Metamath Proof Explorer


Theorem canthp1lem2

Description: Lemma for canthp1 . (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Hypotheses canthp1lem2.1 φ1𝑜A
canthp1lem2.2 φF:𝒫A1-1 ontoA⊔︀1𝑜
canthp1lem2.3 φG:A⊔︀1𝑜FA1-1 ontoA
canthp1lem2.4 H=GFx𝒫Aifx=Ax
canthp1lem2.5 W=xr|xArx×xrWexyxHr-1y=y
canthp1lem2.6 B=domW
Assertion canthp1lem2 ¬φ

Proof

Step Hyp Ref Expression
1 canthp1lem2.1 φ1𝑜A
2 canthp1lem2.2 φF:𝒫A1-1 ontoA⊔︀1𝑜
3 canthp1lem2.3 φG:A⊔︀1𝑜FA1-1 ontoA
4 canthp1lem2.4 H=GFx𝒫Aifx=Ax
5 canthp1lem2.5 W=xr|xArx×xrWexyxHr-1y=y
6 canthp1lem2.6 B=domW
7 relsdom Rel
8 7 brrelex2i 1𝑜AAV
9 1 8 syl φAV
10 9 pwexd φ𝒫AV
11 f1oeng 𝒫AVF:𝒫A1-1 ontoA⊔︀1𝑜𝒫AA⊔︀1𝑜
12 10 2 11 syl2anc φ𝒫AA⊔︀1𝑜
13 12 ensymd φA⊔︀1𝑜𝒫A
14 canth2g AVA𝒫A
15 9 14 syl φA𝒫A
16 sdomen2 𝒫AA⊔︀1𝑜A𝒫AAA⊔︀1𝑜
17 12 16 syl φA𝒫AAA⊔︀1𝑜
18 15 17 mpbid φAA⊔︀1𝑜
19 sdomnen AA⊔︀1𝑜¬AA⊔︀1𝑜
20 18 19 syl φ¬AA⊔︀1𝑜
21 omelon ωOn
22 onenon ωOnωdomcard
23 21 22 ax-mp ωdomcard
24 dff1o3 F:𝒫A1-1 ontoA⊔︀1𝑜F:𝒫AontoA⊔︀1𝑜FunF-1
25 24 simprbi F:𝒫A1-1 ontoA⊔︀1𝑜FunF-1
26 2 25 syl φFunF-1
27 f1ofo F:𝒫A1-1 ontoA⊔︀1𝑜F:𝒫AontoA⊔︀1𝑜
28 2 27 syl φF:𝒫AontoA⊔︀1𝑜
29 f1ofn F:𝒫A1-1 ontoA⊔︀1𝑜FFn𝒫A
30 fnresdm FFn𝒫AF𝒫A=F
31 foeq1 F𝒫A=FF𝒫A:𝒫AontoA⊔︀1𝑜F:𝒫AontoA⊔︀1𝑜
32 2 29 30 31 4syl φF𝒫A:𝒫AontoA⊔︀1𝑜F:𝒫AontoA⊔︀1𝑜
33 28 32 mpbird φF𝒫A:𝒫AontoA⊔︀1𝑜
34 fvex FAV
35 f1osng AVFAVAFA:A1-1 ontoFA
36 9 34 35 sylancl φAFA:A1-1 ontoFA
37 2 29 syl φFFn𝒫A
38 pwidg AVA𝒫A
39 9 38 syl φA𝒫A
40 fnressn FFn𝒫AA𝒫AFA=AFA
41 37 39 40 syl2anc φFA=AFA
42 41 f1oeq1d φFA:A1-1 ontoFAAFA:A1-1 ontoFA
43 36 42 mpbird φFA:A1-1 ontoFA
44 f1ofo FA:A1-1 ontoFAFA:AontoFA
45 43 44 syl φFA:AontoFA
46 resdif FunF-1F𝒫A:𝒫AontoA⊔︀1𝑜FA:AontoFAF𝒫AA:𝒫AA1-1 ontoA⊔︀1𝑜FA
47 26 33 45 46 syl3anc φF𝒫AA:𝒫AA1-1 ontoA⊔︀1𝑜FA
48 f1oco G:A⊔︀1𝑜FA1-1 ontoAF𝒫AA:𝒫AA1-1 ontoA⊔︀1𝑜FAGF𝒫AA:𝒫AA1-1 ontoA
