Metamath Proof Explorer


Theorem bndth

Description: The Boundedness Theorem. A continuous function from a compact topological space to the reals is bounded (above). (Boundedness below is obtained by applying this theorem to -u F .) (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses bndth.1 X=J
bndth.2 K=topGenran.
bndth.3 φJComp
bndth.4 φFJCnK
Assertion bndth φxyXFyx

Proof

Step Hyp Ref Expression
1 bndth.1 X=J
2 bndth.2 K=topGenran.
3 bndth.3 φJComp
4 bndth.4 φFJCnK
5 retopon topGenran.TopOn
6 2 5 eqeltri KTopOn
7 6 toponunii =K
8 1 7 cnf FJCnKF:X
9 4 8 syl φF:X
10 9 frnd φranF
11 unieq u=.−∞×u=.−∞×
12 imassrn .−∞×ran.
13 12 unissi .−∞×ran.
14 unirnioo =ran.
15 13 14 sseqtrri .−∞×
16 id xx
17 ltp1 xx<x+1
18 ressxr *
19 peano2re xx+1
20 18 19 sselid xx+1*
21 elioomnf x+1*x−∞x+1xx<x+1
22 20 21 syl xx−∞x+1xx<x+1
23 16 17 22 mpbir2and xx−∞x+1
24 df-ov −∞x+1=.−∞x+1
25 mnfxr −∞*
26 25 elexi −∞V
27 26 snid −∞−∞
28 opelxpi −∞−∞x+1−∞x+1−∞×
29 27 19 28 sylancr x−∞x+1−∞×
30 ioof .:*×*𝒫
31 ffun .:*×*𝒫Fun.
32 30 31 ax-mp Fun.
33 snssi −∞*−∞*
34 25 33 ax-mp −∞*
35 xpss12 −∞**−∞×*×*
36 34 18 35 mp2an −∞×*×*
37 30 fdmi dom.=*×*
38 36 37 sseqtrri −∞×dom.
39 funfvima2 Fun.−∞×dom.−∞x+1−∞×.−∞x+1.−∞×
40 32 38 39 mp2an −∞x+1−∞×.−∞x+1.−∞×
41 29 40 syl x.−∞x+1.−∞×
42 24 41 eqeltrid x−∞x+1.−∞×
43 elunii x−∞x+1−∞x+1.−∞×x.−∞×
44 23 42 43 syl2anc xx.−∞×
45 44 ssriv .−∞×
46 15 45 eqssi .−∞×=
47 11 46 eqtrdi u=.−∞×u=
48 47 sseq2d u=.−∞×ranFuranF
49 pweq u=.−∞×𝒫u=𝒫.−∞×
50 49 ineq1d u=.−∞×𝒫uFin=𝒫.−∞×Fin
51 50 rexeqdv u=.−∞×v𝒫uFinranFvv𝒫.−∞×FinranFv
52 48 51 imbi12d u=.−∞×ranFuv𝒫uFinranFvranFv𝒫.−∞×FinranFv
53 rncmp JCompFJCnKK𝑡ranFComp
54 3 4 53 syl2anc φK𝑡ranFComp
55 retop topGenran.Top
56 2 55 eqeltri KTop
57 7 cmpsub KTopranFK𝑡ranFCompu𝒫KranFuv𝒫uFinranFv
58 56 10 57 sylancr φK𝑡ranFCompu𝒫KranFuv𝒫uFinranFv
59 54 58 mpbid φu𝒫KranFuv𝒫uFinranFv
60 retopbas ran.TopBases
61 bastg ran.TopBasesran.topGenran.
62 60 61 ax-mp ran.topGenran.
63 62 2 sseqtrri ran.K
64 12 63 sstri .−∞×K
65 56 64 elpwi2 .−∞×𝒫K
66 65 a1i φ.−∞×𝒫K
67 52 59 66 rspcdva φranFv𝒫.−∞×FinranFv
68 10 67 mpd φv𝒫.−∞×FinranFv
69 simpr φv𝒫.−∞×Finv𝒫.−∞×Fin
70 elin v𝒫.−∞×Finv𝒫.−∞×vFin
71 69 70 sylib φv𝒫.−∞×Finv𝒫.−∞×vFin
72 71 adantrr φv𝒫.−∞×FinranFvv𝒫.−∞×vFin
73 72 simprd φv𝒫.−∞×FinranFvvFin
74 71 simpld φv𝒫.−∞×Finv𝒫.−∞×
75 74 elpwid φv𝒫.−∞×Finv.−∞×
76 34 sseli u−∞u*
77 76 adantr u−∞wu*
78 18 sseli ww*
79 78 adantl u−∞ww*
80 mnflt w−∞<w
81 xrltnle −∞*w*−∞<w¬w−∞
82 25 78 81 sylancr w−∞<w¬w−∞
83 80 82 mpbid w¬w−∞
84 83 adantl u−∞w¬w−∞
85 elsni u−∞u=−∞
86 85 adantr u−∞wu=−∞
87 86 breq2d u−∞wwuw−∞
