191
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑅 ↾t 𝑠 ) ×t ( 𝑆 ↾t 𝑘 ) ) ∈ Comp ) |
| 193 |
187 192
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∈ Comp ) |
| 194 |
|
difin |
⊢ ( ( 𝑠 × 𝑘 ) ∖ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ) = ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) |
| 195 |
74 76 117
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑠 × 𝑘 ) ⊆ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 196 |
182 148 25
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 197 |
195 196
|
sseqtrd |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑠 × 𝑘 ) ⊆ ∪ ( 𝑅 ×t 𝑆 ) ) |
| 198 |
28
|
restuni |
⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( 𝑠 × 𝑘 ) ⊆ ∪ ( 𝑅 ×t 𝑆 ) ) → ( 𝑠 × 𝑘 ) = ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) |
| 199 |
174 197 198
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑠 × 𝑘 ) = ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) |
| 200 |
199
|
difeq1d |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑠 × 𝑘 ) ∖ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ) = ( ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∖ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ) ) |
| 201 |
194 200
|
eqtr3id |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) = ( ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∖ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ) ) |
| 202 |
|
resttop |
⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( 𝑠 × 𝑘 ) ∈ V ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∈ Top ) |
| 203 |
174 178 202
|
sylancl |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∈ Top ) |
| 204 |
|
incom |
⊢ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) = ( 𝑥 ∩ ( 𝑠 × 𝑘 ) ) |
| 205 |
20
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) |
| 206 |
|
kgeni |
⊢ ( ( 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∈ Comp ) → ( 𝑥 ∩ ( 𝑠 × 𝑘 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) |
| 207 |
205 193 206
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑥 ∩ ( 𝑠 × 𝑘 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) |
| 208 |
204 207
|
eqeltrid |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ∈ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) |
| 209 |
|
eqid |
⊢ ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) = ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) |
| 210 |
209
|
opncld |
⊢ ( ( ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∈ Top ∧ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ∈ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) → ( ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∖ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ) ∈ ( Clsd ‘ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) ) |
| 211 |
203 208 210
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∖ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ) ∈ ( Clsd ‘ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) ) |
| 212 |
201 211
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ∈ ( Clsd ‘ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) ) |
| 213 |
|
cmpcld |
⊢ ( ( ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∈ Comp ∧ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ∈ ( Clsd ‘ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) ) → ( ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ Comp ) |
| 214 |
193 212 213
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ Comp ) |
| 215 |
181 214
|
eqeltrrd |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ Comp ) |
| 216 |
|
imacmp |
⊢ ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ∧ ( ( 𝑅 ×t 𝑆 ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ Comp ) → ( 𝑆 ↾t ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) ∈ Comp ) |
| 217 |
173 215 216
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑆 ↾t ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) ∈ Comp ) |
| 218 |
24
|
hauscmp |
⊢ ( ( 𝑆 ∈ Haus ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ∪ 𝑆 ∧ ( 𝑆 ↾t ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) ∈ Comp ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ ( Clsd ‘ 𝑆 ) ) |
| 219 |
155 169 217 218
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ ( Clsd ‘ 𝑆 ) ) |
| 220 |
168
|
a1i |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ 𝑘 ) |
| 221 |
24
|
restcldi |
⊢ ( ( 𝑘 ⊆ ∪ 𝑆 ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ ( Clsd ‘ 𝑆 ) ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ 𝑘 ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ ( Clsd ‘ ( 𝑆 ↾t 𝑘 ) ) ) |
| 222 |
76 219 220 221
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ ( Clsd ‘ ( 𝑆 ↾t 𝑘 ) ) ) |
| 223 |
153 222
|
eqeltrrd |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ∪ ( 𝑆 ↾t 𝑘 ) ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ∈ ( Clsd ‘ ( 𝑆 ↾t 𝑘 ) ) ) |
| 224 |
|
resttop |
⊢ ( ( 𝑆 ∈ Top ∧ 𝑘 ∈ 𝒫 ∪ 𝑆 ) → ( 𝑆 ↾t 𝑘 ) ∈ Top ) |
| 225 |
148 185 224
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑆 ↾t 𝑘 ) ∈ Top ) |
| 226 |
|
inss1 |