49 3 47 48 syl2anc φGF𝒫AA:𝒫AA1-1 ontoA
50 resco GF𝒫AA=GF𝒫AA
51 f1oeq1 GF𝒫AA=GF𝒫AAGF𝒫AA:𝒫AA1-1 ontoAGF𝒫AA:𝒫AA1-1 ontoA
52 50 51 ax-mp GF𝒫AA:𝒫AA1-1 ontoAGF𝒫AA:𝒫AA1-1 ontoA
53 49 52 sylibr φGF𝒫AA:𝒫AA1-1 ontoA
54 f1of GF𝒫AA:𝒫AA1-1 ontoAGF𝒫AA:𝒫AAA
55 53 54 syl φGF𝒫AA:𝒫AAA
56 0elpw 𝒫A
57 56 a1i φx𝒫Ax=A𝒫A
58 sdom0 ¬1𝑜
59 breq2 =A1𝑜1𝑜A
60 58 59 mtbii =A¬1𝑜A
61 60 necon2ai 1𝑜AA
62 1 61 syl φA
63 62 ad2antrr φx𝒫Ax=AA
64 eldifsn 𝒫AA𝒫AA
65 57 63 64 sylanbrc φx𝒫Ax=A𝒫AA
66 simplr φx𝒫A¬x=Ax𝒫A
67 simpr φx𝒫A¬x=A¬x=A
68 67 neqned φx𝒫A¬x=AxA
69 eldifsn x𝒫AAx𝒫AxA
70 66 68 69 sylanbrc φx𝒫A¬x=Ax𝒫AA
71 65 70 ifclda φx𝒫Aifx=Ax𝒫AA
72 71 fmpttd φx𝒫Aifx=Ax:𝒫A𝒫AA
73 55 72 fcod φGF𝒫AAx𝒫Aifx=Ax:𝒫AA
74 72 frnd φranx𝒫Aifx=Ax𝒫AA
75 cores ranx𝒫Aifx=Ax𝒫AAGF𝒫AAx𝒫Aifx=Ax=GFx𝒫Aifx=Ax
76 74 75 syl φGF𝒫AAx𝒫Aifx=Ax=GFx𝒫Aifx=Ax
77 76 4 eqtr4di φGF𝒫AAx𝒫Aifx=Ax=H
78 77 feq1d φGF𝒫AAx𝒫Aifx=Ax:𝒫AAH:𝒫AA
79 73 78 mpbid φH:𝒫AA
80 inss1 𝒫Adomcard𝒫A
81 80 a1i φ𝒫Adomcard𝒫A
82 eqid WB-1HB=WB-1HB
83 5 6 82 canth4 AVH:𝒫AA𝒫Adomcard𝒫ABAWB-1HBBHB=HWB-1HB
84 9 79 81 83 syl3anc φBAWB-1HBBHB=HWB-1HB
85 84 simp1d φBA
86 84 simp2d φWB-1HBB
87 86 pssned φWB-1HBB
88 87 necomd φBWB-1HB
89 84 simp3d φHB=HWB-1HB
90 4 fveq1i HB=GFx𝒫Aifx=AxB
91 4 fveq1i HWB-1HB=GFx𝒫Aifx=AxWB-1HB
92 89 90 91 3eqtr3g φGFx𝒫Aifx=AxB=GFx𝒫Aifx=AxWB-1HB
93 9 85 sselpwd φB𝒫A
94 72 93 fvco3d φGFx𝒫Aifx=AxB=GFx𝒫Aifx=AxB
95 86 pssssd φWB-1HBB
96 95 85 sstrd φWB-1HBA
97 9 96 sselpwd φWB-1HB𝒫A
98 72 97 fvco3d φGFx𝒫Aifx=AxWB-1HB=GFx𝒫Aifx=AxWB-1HB
99 92 94 98 3eqtr3d φGFx𝒫Aifx=AxB=GFx𝒫Aifx=AxWB-1HB
100 99 adantr φBAGFx𝒫Aifx=AxB=GFx𝒫Aifx=AxWB-1HB
101 eqid x𝒫Aifx=Ax=x𝒫Aifx=Ax
102 eqeq1 x=Bx=AB=A
103 id x=Bx=B
104 102 103 ifbieq2d x=Bifx=Ax=ifB=AB
105 ifcl 𝒫AB𝒫AifB=AB𝒫A
106 56 93 105 sylancr φifB=AB𝒫A
107 101 104 93 106 fvmptd3 φx𝒫Aifx=AxB=ifB=AB
