Metamath Proof Explorer


Theorem dchrisum0lem2

Description: Lemma for dchrisum0 . (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum2.g G = DChr N
rpvmasum2.d D = Base G
rpvmasum2.1 1 ˙ = 0 G
rpvmasum2.w W = y D 1 ˙ | m y L m m = 0
dchrisum0.b φ X W
dchrisum0lem1.f F = a X L a a
dchrisum0.c φ C 0 +∞
dchrisum0.s φ seq 1 + F S
dchrisum0.1 φ y 1 +∞ seq 1 + F y S C y
dchrisum0lem2.h H = y + d = 1 y 1 d 2 y
dchrisum0lem2.u φ H U
dchrisum0lem2.k K = a X L a a
dchrisum0lem2.e φ E 0 +∞
dchrisum0lem2.t φ seq 1 + K T
dchrisum0lem2.3 φ y 1 +∞ seq 1 + K y T E y
Assertion dchrisum0lem2 φ x + m = 1 x d = 1 x 2 m X L m m d 𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum2.g G = DChr N
5 rpvmasum2.d D = Base G
6 rpvmasum2.1 1 ˙ = 0 G
7 rpvmasum2.w W = y D 1 ˙ | m y L m m = 0
8 dchrisum0.b φ X W
9 dchrisum0lem1.f F = a X L a a
10 dchrisum0.c φ C 0 +∞
11 dchrisum0.s φ seq 1 + F S
12 dchrisum0.1 φ y 1 +∞ seq 1 + F y S C y
13 dchrisum0lem2.h H = y + d = 1 y 1 d 2 y
14 dchrisum0lem2.u φ H U
15 dchrisum0lem2.k K = a X L a a
16 dchrisum0lem2.e φ E 0 +∞
17 dchrisum0lem2.t φ seq 1 + K T
18 dchrisum0lem2.3 φ y 1 +∞ seq 1 + K y T E y
19 2cnd φ x + 2
20 rpcn x + x
21 20 adantl φ x + x
22 fzfid φ x + 1 x Fin
23 7 ssrab3 W D 1 ˙
24 23 8 sseldi φ X D 1 ˙
25 24 eldifad φ X D
26 25 ad2antrr φ x + m 1 x X D
27 elfzelz m 1 x m
28 27 adantl φ x + m 1 x m
29 4 1 5 2 26 28 dchrzrhcl φ x + m 1 x X L m
30 elfznn m 1 x m
31 30 nnrpd m 1 x m +
32 31 adantl φ x + m 1 x m +
33 32 rpcnd φ x + m 1 x m
34 32 rpne0d φ x + m 1 x m 0
35 29 33 34 divcld φ x + m 1 x X L m m
36 22 35 fsumcl φ x + m = 1 x X L m m
37 21 36 mulcld φ x + x m = 1 x X L m m
38 rpssre +
39 2cn 2
40 o1const + 2 x + 2 𝑂1
41 38 39 40 mp2an x + 2 𝑂1
42 41 a1i φ x + 2 𝑂1
43 38 a1i φ +
44 1red φ 1
45 elrege0 E 0 +∞ E 0 E
46 45 simplbi E 0 +∞ E
47 16 46 syl φ E
48 21 36 absmuld φ x + x m = 1 x X L m m = x m = 1 x X L m m
49 rprege0 x + x 0 x
50 49 adantl φ x + x 0 x
51 absid x 0 x x = x
52 50 51 syl φ x + x = x
53 52 oveq1d φ x + x m = 1 x X L m m = x m = 1 x X L m m
54 48 53 eqtrd φ x + x m = 1 x X L m m = x m = 1 x X L m m
55 54 adantrr φ x + 1 x x m = 1 x X L m m = x m = 1 x X L m m
56 36 adantrr φ x + 1 x m = 1 x X L m m
