Metamath Proof Explorer


Theorem cxpeq

Description: Solve an equation involving an N -th power. The expression -u 1 ^c ( 2 / N ) = exp ( 2pi i / N ) is a way to write the primitive N -th root of unity with the smallest positive argument. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion cxpeq ANBAN=Bn0N1A=B1N-12Nn

Proof

Step Hyp Ref Expression
1 simpl2 ANBA=0AN=BN
2 nnm1nn0 NN10
3 1 2 syl ANBA=0AN=BN10
4 nn0uz 0=0
5 3 4 eleqtrdi ANBA=0AN=BN10
6 eluzfz1 N1000N1
7 5 6 syl ANBA=0AN=B00N1
8 neg1cn 1
9 2re 2
10 simp2 ANBN
11 nndivre 2N2N
12 9 10 11 sylancr ANB2N
13 12 recnd ANB2N
14 cxpcl 12N12N
15 8 13 14 sylancr ANB12N
16 15 adantr ANBA=0AN=B12N
17 0nn0 00
18 expcl 12N00-12N0
19 16 17 18 sylancl ANBA=0AN=B-12N0
20 19 mul02d ANBA=0AN=B0-12N0=0
21 simprl ANBA=0AN=BA=0
22 21 oveq1d ANBA=0AN=BAN=0N
23 simprr ANBA=0AN=BAN=B
24 1 0expd ANBA=0AN=B0N=0
25 22 23 24 3eqtr3d ANBA=0AN=BB=0
26 25 oveq1d ANBA=0AN=BB1N=01N
27 nncn NN
28 nnne0 NN0
29 reccl NN01N
30 recne0 NN01N0
31 29 30 0cxpd NN001N=0
32 27 28 31 syl2anc N01N=0
33 1 32 syl ANBA=0AN=B01N=0
34 26 33 eqtrd ANBA=0AN=BB1N=0
35 34 oveq1d ANBA=0AN=BB1N-12N0=0-12N0
36 20 35 21 3eqtr4rd ANBA=0AN=BA=B1N-12N0
37 oveq2 n=0-12Nn=-12N0
38 37 oveq2d n=0B1N-12Nn=B1N-12N0
39 38 rspceeqv 00N1A=B1N-12N0n0N1A=B1N-12Nn
40 7 36 39 syl2anc ANBA=0AN=Bn0N1A=B1N-12Nn
41 40 expr ANBA=0AN=Bn0N1A=B1N-12Nn
42 simpl1 ANBA0A
43 simpr ANBA0A0
44 simpl2 ANBA0N
45 44 nnzd ANBA0N
46 explog AA0NAN=eNlogA
47 42 43 45 46 syl3anc ANBA0AN=eNlogA
48 47 eqcomd ANBA0eNlogA=AN
49 10 nncnd ANBN
50 49 adantr ANBA0N
51 42 43 logcld ANBA0logA
52 50 51 mulcld ANBA0NlogA
53 44 nnnn0d ANBA0N0
54 42 53 expcld ANBA0AN
55 42 43 45 expne0d ANBA0AN0
56 eflogeq NlogAANAN0eNlogA=ANmNlogA=logAN+i2πm
57 52 54 55 56 syl3anc ANBA0eNlogA=ANmNlogA=logAN+i2πm
58 48 57 mpbid ANBA0mNlogA=logAN+i2πm
59 54 55 logcld ANBA0logAN
60 59 adantr ANBA0mlogAN
61 ax-icn i
62 2cn 2
63 picn π
64 62 63 mulcli 2π
65 61 64 mulcli i2π
66 zcn mm
67 66 adantl ANBA0mm
68 mulcl i2πmi2πm
69 65 67 68 sylancr ANBA0mi2πm
70 60 69 addcld ANBA0mlogAN+i2πm
71 50 adantr ANBA0mN
72 51 adantr ANBA0mlogA
73 10 nnne0d ANBN0
74 73 ad2antrr ANBA0mN0
75 70 71 72 74 divmuld ANBA0mlogAN+i2πmN=logANlogA=logAN+i2πm
76 fveq2 logAN+i2πmN=logAelogAN+i2πmN=elogA
77 71 74 reccld ANBA0m1N
78 77 60 mulcld ANBA0m1NlogAN
79 13 ad2antrr ANBA0m2N
