Metamath Proof Explorer


Theorem cvmlift2lem9

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 1-Jun-2015)

Ref Expression
Hypotheses cvmlift2.b B=C
cvmlift2.f φFCCovMapJ
cvmlift2.g φGII×tIICnJ
cvmlift2.p φPB
cvmlift2.i φFP=0G0
cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
cvmlift2.k K=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
cvmlift2lem10.s S=kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k
cvmlift2lem9.1 φXGYM
cvmlift2lem9.2 φTSM
cvmlift2lem9.3 φUII
cvmlift2lem9.4 φVII
cvmlift2lem9.5 φII𝑡UConn
cvmlift2lem9.6 φII𝑡VConn
cvmlift2lem9.7 φXU
cvmlift2lem9.8 φYV
cvmlift2lem9.9 φU×VG-1M
cvmlift2lem9.10 φZV
cvmlift2lem9.11 φKU×ZII×tII𝑡U×ZCnC
cvmlift2lem9.w W=ιbT|XKYb
Assertion cvmlift2lem9 φKU×VII×tII𝑡U×VCnC

Proof

Step Hyp Ref Expression
1 cvmlift2.b B=C
2 cvmlift2.f φFCCovMapJ
3 cvmlift2.g φGII×tIICnJ
4 cvmlift2.p φPB
5 cvmlift2.i φFP=0G0
6 cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
7 cvmlift2.k K=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
8 cvmlift2lem10.s S=kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k
9 cvmlift2lem9.1 φXGYM
10 cvmlift2lem9.2 φTSM
11 cvmlift2lem9.3 φUII
12 cvmlift2lem9.4 φVII
13 cvmlift2lem9.5 φII𝑡UConn
14 cvmlift2lem9.6 φII𝑡VConn
15 cvmlift2lem9.7 φXU
16 cvmlift2lem9.8 φYV
17 cvmlift2lem9.9 φU×VG-1M
18 cvmlift2lem9.10 φZV
19 cvmlift2lem9.11 φKU×ZII×tII𝑡U×ZCnC
20 cvmlift2lem9.w W=ιbT|XKYb
21 iitop IITop
22 iiuni 01=II
23 21 21 22 22 txunii 01×01=II×tII
24 1 2 3 4 5 6 7 cvmlift2lem5 φK:01×01B
25 1 2 3 4 5 6 7 cvmlift2lem7 φFK=G
26 25 3 eqeltrd φFKII×tIICnJ
27 21 21 txtopi II×tIITop
28 27 a1i φII×tIITop
29 elssuni UIIUII
30 29 22 sseqtrrdi UIIU01
31 11 30 syl φU01
32 31 15 sseldd φX01
33 elssuni VIIVII
34 33 22 sseqtrrdi VIIV01
35 12 34 syl φV01
36 35 16 sseldd φY01
37 opelxpi X01Y01XY01×01
38 32 36 37 syl2anc φXY01×01
39 24 32 36 fovcdmd φXKYB
40 fvco3 K:01×01BXY01×01FKXY=FKXY
41 24 38 40 syl2anc φFKXY=FKXY
42 25 fveq1d φFKXY=GXY
43 41 42 eqtr3d φFKXY=GXY
44 df-ov XKY=KXY
45 44 fveq2i FXKY=FKXY
46 df-ov XGY=GXY