57 56 subid1d φ x + 1 x m = 1 x X L m m 0 = m = 1 x X L m m
58 30 adantl φ x + m 1 x m
59 2fveq3 a = m X L a = X L m
60 id a = m a = m
61 59 60 oveq12d a = m X L a a = X L m m
62 ovex X L a a V
63 61 15 62 fvmpt3i m K m = X L m m
64 58 63 syl φ x + m 1 x K m = X L m m
65 64 adantlrr φ x + 1 x m 1 x K m = X L m m
66 rpregt0 x + x 0 < x
67 66 ad2antrl φ x + 1 x x 0 < x
68 67 simpld φ x + 1 x x
69 simprr φ x + 1 x 1 x
70 flge1nn x 1 x x
71 68 69 70 syl2anc φ x + 1 x x
72 nnuz = 1
73 71 72 eleqtrdi φ x + 1 x x 1
74 35 adantlrr φ x + 1 x m 1 x X L m m
75 65 73 74 fsumser φ x + 1 x m = 1 x X L m m = seq 1 + K x
76 eldifsni X D 1 ˙ X 1 ˙
77 24 76 syl φ X 1 ˙
78 1 2 3 4 5 6 25 77 15 16 17 18 7 dchrvmaeq0 φ X W T = 0
79 8 78 mpbid φ T = 0
80 79 adantr φ x + 1 x T = 0
81 80 eqcomd φ x + 1 x 0 = T
82 75 81 oveq12d φ x + 1 x m = 1 x X L m m 0 = seq 1 + K x T
83 57 82 eqtr3d φ x + 1 x m = 1 x X L m m = seq 1 + K x T
84 83 fveq2d φ x + 1 x m = 1 x X L m m = seq 1 + K x T
85 2fveq3 y = x seq 1 + K y = seq 1 + K x
86 85 fvoveq1d y = x seq 1 + K y T = seq 1 + K x T
87 oveq2 y = x E y = E x
88 86 87 breq12d y = x seq 1 + K y T E y seq 1 + K x T E x
89 18 adantr φ x + 1 x y 1 +∞ seq 1 + K y T E y
90 1re 1
91 elicopnf 1 x 1 +∞ x 1 x
92 90 91 ax-mp x 1 +∞ x 1 x
93 68 69 92 sylanbrc φ x + 1 x x 1 +∞
94 88 89 93 rspcdva φ x + 1 x seq 1 + K x T E x
95 84 94 eqbrtrd φ x + 1 x m = 1 x X L m m E x
96 56 abscld φ x + 1 x m = 1 x X L m m
97 47 adantr φ x + 1 x E
98 lemuldiv2 m = 1 x X L m m E x 0 < x x m = 1 x X L m m E m = 1 x X L m m E x
99 96 97 67 98 syl3anc φ x + 1 x x m = 1 x X L m m E m = 1 x X L m m E x
100 95 99 mpbird φ x + 1 x x m = 1 x X L m m E
101 55 100 eqbrtrd φ x + 1 x x m = 1 x X L m m E
102 43 37 44 47 101 elo1d φ x + x m = 1 x X L m m 𝑂1
103 19 37 42 102 o1mul2 φ x + 2 x m = 1 x X L m m 𝑂1
104 fzfid φ x + m 1 x 1 x 2 m Fin
105 32 rpsqrtcld φ x + m 1 x m +
106 105 rpcnd φ x + m 1 x m
107 105 rpne0d φ x + m 1 x m 0
108 29 106 107 divcld φ x + m 1 x X L m m
109 108 adantr φ x + m 1 x d 1 x 2 m X L m m
110 elfznn d 1 x 2 m d
111 110 adantl φ x + m 1 x d 1 x 2 m d
112 111 nnrpd φ x + m 1 x d 1 x 2 m d +
113 112 rpsqrtcld φ x + m 1 x d 1 x 2 m d +