80 79 67 mulcld ANBA0m2Nm
81 61 63 mulcli iπ
82 mulcl 2Nmiπ2Nmiπ
83 80 81 82 sylancl ANBA0m2Nmiπ
84 efadd 1NlogAN2Nmiπe1NlogAN+2Nmiπ=e1NlogANe2Nmiπ
85 78 83 84 syl2anc ANBA0me1NlogAN+2Nmiπ=e1NlogANe2Nmiπ
86 60 69 71 74 divdird ANBA0mlogAN+i2πmN=logANN+i2πmN
87 60 71 74 divrec2d ANBA0mlogANN=1NlogAN
88 65 a1i ANBA0mi2π
89 88 67 71 74 div23d ANBA0mi2πmN=i2πNm
90 61 62 63 mul12i i2π=2iπ
91 90 oveq1i i2πN=2iπN
92 62 a1i ANBA0m2
93 81 a1i ANBA0miπ
94 92 93 71 74 div23d ANBA0m2iπN=2Niπ
95 91 94 eqtrid ANBA0mi2πN=2Niπ
96 95 oveq1d ANBA0mi2πNm=2Niπm
97 79 93 67 mul32d ANBA0m2Niπm=2Nmiπ
98 89 96 97 3eqtrd ANBA0mi2πmN=2Nmiπ
99 87 98 oveq12d ANBA0mlogANN+i2πmN=1NlogAN+2Nmiπ
100 86 99 eqtrd ANBA0mlogAN+i2πmN=1NlogAN+2Nmiπ
101 100 fveq2d ANBA0melogAN+i2πmN=e1NlogAN+2Nmiπ
102 54 adantr ANBA0mAN
103 55 adantr ANBA0mAN0
104 102 103 77 cxpefd ANBA0mAN1N=e1NlogAN
105 8 a1i ANBA0m1
106 neg1ne0 10
107 106 a1i ANBA0m10
108 simpr ANBA0mm
109 105 107 79 108 cxpmul2zd ANBA0m12Nm=-12Nm
110 105 107 80 cxpefd ANBA0m12Nm=e2Nmlog-1
111 logm1 log-1=iπ
112 111 oveq2i 2Nmlog-1=2Nmiπ
113 112 fveq2i e2Nmlog-1=e2Nmiπ
114 110 113 eqtrdi ANBA0m12Nm=e2Nmiπ
115 105 79 cxpcld ANBA0m12N
116 8 a1i ANB1
117 106 a1i ANB10
118 116 117 13 cxpne0d ANB12N0
119 118 ad2antrr ANBA0m12N0
120 115 119 108 expclzd ANBA0m-12Nm
121 44 adantr ANBA0mN
122 108 121 zmodcld ANBA0mmmodN0
123 115 122 expcld ANBA0m-12NmmodN
124 122 nn0zd ANBA0mmmodN
125 115 119 124 expne0d ANBA0m-12NmmodN0
126 115 119 124 108 expsubd ANBA0m-12NmmmodN=-12Nm-12NmmodN
127 121 nnzd ANBA0mN
128 zre mm
129 121 nnrpd ANBA0mN+
130 moddifz mN+mmmodNN
131 128 129 130 syl2an2 ANBA0mmmmodNN
132 expmulz 12N12N0NmmmodNN-12NNmmmodNN=12NNmmmodNN
133 115 119 127 131 132 syl22anc ANBA0m-12NNmmmodNN=12NNmmmodNN
134 122 nn0cnd ANBA0mmmodN
135 67 134 subcld ANBA0mmmmodN
136 135 71 74 divcan2d ANBA0mNmmmodNN=mmmodN
137 136 oveq2d ANBA0m-12NNmmmodNN=-12NmmmodN
138 root1id N-12NN=1
139 121 138 syl ANBA0m-12NN=1
140 139 oveq1d ANBA0m12NNmmmodNN=1mmmodNN
141 1exp mmmodNN1mmmodNN=1
142 131 141 syl ANBA0m1mmmodNN=1
143 140 142 eqtrd ANBA0m12NNmmmodNN=1
144 133 137 143 3eqtr3d ANBA0m-12NmmmodN=1
145 126 144 eqtr3d ANBA0m-12Nm-12NmmodN=1
146 120 123 125 145 diveq1d ANBA0m-12Nm=-12NmmodN
147 109 114 146 3eqtr3rd ANBA0m-12NmmodN=e2Nmiπ
148 104 147 oveq12d ANBA0mAN1N-12NmmodN=e1NlogANe2Nmiπ