108 pssne BABA
109 108 neneqd BA¬B=A
110 109 iffalsed BAifB=AB=B
111 107 110 sylan9eq φBAx𝒫Aifx=AxB=B
112 111 fveq2d φBAGFx𝒫Aifx=AxB=GFB
113 eqeq1 x=WB-1HBx=AWB-1HB=A
114 id x=WB-1HBx=WB-1HB
115 113 114 ifbieq2d x=WB-1HBifx=Ax=ifWB-1HB=AWB-1HB
116 ifcl 𝒫AWB-1HB𝒫AifWB-1HB=AWB-1HB𝒫A
117 56 97 116 sylancr φifWB-1HB=AWB-1HB𝒫A
118 101 115 97 117 fvmptd3 φx𝒫Aifx=AxWB-1HB=ifWB-1HB=AWB-1HB
119 118 adantr φBAx𝒫Aifx=AxWB-1HB=ifWB-1HB=AWB-1HB
120 sspsstr WB-1HBBBAWB-1HBA
121 95 120 sylan φBAWB-1HBA
122 121 pssned φBAWB-1HBA
123 122 neneqd φBA¬WB-1HB=A
124 123 iffalsed φBAifWB-1HB=AWB-1HB=WB-1HB
125 119 124 eqtrd φBAx𝒫Aifx=AxWB-1HB=WB-1HB
126 125 fveq2d φBAGFx𝒫Aifx=AxWB-1HB=GFWB-1HB
127 100 112 126 3eqtr3d φBAGFB=GFWB-1HB
128 93 108 anim12i φBAB𝒫ABA
129 eldifsn B𝒫AAB𝒫ABA
130 128 129 sylibr φBAB𝒫AA
131 130 fvresd φBAGF𝒫AAB=GFB
132 97 adantr φBAWB-1HB𝒫A
133 eldifsn WB-1HB𝒫AAWB-1HB𝒫AWB-1HBA
134 132 122 133 sylanbrc φBAWB-1HB𝒫AA
135 134 fvresd φBAGF𝒫AAWB-1HB=GFWB-1HB
136 127 131 135 3eqtr4d φBAGF𝒫AAB=GF𝒫AAWB-1HB
137 f1of1 GF𝒫AA:𝒫AA1-1 ontoAGF𝒫AA:𝒫AA1-1A
138 53 137 syl φGF𝒫AA:𝒫AA1-1A
139 138 adantr φBAGF𝒫AA:𝒫AA1-1A
140 f1fveq GF𝒫AA:𝒫AA1-1AB𝒫AAWB-1HB𝒫AAGF𝒫AAB=GF𝒫AAWB-1HBB=WB-1HB
141 139 130 134 140 syl12anc φBAGF𝒫AAB=GF𝒫AAWB-1HBB=WB-1HB
142 136 141 mpbid φBAB=WB-1HB
143 142 ex φBAB=WB-1HB
144 143 necon3ad φBWB-1HB¬BA
145 88 144 mpd φ¬BA
146 npss ¬BABAB=A
147 145 146 sylib φBAB=A
148 85 147 mpd φB=A
149 eqid B=B
150 eqid WB=WB
151 149 150 pm3.2i B=BWB=WB
152 elinel1 x𝒫Adomcardx𝒫A
153 ffvelcdm H:𝒫AAx𝒫AHxA
154 79 152 153 syl2an φx𝒫AdomcardHxA
155 5 9 154 6 fpwwe φBWWBHBBB=BWB=WB
156 151 155 mpbiri φBWWBHBB
157 156 simpld φBWWB
158 5 9 fpwwelem φBWWBBAWBB×BWBWeByBHWB-1y=y
159 157 158 mpbid φBAWBB×BWBWeByBHWB-1y=y
160 159 simprld φWBWeB
161 fvex WBV
162 weeq1 r=WBrWeBWBWeB