47 43 45 46 3eqtr4g φFXKY=XGY
48 47 9 eqeltrd φFXKYM
49 8 1 20 cvmsiota FCCovMapJTSMXKYBFXKYMWTXKYW
50 2 10 39 48 49 syl13anc φWTXKYW
51 44 eleq1i XKYWKXYW
52 51 anbi2i WTXKYWWTKXYW
53 50 52 sylib φWTKXYW
54 xpss12 U01V01U×V01×01
55 31 35 54 syl2anc φU×V01×01
56 snidg mUmm
57 56 ad2antrl φmUnVmm
58 simprr φmUnVnV
59 ovres mmnVmKm×Vn=mKn
60 57 58 59 syl2anc φmUnVmKm×Vn=mKn
61 eqid II×tII𝑡m×V=II×tII𝑡m×V
62 21 a1i φmUnVIITop
63 snex mV
64 63 a1i φmUnVmV
65 12 adantr φmUnVVII
66 txrest IITopIITopmVVIIII×tII𝑡m×V=II𝑡m×tII𝑡V
67 62 62 64 65 66 syl22anc φmUnVII×tII𝑡m×V=II𝑡m×tII𝑡V
68 iitopon IITopOn01
69 31 sselda φmUm01
70 69 adantrr φmUnVm01
71 restsn2 IITopOn01m01II𝑡m=𝒫m
72 68 70 71 sylancr φmUnVII𝑡m=𝒫m
73 pwsn 𝒫m=m
74 indisconn mConn
75 73 74 eqeltri 𝒫mConn
76 72 75 eqeltrdi φmUnVII𝑡mConn
77 14 adantr φmUnVII𝑡VConn
78 txconn II𝑡mConnII𝑡VConnII𝑡m×tII𝑡VConn
79 76 77 78 syl2anc φmUnVII𝑡m×tII𝑡VConn
80 67 79 eqeltrd φmUnVII×tII𝑡m×VConn
81 1 2 3 4 5 6 7 cvmlift2lem6 φm01Km×01II×tII𝑡m×01CnC
82 70 81 syldan φmUnVKm×01II×tII𝑡m×01CnC
83 35 adantr φmUnVV01
84 xpss2 V01m×Vm×01
85 83 84 syl φmUnVm×Vm×01
86 70 snssd φmUnVm01
87 xpss1 m01m×0101×01
88 86 87 syl φmUnVm×0101×01
89 23 restuni II×tIITopm×0101×01m×01=II×tII𝑡m×01
90 27 88 89 sylancr φmUnVm×01=II×tII𝑡m×01
91 85 90 sseqtrd φmUnVm×VII×tII𝑡m×01
92 eqid II×tII𝑡m×01=II×tII𝑡m×01
93 92 cnrest Km×01II×tII𝑡m×01CnCm×VII×tII𝑡m×01Km×01m×VII×tII𝑡m×01𝑡m×VCnC
94 82 91 93 syl2anc φmUnVKm×01m×VII×tII𝑡m×01𝑡m×VCnC
95 85 resabs1d φmUnVKm×01m×V=Km×V
96 27 a1i φmUnVII×tIITop
97 ovex 01V
98 63 97 xpex m×01V
99 98 a1i φmUnVm×01V
100 restabs II×tIITopm×Vm×01m×01VII×tII𝑡m×01𝑡m×V=II×tII𝑡m×V
101 96 85 99 100 syl3anc φmUnVII×tII𝑡m×01𝑡m×V=II×tII𝑡m×V
102 101 oveq1d φmUnVII×tII𝑡m×01𝑡m×VCnC=II×tII𝑡m×VCnC
103 94 95 102 3eltr3d φmUnVKm×VII×tII𝑡m×VCnC
104 cvmtop1 FCCovMapJCTop
105 2 104 syl φCTop
106 105 adantr φmUnVCTop
107 1 toptopon CTopCTopOnB
108 106 107 sylib φmUnVCTopOnB
109 df-ima Km×V=ranKm×V
110 simprl φmUnVmU
111 110 snssd φmUnVmU
112 xpss1 mUm×VU×V
113 imass2 m×VU×VKm×VKU×V
114 111 112 113 3syl φmUnVKm×VKU×V