149 85 101 148 3eqtr4d ANBA0melogAN+i2πmN=AN1N-12NmmodN
150 eflog AA0elogA=A
151 42 43 150 syl2anc ANBA0elogA=A
152 151 adantr ANBA0melogA=A
153 149 152 eqeq12d ANBA0melogAN+i2πmN=elogAAN1N-12NmmodN=A
154 zmodfz mNmmodN0N1
155 108 121 154 syl2anc ANBA0mmmodN0N1
156 eqcom A=AN1N-12NnAN1N-12Nn=A
157 oveq2 n=mmodN-12Nn=-12NmmodN
158 157 oveq2d n=mmodNAN1N-12Nn=AN1N-12NmmodN
159 158 eqeq1d n=mmodNAN1N-12Nn=AAN1N-12NmmodN=A
160 156 159 bitrid n=mmodNA=AN1N-12NnAN1N-12NmmodN=A
161 160 rspcev mmodN0N1AN1N-12NmmodN=An0N1A=AN1N-12Nn
162 161 ex mmodN0N1AN1N-12NmmodN=An0N1A=AN1N-12Nn
163 155 162 syl ANBA0mAN1N-12NmmodN=An0N1A=AN1N-12Nn
164 153 163 sylbid ANBA0melogAN+i2πmN=elogAn0N1A=AN1N-12Nn
165 76 164 syl5 ANBA0mlogAN+i2πmN=logAn0N1A=AN1N-12Nn
166 75 165 sylbird ANBA0mNlogA=logAN+i2πmn0N1A=AN1N-12Nn
167 166 rexlimdva ANBA0mNlogA=logAN+i2πmn0N1A=AN1N-12Nn
168 58 167 mpd ANBA0n0N1A=AN1N-12Nn
169 oveq1 AN=BAN1N=B1N
170 169 oveq1d AN=BAN1N-12Nn=B1N-12Nn
171 170 eqeq2d AN=BA=AN1N-12NnA=B1N-12Nn
172 171 rexbidv AN=Bn0N1A=AN1N-12Nnn0N1A=B1N-12Nn
173 168 172 syl5ibcom ANBA0AN=Bn0N1A=B1N-12Nn
174 41 173 pm2.61dane ANBAN=Bn0N1A=B1N-12Nn
175 simp3 ANBB
176 nnrecre N1N
177 176 3ad2ant2 ANB1N
178 177 recnd ANB1N
179 175 178 cxpcld ANBB1N
180 179 adantr ANBn0N1B1N
181 elfznn0 n0N1n0
182 expcl 12Nn0-12Nn
183 15 181 182 syl2an ANBn0N1-12Nn
184 10 adantr ANBn0N1N
185 184 nnnn0d ANBn0N1N0
186 180 183 185 mulexpd ANBn0N1B1N-12NnN=B1NN12NnN
187 175 adantr ANBn0N1B
188 cxproot BNB1NN=B
189 187 184 188 syl2anc ANBn0N1B1NN=B
190 181 adantl ANBn0N1n0
191 190 nn0cnd ANBn0N1n
192 184 nncnd ANBn0N1N
193 191 192 mulcomd ANBn0N1n N=Nn
194 193 oveq2d ANBn0N1-12Nn N=-12NNn
195 15 adantr ANBn0N112N
196 195 185 190 expmuld ANBn0N1-12Nn N=12NnN
197 195 190 185 expmuld ANBn0N1-12NNn=12NNn
198 194 196 197 3eqtr3d ANBn0N112NnN=12NNn
199 184 138 syl ANBn0N1-12NN=1
200 199 oveq1d ANBn0N112NNn=1n
201 elfzelz n0N1n
202 201 adantl ANBn0N1n
203 1exp n1n=1
204 202 203 syl ANBn0N11n=1
205 198 200 204 3eqtrd ANBn0N112NnN=1
206 189 205 oveq12d ANBn0N1B1NN12NnN=B1
207 187 mulridd ANBn0N1B1=B
208 186 206 207 3eqtrd ANBn0N1B1N-12NnN=B
209 oveq1 A=B1N-12NnAN=B1N-12NnN
210 209 eqeq1d A=B1N-12NnAN=BB1N-12NnN=B
211 208 210 syl5ibrcom ANBn0N1A=B1N-12NnAN=B
212 211 rexlimdva ANBn0N1A=B1N-12NnAN=B
213 174 212 impbid ANBAN=Bn0N1A=B1N-12Nn