88 84 87 mtbird u−∞w¬wu
89 ioo0 u*w*uw=wu
90 76 78 89 syl2an u−∞wuw=wu
91 90 necon3abid u−∞wuw¬wu
92 88 91 mpbird u−∞wuw
93 df-ioo .=y*,z*v*|y<vv<z
94 idd x*w*x<wx<w
95 xrltle x*w*x<wxw
96 idd u*x*u<xu<x
97 xrltle u*x*u<xux
98 93 94 95 96 97 ixxub u*w*uwsupuw*<=w
99 77 79 92 98 syl3anc u−∞wsupuw*<=w
100 simpr u−∞ww
101 99 100 eqeltrd u−∞wsupuw*<
102 101 rgen2 u−∞wsupuw*<
103 fveq2 z=uw.z=.uw
104 df-ov uw=.uw
105 103 104 eqtr4di z=uw.z=uw
106 105 supeq1d z=uwsup.z*<=supuw*<
107 106 eleq1d z=uwsup.z*<supuw*<
108 107 ralxp z−∞×sup.z*<u−∞wsupuw*<
109 102 108 mpbir z−∞×sup.z*<
110 ffn .:*×*𝒫.Fn*×*
111 30 110 ax-mp .Fn*×*
112 supeq1 w=.zsupw*<=sup.z*<
113 112 eleq1d w=.zsupw*<sup.z*<
114 113 ralima .Fn*×*−∞×*×*w.−∞×supw*<z−∞×sup.z*<
115 111 36 114 mp2an w.−∞×supw*<z−∞×sup.z*<
116 109 115 mpbir w.−∞×supw*<
117 ssralv v.−∞×w.−∞×supw*<wvsupw*<
118 75 116 117 mpisyl φv𝒫.−∞×Finwvsupw*<
119 118 adantrr φv𝒫.−∞×FinranFvwvsupw*<
120 fimaxre3 vFinwvsupw*<xwvsupw*<x
121 73 119 120 syl2anc φv𝒫.−∞×FinranFvxwvsupw*<x
122 simplrr φv𝒫.−∞×FinranFvxranFv
123 122 sselda φv𝒫.−∞×FinranFvxzranFzv
124 eluni2 zvwvzw
125 r19.29r wvzwwvsupw*<xwvzwsupw*<x
126 sspwuni .−∞×𝒫.−∞×
127 15 126 mpbir .−∞×𝒫
128 75 3ad2ant1 φv𝒫.−∞×Finxwvzwsupw*<xv.−∞×
129 simp2r φv𝒫.−∞×Finxwvzwsupw*<xwv
130 128 129 sseldd φv𝒫.−∞×Finxwvzwsupw*<xw.−∞×
131 127 130 sselid φv𝒫.−∞×Finxwvzwsupw*<xw𝒫
132 131 elpwid φv𝒫.−∞×Finxwvzwsupw*<xw
133 simp3l φv𝒫.−∞×Finxwvzwsupw*<xzw
134 132 133 sseldd φv𝒫.−∞×Finxwvzwsupw*<xz
135 118 r19.21bi φv𝒫.−∞×Finwvsupw*<
136 135 adantrl φv𝒫.−∞×Finxwvsupw*<
137 136 3adant3 φv𝒫.−∞×Finxwvzwsupw*<xsupw*<
138 simp2l φv𝒫.−∞×Finxwvzwsupw*<xx
139 132 18 sstrdi φv𝒫.−∞×Finxwvzwsupw*<xw*
140 supxrub w*zwzsupw*<
141 139 133 140 syl2anc φv𝒫.−∞×Finxwvzwsupw*<xzsupw*<
142 simp3r φv𝒫.−∞×Finxwvzwsupw*<xsupw*<x
143 134 137 138 141 142 letrd φv𝒫.−∞×Finxwvzwsupw*<xzx
144 143 3expia φv𝒫.−∞×Finxwvzwsupw*<xzx
145 144 anassrs φv𝒫.−∞×Finxwvzwsupw*<xzx
146 145 rexlimdva φv𝒫.−∞×Finxwvzwsupw*<xzx
147 146 adantlrr φv𝒫.−∞×FinranFvxwvzwsupw*<xzx
148 125 147 syl5 φv𝒫.−∞×FinranFvxwvzwwvsupw*<xzx
149 148 expdimp φv𝒫.−∞×FinranFvxwvzwwvsupw*<xzx
150 124 149 sylan2b φv𝒫.−∞×FinranFvxzvwvsupw*<xzx
151 123 150 syldan φv𝒫.−∞×FinranFvxzranFwvsupw*<xzx
152 151 ralrimdva φv𝒫.−∞×FinranFvxwvsupw*<xzranFzx
153 9 ffnd φFFnX
154 153 ad2antrr φv𝒫.−∞×FinranFvxFFnX
155 breq1 z=FyzxFyx
156 155 ralrn FFnXzranFzxyXFyx
157 154 156 syl φv𝒫.−∞×FinranFvxzranFzxyXFyx
158 152 157 sylibd φv𝒫.−∞×FinranFvxwvsupw*<xyXFyx
159 158 reximdva φv𝒫.−∞×FinranFvxwvsupw*<xxyXFyx
160 121 159 mpd φv𝒫.−∞×FinranFvxyXFyx
161 68 160 rexlimddv φxyXFyx