115 imaco K-1F-1M=K-1F-1M
116 cnvco FK-1=K-1F-1
117 25 cnveqd φFK-1=G-1
118 116 117 eqtr3id φK-1F-1=G-1
119 118 imaeq1d φK-1F-1M=G-1M
120 115 119 eqtr3id φK-1F-1M=G-1M
121 17 120 sseqtrrd φU×VK-1F-1M
122 24 ffund φFunK
123 24 fdmd φdomK=01×01
124 55 123 sseqtrrd φU×VdomK
125 funimass3 FunKU×VdomKKU×VF-1MU×VK-1F-1M
126 122 124 125 syl2anc φKU×VF-1MU×VK-1F-1M
127 121 126 mpbird φKU×VF-1M
128 127 adantr φmUnVKU×VF-1M
129 114 128 sstrd φmUnVKm×VF-1M
130 109 129 eqsstrrid φmUnVranKm×VF-1M
131 cnvimass F-1MdomF
132 cvmcn FCCovMapJFCCnJ
133 2 132 syl φFCCnJ
134 eqid J=J
135 1 134 cnf FCCnJF:BJ
136 fdm F:BJdomF=B
137 133 135 136 3syl φdomF=B
138 131 137 sseqtrid φF-1MB
139 138 adantr φmUnVF-1MB
140 cnrest2 CTopOnBranKm×VF-1MF-1MBKm×VII×tII𝑡m×VCnCKm×VII×tII𝑡m×VCnC𝑡F-1M
141 108 130 139 140 syl3anc φmUnVKm×VII×tII𝑡m×VCnCKm×VII×tII𝑡m×VCnC𝑡F-1M
142 103 141 mpbid φmUnVKm×VII×tII𝑡m×VCnC𝑡F-1M
143 8 cvmsss TSMTC
144 10 143 syl φTC
145 50 simpld φWT
146 144 145 sseldd φWC
147 elssuni WTWT
148 145 147 syl φWT
149 8 cvmsuni TSMT=F-1M
150 10 149 syl φT=F-1M
151 148 150 sseqtrd φWF-1M
152 8 cvmsrcl TSMMJ
153 10 152 syl φMJ
154 cnima FCCnJMJF-1MC
155 133 153 154 syl2anc φF-1MC
156 restopn2 CTopF-1MCWC𝑡F-1MWCWF-1M
157 105 155 156 syl2anc φWC𝑡F-1MWCWF-1M
158 146 151 157 mpbir2and φWC𝑡F-1M
159 158 adantr φmUnVWC𝑡F-1M
160 8 cvmscld FCCovMapJTSMWTWClsdC𝑡F-1M
161 2 10 145 160 syl3anc φWClsdC𝑡F-1M
162 161 adantr φmUnVWClsdC𝑡F-1M
163 18 adantr φmUnVZV
164 opelxpi mmZVmZm×V
165 57 163 164 syl2anc φmUnVmZm×V
166 85 88 sstrd φmUnVm×V01×01
167 23 restuni II×tIITopm×V01×01m×V=II×tII𝑡m×V
168 27 166 167 sylancr φmUnVm×V=II×tII𝑡m×V
169 165 168 eleqtrd φmUnVmZII×tII𝑡m×V
170 df-ov mKm×VZ=Km×VmZ
171 ovres mmZVmKm×VZ=mKZ
172 57 163 171 syl2anc φmUnVmKm×VZ=mKZ
173 snidg ZVZZ
174 18 173 syl φZZ
175 174 adantr φmUnVZZ
176 ovres mUZZmKU×ZZ=mKZ
177 110 175 176 syl2anc φmUnVmKU×ZZ=mKZ
178 172 177 eqtr4d φmUnVmKm×VZ=mKU×ZZ
179 170 178 eqtr3id φmUnVKm×VmZ=mKU×ZZ
180 eqid II×tII𝑡U×Z=II×tII𝑡U×Z
181 21 a1i φIITop
182 snex ZV
183 182 a1i φZV