114 113 rpcnd φ x + m 1 x d 1 x 2 m d
115 113 rpne0d φ x + m 1 x d 1 x 2 m d 0
116 109 114 115 divcld φ x + m 1 x d 1 x 2 m X L m m d
117 104 116 fsumcl φ x + m 1 x d = 1 x 2 m X L m m d
118 22 117 fsumcl φ x + m = 1 x d = 1 x 2 m X L m m d
119 mulcl 2 x m = 1 x X L m m 2 x m = 1 x X L m m
120 39 37 119 sylancr φ x + 2 x m = 1 x X L m m
121 2re 2
122 simpr φ x + x +
123 2z 2
124 rpexpcl x + 2 x 2 +
125 122 123 124 sylancl φ x + x 2 +
126 rpdivcl x 2 + m + x 2 m +
127 125 31 126 syl2an φ x + m 1 x x 2 m +
128 127 rpsqrtcld φ x + m 1 x x 2 m +
129 128 rpred φ x + m 1 x x 2 m
130 remulcl 2 x 2 m 2 x 2 m
131 121 129 130 sylancr φ x + m 1 x 2 x 2 m
132 131 recnd φ x + m 1 x 2 x 2 m
133 108 132 mulcld φ x + m 1 x X L m m 2 x 2 m
134 22 117 133 fsumsub φ x + m = 1 x d = 1 x 2 m X L m m d X L m m 2 x 2 m = m = 1 x d = 1 x 2 m X L m m d m = 1 x X L m m 2 x 2 m
135 113 rpcnne0d φ x + m 1 x d 1 x 2 m d d 0
136 reccl d d 0 1 d
137 135 136 syl φ x + m 1 x d 1 x 2 m 1 d
138 104 137 fsumcl φ x + m 1 x d = 1 x 2 m 1 d
139 108 138 132 subdid φ x + m 1 x X L m m d = 1 x 2 m 1 d 2 x 2 m = X L m m d = 1 x 2 m 1 d X L m m 2 x 2 m
140 fveq2 y = x 2 m y = x 2 m
141 140 oveq2d y = x 2 m 1 y = 1 x 2 m
142 141 sumeq1d y = x 2 m d = 1 y 1 d = d = 1 x 2 m 1 d
143 fveq2 y = x 2 m y = x 2 m
144 143 oveq2d y = x 2 m 2 y = 2 x 2 m
145 142 144 oveq12d y = x 2 m d = 1 y 1 d 2 y = d = 1 x 2 m 1 d 2 x 2 m
146 ovex d = 1 y 1 d 2 y V
147 145 13 146 fvmpt3i x 2 m + H x 2 m = d = 1 x 2 m 1 d 2 x 2 m
148 127 147 syl φ x + m 1 x H x 2 m = d = 1 x 2 m 1 d 2 x 2 m
149 148 oveq2d φ x + m 1 x X L m m H x 2 m = X L m m d = 1 x 2 m 1 d 2 x 2 m
150 109 114 115 divrecd φ x + m 1 x d 1 x 2 m X L m m d = X L m m 1 d
151 150 sumeq2dv φ x + m 1 x d = 1 x 2 m X L m m d = d = 1 x 2 m X L m m 1 d
152 104 108 137 fsummulc2 φ x + m 1 x X L m m d = 1 x 2 m 1 d = d = 1 x 2 m X L m m 1 d
153 151 152 eqtr4d φ x + m 1 x d = 1 x 2 m X L m m d = X L m m d = 1 x 2 m 1 d
154 153 oveq1d φ x + m 1 x d = 1 x 2 m X L m m d X L m m 2 x 2 m = X L m m d = 1 x 2 m 1 d X L m m 2 x 2 m
155 139 149 154 3eqtr4d φ x + m 1 x X L m m H x 2 m = d = 1 x 2 m X L m m d X L m m 2 x 2 m
156 155 sumeq2dv φ x + m = 1 x X L m m H x 2 m = m = 1 x d = 1 x 2 m X L m m d X L m m 2 x 2 m