163 161 162 spcev WBWeBrrWeB
164 160 163 syl φrrWeB
165 ween BdomcardrrWeB
166 164 165 sylibr φBdomcard
167 148 166 eqeltrrd φAdomcard
168 domtri2 ωdomcardAdomcardωA¬Aω
169 23 167 168 sylancr φωA¬Aω
170 infdju1 ωAA⊔︀1𝑜A
171 169 170 syl6bir φ¬AωA⊔︀1𝑜A
172 ensym A⊔︀1𝑜AAA⊔︀1𝑜
173 171 172 syl6 φ¬AωAA⊔︀1𝑜
174 20 173 mt3d φAω
175 2onn 2𝑜ω
176 nnsdom 2𝑜ω2𝑜ω
177 175 176 ax-mp 2𝑜ω
178 djufi Aω2𝑜ωA⊔︀2𝑜ω
179 174 177 178 sylancl φA⊔︀2𝑜ω
180 isfinite A⊔︀2𝑜FinA⊔︀2𝑜ω
181 179 180 sylibr φA⊔︀2𝑜Fin
182 sssucid 1𝑜suc1𝑜
183 df-2o 2𝑜=suc1𝑜
184 182 183 sseqtrri 1𝑜2𝑜
185 xpss2 1𝑜2𝑜1𝑜×1𝑜1𝑜×2𝑜
186 184 185 ax-mp 1𝑜×1𝑜1𝑜×2𝑜
187 unss2 1𝑜×1𝑜1𝑜×2𝑜×A1𝑜×1𝑜×A1𝑜×2𝑜
188 186 187 mp1i φ×A1𝑜×1𝑜×A1𝑜×2𝑜
189 ssun2 1𝑜×2𝑜×A1𝑜×2𝑜
190 1oex 1𝑜V
191 190 snid 1𝑜1𝑜
192 190 sucid 1𝑜suc1𝑜
193 192 183 eleqtrri 1𝑜2𝑜
194 opelxpi 1𝑜1𝑜1𝑜2𝑜1𝑜1𝑜1𝑜×2𝑜
195 191 193 194 mp2an 1𝑜1𝑜1𝑜×2𝑜
196 189 195 sselii 1𝑜1𝑜×A1𝑜×2𝑜
197 1n0 1𝑜
198 197 neii ¬1𝑜=
199 opelxp1 1𝑜1𝑜×A1𝑜
200 elsni 1𝑜1𝑜=
201 199 200 syl 1𝑜1𝑜×A1𝑜=
202 198 201 mto ¬1𝑜1𝑜×A
203 1onn 1𝑜ω
204 nnord 1𝑜ωOrd1𝑜
205 ordirr Ord1𝑜¬1𝑜1𝑜
206 203 204 205 mp2b ¬1𝑜1𝑜
207 opelxp2 1𝑜1𝑜1𝑜×1𝑜1𝑜1𝑜
208 206 207 mto ¬1𝑜1𝑜1𝑜×1𝑜
209 202 208 pm3.2ni ¬1𝑜1𝑜×A1𝑜1𝑜1𝑜×1𝑜
210 elun 1𝑜1𝑜×A1𝑜×1𝑜1𝑜1𝑜×A1𝑜1𝑜1𝑜×1𝑜
211 209 210 mtbir ¬1𝑜1𝑜×A1𝑜×1𝑜
212 ssnelpss ×A1𝑜×1𝑜×A1𝑜×2𝑜1𝑜1𝑜×A1𝑜×2𝑜¬1𝑜1𝑜×A1𝑜×1𝑜×A1𝑜×1𝑜×A1𝑜×2𝑜
213 196 211 212 mp2ani ×A1𝑜×1𝑜×A1𝑜×2𝑜×A1𝑜×1𝑜×A1𝑜×2𝑜
214 188 213 syl φ×A1𝑜×1𝑜×A1𝑜×2𝑜
215 df-dju A⊔︀1𝑜=×A1𝑜×1𝑜
216 df-dju A⊔︀2𝑜=×A1𝑜×2𝑜
217 215 216 psseq12i A⊔︀1𝑜A⊔︀2𝑜×A1𝑜×1𝑜×A1𝑜×2𝑜
218 214 217 sylibr φA⊔︀1𝑜A⊔︀2𝑜
219 php3 A⊔︀2𝑜FinA⊔︀1𝑜A⊔︀2𝑜A⊔︀1𝑜A⊔︀2𝑜
220 181 218 219 syl2anc φA⊔︀1𝑜A⊔︀2𝑜
221 canthp1lem1 1𝑜AA⊔︀2𝑜𝒫A
222 1 221 syl φA⊔︀2𝑜𝒫A
223 sdomdomtr A⊔︀1𝑜A⊔︀2𝑜A⊔︀2𝑜𝒫AA⊔︀1𝑜𝒫A
224 220 222 223 syl2anc φA⊔︀1𝑜𝒫A
225 sdomnen A⊔︀1𝑜𝒫A¬A⊔︀1𝑜𝒫A
226 224 225 syl φ¬A⊔︀1𝑜𝒫A
227 13 226 pm2.65i ¬φ