184 txrest IITopIITopUIIZVII×tII𝑡U×Z=II𝑡U×tII𝑡Z
185 181 181 11 183 184 syl22anc φII×tII𝑡U×Z=II𝑡U×tII𝑡Z
186 35 18 sseldd φZ01
187 restsn2 IITopOn01Z01II𝑡Z=𝒫Z
188 68 186 187 sylancr φII𝑡Z=𝒫Z
189 pwsn 𝒫Z=Z
190 indisconn ZConn
191 189 190 eqeltri 𝒫ZConn
192 188 191 eqeltrdi φII𝑡ZConn
193 txconn II𝑡UConnII𝑡ZConnII𝑡U×tII𝑡ZConn
194 13 192 193 syl2anc φII𝑡U×tII𝑡ZConn
195 185 194 eqeltrd φII×tII𝑡U×ZConn
196 105 107 sylib φCTopOnB
197 df-ima KU×Z=ranKU×Z
198 18 snssd φZV
199 xpss2 ZVU×ZU×V
200 imass2 U×ZU×VKU×ZKU×V
201 198 199 200 3syl φKU×ZKU×V
202 201 127 sstrd φKU×ZF-1M
203 197 202 eqsstrrid φranKU×ZF-1M
204 cnrest2 CTopOnBranKU×ZF-1MF-1MBKU×ZII×tII𝑡U×ZCnCKU×ZII×tII𝑡U×ZCnC𝑡F-1M
205 196 203 138 204 syl3anc φKU×ZII×tII𝑡U×ZCnCKU×ZII×tII𝑡U×ZCnC𝑡F-1M
206 19 205 mpbid φKU×ZII×tII𝑡U×ZCnC𝑡F-1M
207 opelxpi XUZZXZU×Z
208 15 174 207 syl2anc φXZU×Z
209 186 snssd φZ01
210 xpss12 U01Z01U×Z01×01
211 31 209 210 syl2anc φU×Z01×01
212 23 restuni II×tIITopU×Z01×01U×Z=II×tII𝑡U×Z
213 27 211 212 sylancr φU×Z=II×tII𝑡U×Z
214 208 213 eleqtrd φXZII×tII𝑡U×Z
215 df-ov XKU×ZZ=KU×ZXZ
216 ovres XUZZXKU×ZZ=XKZ
217 15 174 216 syl2anc φXKU×ZZ=XKZ
218 snidg XUXX
219 15 218 syl φXX
220 ovres XXZVXKX×VZ=XKZ
221 219 18 220 syl2anc φXKX×VZ=XKZ
222 217 221 eqtr4d φXKU×ZZ=XKX×VZ
223 215 222 eqtr3id φKU×ZXZ=XKX×VZ
224 eqid II×tII𝑡X×V=II×tII𝑡X×V
225 snex XV
226 225 a1i φXV
227 txrest IITopIITopXVVIIII×tII𝑡X×V=II𝑡X×tII𝑡V
228 181 181 226 12 227 syl22anc φII×tII𝑡X×V=II𝑡X×tII𝑡V
229 restsn2 IITopOn01X01II𝑡X=𝒫X
230 68 32 229 sylancr φII𝑡X=𝒫X
231 pwsn 𝒫X=X
232 indisconn XConn
233 231 232 eqeltri 𝒫XConn
234 230 233 eqeltrdi φII𝑡XConn
235 txconn II𝑡XConnII𝑡VConnII𝑡X×tII𝑡VConn
236 234 14 235 syl2anc φII𝑡X×tII𝑡VConn
237 228 236 eqeltrd φII×tII𝑡X×VConn
238 1 2 3 4 5 6 7 cvmlift2lem6 φX01KX×01II×tII𝑡X×01CnC
239 32 238 mpdan φKX×01II×tII𝑡X×01CnC
240 xpss2 V01X×VX×01
241 12 34 240 3syl φX×VX×01
242 32 snssd φX01
243 xpss1 X01X×0101×01
244 242 243 syl φX×0101×01
245 23 restuni II×tIITopX×0101×01X×01=II×tII𝑡X×01
246 27 244 245 sylancr φX×01=II×tII𝑡X×01