⊢ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ⊆ 𝑘 |
| 227 |
226 150
|
sseqtrid |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ⊆ ∪ ( 𝑆 ↾t 𝑘 ) ) |
| 228 |
|
eqid |
⊢ ∪ ( 𝑆 ↾t 𝑘 ) = ∪ ( 𝑆 ↾t 𝑘 ) |
| 229 |
228
|
isopn2 |
⊢ ( ( ( 𝑆 ↾t 𝑘 ) ∈ Top ∧ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ⊆ ∪ ( 𝑆 ↾t 𝑘 ) ) → ( ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∈ ( 𝑆 ↾t 𝑘 ) ↔ ( ∪ ( 𝑆 ↾t 𝑘 ) ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ∈ ( Clsd ‘ ( 𝑆 ↾t 𝑘 ) ) ) ) |
| 230 |
225 227 229
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∈ ( 𝑆 ↾t 𝑘 ) ↔ ( ∪ ( 𝑆 ↾t 𝑘 ) ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ∈ ( Clsd ‘ ( 𝑆 ↾t 𝑘 ) ) ) ) |
| 231 |
223 230
|
mpbird |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∈ ( 𝑆 ↾t 𝑘 ) ) |
| 232 |
69 231
|
eqeltrid |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∩ 𝑘 ) ∈ ( 𝑆 ↾t 𝑘 ) ) |
| 233 |
232
|
expr |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ 𝑘 ∈ 𝒫 ∪ 𝑆 ) → ( ( 𝑆 ↾t 𝑘 ) ∈ Comp → ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∩ 𝑘 ) ∈ ( 𝑆 ↾t 𝑘 ) ) ) |
| 234 |
233
|
ralrimiva |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ∀ 𝑘 ∈ 𝒫 ∪ 𝑆 ( ( 𝑆 ↾t 𝑘 ) ∈ Comp → ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∩ 𝑘 ) ∈ ( 𝑆 ↾t 𝑘 ) ) ) |
| 235 |
65 17
|
sylib |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
| 236 |
|
elkgen |
⊢ ( 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) → ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∈ ( 𝑘Gen ‘ 𝑆 ) ↔ ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ⊆ ∪ 𝑆 ∧ ∀ 𝑘 ∈ 𝒫 ∪ 𝑆 ( ( 𝑆 ↾t 𝑘 ) ∈ Comp → ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∩ 𝑘 ) ∈ ( 𝑆 ↾t 𝑘 ) ) ) ) ) |
| 237 |
235 236
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∈ ( 𝑘Gen ‘ 𝑆 ) ↔ ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ⊆ ∪ 𝑆 ∧ ∀ 𝑘 ∈ 𝒫 ∪ 𝑆 ( ( 𝑆 ↾t 𝑘 ) ∈ Comp → ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∩ 𝑘 ) ∈ ( 𝑆 ↾t 𝑘 ) ) ) ) ) |
| 238 |
68 234 237
|
mpbir2and |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∈ ( 𝑘Gen ‘ 𝑆 ) ) |
| 239 |
15
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) |
| 240 |
239 2
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑆 ∈ ran 𝑘Gen ) |
| 241 |
|
kgenidm |
⊢ ( 𝑆 ∈ ran 𝑘Gen → ( 𝑘Gen ‘ 𝑆 ) = 𝑆 ) |
| 242 |
240 241
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑘Gen ‘ 𝑆 ) = 𝑆 ) |
| 243 |
238 242
|
eleqtrd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∈ 𝑆 ) |
| 244 |
|
txopn |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑢 ∈ 𝑅 ∧ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∈ 𝑆 ) ) → ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 245 |
64 65 66 243 244
|
syl22anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 246 |
59
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 247 |
|
simprr1 |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 1st ‘ 𝑦 ) ∈ 𝑢 ) |
| 248 |
|
sneq |
⊢ ( 𝑣 = ( 2nd ‘ 𝑦 ) → { 𝑣 } = { ( 2nd ‘ 𝑦 ) } ) |
| 249 |
248
|
xpeq2d |
⊢ ( 𝑣 = ( 2nd ‘ 𝑦 ) → ( 𝑠 × { 𝑣 } ) = ( 𝑠 × { ( 2nd ‘ 𝑦 ) } ) ) |
| 250 |
249
|
sseq1d |
⊢ ( 𝑣 = ( 2nd ‘ 𝑦 ) → ( ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 ↔ ( 𝑠 × { ( 2nd ‘ 𝑦 ) } ) ⊆ 𝑥 ) ) |
| 251 |
34
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) |
| 252 |
|
relxp |
⊢ Rel ( 𝑠 × { ( 2nd ‘ 𝑦 ) } ) |
| 253 |
252
|
a1i |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → Rel ( 𝑠 × { ( 2nd ‘ 𝑦 ) } ) ) |
| 254 |
|
opelxp |
⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑠 × { ( 2nd ‘ 𝑦 ) } ) ↔ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ { ( 2nd ‘ 𝑦 ) } ) ) |
| 255 |
71
|
sselda |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ 𝑎 ∈ 𝑠 ) → 𝑎 ∈ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ) |
| 256 |
|
opeq1 |
⊢ ( 𝑡 = 𝑎 → 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 = 〈 𝑎 , ( 2nd ‘ 𝑦 ) 〉 ) |
| 257 |
256
|
eleq1d |
⊢ ( 𝑡 = 𝑎 → ( 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ↔ 〈 𝑎 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) ) |
| 258 |
257
|
elrab |
⊢ ( 𝑎 ∈ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ↔ ( 𝑎 ∈ ∪ 𝑅 ∧ 〈 𝑎 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) ) |
| 259 |
258
|
simprbi |
⊢ ( 𝑎 ∈ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } → 〈 𝑎 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) |
| 260 |
255 259
|
syl |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ 𝑎 ∈ 𝑠 ) → 〈 𝑎 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) |
| 261 |
|
elsni |
⊢ ( 𝑏 ∈ { ( 2nd ‘ 𝑦 ) } → 𝑏 = ( 2nd ‘ 𝑦 ) ) |
| 262 |
261
|
opeq2d |
⊢ ( 𝑏 ∈ { ( 2nd ‘ 𝑦 ) } → 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , ( 2nd ‘ 𝑦 ) 〉 ) |
| 263 |
262
|
eleq1d |
⊢ ( 𝑏 ∈ { ( 2nd ‘ 𝑦 ) } → ( 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ↔ 〈 𝑎 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) ) |
| 264 |
260 263
|
syl5ibrcom |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ 𝑎 ∈ 𝑠 ) → ( 𝑏 ∈ { ( 2nd ‘ 𝑦 ) } → 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 265 |
264
|
expimpd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ { ( 2nd ‘ 𝑦 ) } ) → 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 266 |