157 mulcl 2 x 2 x
158 39 21 157 sylancr φ x + 2 x
159 22 158 35 fsummulc2 φ x + 2 x m = 1 x X L m m = m = 1 x 2 x X L m m
160 19 21 36 mulassd φ x + 2 x m = 1 x X L m m = 2 x m = 1 x X L m m
161 158 adantr φ x + m 1 x 2 x
162 161 108 106 107 div12d φ x + m 1 x 2 x X L m m m = X L m m 2 x m
163 105 rpcnne0d φ x + m 1 x m m 0
164 divdiv1 X L m m m 0 m m 0 X L m m m = X L m m m
165 29 163 163 164 syl3anc φ x + m 1 x X L m m m = X L m m m
166 32 rprege0d φ x + m 1 x m 0 m
167 remsqsqrt m 0 m m m = m
168 166 167 syl φ x + m 1 x m m = m
169 168 oveq2d φ x + m 1 x X L m m m = X L m m
170 165 169 eqtr2d φ x + m 1 x X L m m = X L m m m
171 170 oveq2d φ x + m 1 x 2 x X L m m = 2 x X L m m m
172 125 adantr φ x + m 1 x x 2 +
173 172 rprege0d φ x + m 1 x x 2 0 x 2
174 sqrtdiv x 2 0 x 2 m + x 2 m = x 2 m
175 173 32 174 syl2anc φ x + m 1 x x 2 m = x 2 m
176 49 ad2antlr φ x + m 1 x x 0 x
177 sqrtsq x 0 x x 2 = x
178 176 177 syl φ x + m 1 x x 2 = x
179 178 oveq1d φ x + m 1 x x 2 m = x m
180 175 179 eqtrd φ x + m 1 x x 2 m = x m
181 180 oveq2d φ x + m 1 x 2 x 2 m = 2 x m
182 2cnd φ x + m 1 x 2
183 21 adantr φ x + m 1 x x
184 divass 2 x m m 0 2 x m = 2 x m
185 182 183 163 184 syl3anc φ x + m 1 x 2 x m = 2 x m
186 181 185 eqtr4d φ x + m 1 x 2 x 2 m = 2 x m
187 186 oveq2d φ x + m 1 x X L m m 2 x 2 m = X L m m 2 x m
188 162 171 187 3eqtr4d φ x + m 1 x 2 x X L m m = X L m m 2 x 2 m
189 188 sumeq2dv φ x + m = 1 x 2 x X L m m = m = 1 x X L m m 2 x 2 m
190 159 160 189 3eqtr3d φ x + 2 x m = 1 x X L m m = m = 1 x X L m m 2 x 2 m
191 190 oveq2d φ x + m = 1 x d = 1 x 2 m X L m m d 2 x m = 1 x X L m m = m = 1 x d = 1 x 2 m X L m m d m = 1 x X L m m 2 x 2 m
192 134 156 191 3eqtr4d φ x + m = 1 x X L m m H x 2 m = m = 1 x d = 1 x 2 m X L m m d 2 x m = 1 x X L m m
193 192 mpteq2dva φ x + m = 1 x X L m m H x 2 m = x + m = 1 x d = 1 x 2 m X L m m d 2 x m = 1 x X L m m
194 1 2 3 4 5 6 7 8 9 10 11 12 13 14 dchrisum0lem2a φ x + m = 1 x X L m m H x 2 m 𝑂1
195 193 194 eqeltrrd φ x + m = 1 x d = 1 x 2 m X L m m d 2 x m = 1 x X L m m 𝑂1
196 118 120 195 o1dif φ x + m = 1 x d = 1 x 2 m X L m m d 𝑂1 x + 2 x m = 1 x X L m m 𝑂1
197 103 196 mpbird φ x + m = 1 x d = 1 x 2 m X L m m d 𝑂1