247 241 246 sseqtrd φX×VII×tII𝑡X×01
248 eqid II×tII𝑡X×01=II×tII𝑡X×01
249 248 cnrest KX×01II×tII𝑡X×01CnCX×VII×tII𝑡X×01KX×01X×VII×tII𝑡X×01𝑡X×VCnC
250 239 247 249 syl2anc φKX×01X×VII×tII𝑡X×01𝑡X×VCnC
251 241 resabs1d φKX×01X×V=KX×V
252 225 97 xpex X×01V
253 252 a1i φX×01V
254 restabs II×tIITopX×VX×01X×01VII×tII𝑡X×01𝑡X×V=II×tII𝑡X×V
255 28 241 253 254 syl3anc φII×tII𝑡X×01𝑡X×V=II×tII𝑡X×V
256 255 oveq1d φII×tII𝑡X×01𝑡X×VCnC=II×tII𝑡X×VCnC
257 250 251 256 3eltr3d φKX×VII×tII𝑡X×VCnC
258 df-ima KX×V=ranKX×V
259 15 snssd φXU
260 xpss1 XUX×VU×V
261 imass2 X×VU×VKX×VKU×V
262 259 260 261 3syl φKX×VKU×V
263 262 127 sstrd φKX×VF-1M
264 258 263 eqsstrrid φranKX×VF-1M
265 cnrest2 CTopOnBranKX×VF-1MF-1MBKX×VII×tII𝑡X×VCnCKX×VII×tII𝑡X×VCnC𝑡F-1M
266 196 264 138 265 syl3anc φKX×VII×tII𝑡X×VCnCKX×VII×tII𝑡X×VCnC𝑡F-1M
267 257 266 mpbid φKX×VII×tII𝑡X×VCnC𝑡F-1M
268 opelxpi XXYVXYX×V
269 219 16 268 syl2anc φXYX×V
270 259 260 syl φX×VU×V
271 270 55 sstrd φX×V01×01
272 23 restuni II×tIITopX×V01×01X×V=II×tII𝑡X×V
273 27 271 272 sylancr φX×V=II×tII𝑡X×V
274 269 273 eleqtrd φXYII×tII𝑡X×V
275 df-ov XKX×VY=KX×VXY
276 ovres XXYVXKX×VY=XKY
277 219 16 276 syl2anc φXKX×VY=XKY
278 275 277 eqtr3id φKX×VXY=XKY
279 50 simprd φXKYW
280 278 279 eqeltrd φKX×VXYW
281 224 237 267 158 161 274 280 conncn φKX×V:II×tII𝑡X×VW
282 273 feq2d φKX×V:X×VWKX×V:II×tII𝑡X×VW
283 281 282 mpbird φKX×V:X×VW
284 283 219 18 fovcdmd φXKX×VZW
285 223 284 eqeltrd φKU×ZXZW
286 180 195 206 158 161 214 285 conncn φKU×Z:II×tII𝑡U×ZW
287 213 feq2d φKU×Z:U×ZWKU×Z:II×tII𝑡U×ZW
288 286 287 mpbird φKU×Z:U×ZW
289 288 adantr φmUnVKU×Z:U×ZW
290 289 110 175 fovcdmd φmUnVmKU×ZZW
291 179 290 eqeltrd φmUnVKm×VmZW
292 61 80 142 159 162 169 291 conncn φmUnVKm×V:II×tII𝑡m×VW
293 168 feq2d φmUnVKm×V:m×VWKm×V:II×tII𝑡m×VW
294 292 293 mpbird φmUnVKm×V:m×VW
295 294 57 58 fovcdmd φmUnVmKm×VnW
296 60 295 eqeltrrd φmUnVmKnW
297 296 ralrimivva φmUnVmKnW
298 funimassov FunKU×VdomKKU×VWmUnVmKnW
299 122 124 298 syl2anc φKU×VWmUnVmKnW
300 297 299 mpbird φKU×VW
301 1 23 8 2 24 26 28 38 10 53 55 300 cvmlift2lem9a φKU×VII×tII𝑡U×VCnC