254 265
|
biimtrid |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑠 × { ( 2nd ‘ 𝑦 ) } ) → 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 267 |
253 266
|
relssdv |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑠 × { ( 2nd ‘ 𝑦 ) } ) ⊆ 𝑥 ) |
| 268 |
250 251 267
|
elrabd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 2nd ‘ 𝑦 ) ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) |
| 269 |
247 268
|
opelxpd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∈ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) |
| 270 |
246 269
|
eqeltrd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑦 ∈ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) |
| 271 |
|
relxp |
⊢ Rel ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) |
| 272 |
271
|
a1i |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → Rel ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) |
| 273 |
|
opelxp |
⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ↔ ( 𝑎 ∈ 𝑢 ∧ 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) |
| 274 |
126
|
elrab |
⊢ ( 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ↔ ( 𝑏 ∈ ∪ 𝑆 ∧ ( 𝑠 × { 𝑏 } ) ⊆ 𝑥 ) ) |
| 275 |
274
|
simprbi |
⊢ ( 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } → ( 𝑠 × { 𝑏 } ) ⊆ 𝑥 ) |
| 276 |
|
simprr2 |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑢 ⊆ 𝑠 ) |
| 277 |
276
|
sselda |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ 𝑎 ∈ 𝑢 ) → 𝑎 ∈ 𝑠 ) |
| 278 |
|
vsnid |
⊢ 𝑏 ∈ { 𝑏 } |
| 279 |
|
opelxpi |
⊢ ( ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ { 𝑏 } ) → 〈 𝑎 , 𝑏 〉 ∈ ( 𝑠 × { 𝑏 } ) ) |
| 280 |
277 278 279
|
sylancl |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ 𝑎 ∈ 𝑢 ) → 〈 𝑎 , 𝑏 〉 ∈ ( 𝑠 × { 𝑏 } ) ) |
| 281 |
|
ssel |
⊢ ( ( 𝑠 × { 𝑏 } ) ⊆ 𝑥 → ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑠 × { 𝑏 } ) → 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 282 |
275 280 281
|
syl2imc |
⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ 𝑎 ∈ 𝑢 ) → ( 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } → 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 283 |
282
|
expimpd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( ( 𝑎 ∈ 𝑢 ∧ 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) → 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 284 |
273 283
|
biimtrid |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) → 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 285 |
272 284
|
relssdv |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ⊆ 𝑥 ) |
| 286 |
|
eleq2 |
⊢ ( 𝑡 = ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) → ( 𝑦 ∈ 𝑡 ↔ 𝑦 ∈ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ) |
| 287 |
|
sseq1 |
⊢ ( 𝑡 = ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) → ( 𝑡 ⊆ 𝑥 ↔ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ⊆ 𝑥 ) ) |
| 288 |
286 287
|
anbi12d |
⊢ ( 𝑡 = ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) → ( ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ↔ ( 𝑦 ∈ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∧ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ⊆ 𝑥 ) ) ) |
| 289 |
288
|
rspcev |
⊢ ( ( ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∈ ( 𝑅 ×t 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∧ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ⊆ 𝑥 ) ) → ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) |
| 290 |
245 270 285 289
|
syl12anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) |
| 291 |
290
|
expr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ) → ( ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) → ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) ) |
| 292 |
291
|
rexlimdvva |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∃ 𝑢 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) → ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) ) |
| 293 |
63 292
|
mpd |
⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) |
| 294 |
293
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) |
| 295 |
6
|
adantr |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 296 |
|
eltop2 |
⊢ ( ( 𝑅 ×t 𝑆 ) ∈ Top → ( 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) ) |
| 297 |
295 296
|
syl |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) → ( 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) ) |
| 298 |
294 297
|
mpbird |
⊢ ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) → 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ) |
| 299 |
298
|
ex |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) → ( 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) → 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ) ) |
| 300 |
299
|
ssrdv |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) → ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ⊆ ( 𝑅 ×t 𝑆 ) ) |
| 301 |
|
iskgen2 |
⊢ ( ( 𝑅 ×t 𝑆 ) ∈ ran 𝑘Gen ↔ ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ⊆ ( 𝑅 ×t 𝑆 ) ) ) |
| 302 |
6 300 301
|
sylanbrc |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) → ( 𝑅 ×t 𝑆 ) ∈ ran 𝑘Gen ) |