Metamath Proof Explorer


Theorem lbsdiflsp0

Description: The linear spans of two disjunct independent sets only have a trivial intersection. This can be seen as the opposite direction of lindsun . (Contributed by Thierry Arnoux, 17-May-2023)

Ref Expression
Hypotheses lbsdiflsp0.j J=LBasisW
lbsdiflsp0.n N=LSpanW
lbsdiflsp0.1 0˙=0W
Assertion lbsdiflsp0 WLVecBJVBNBVNV=0˙

Proof

Step Hyp Ref Expression
1 lbsdiflsp0.j J=LBasisW
2 lbsdiflsp0.n N=LSpanW
3 lbsdiflsp0.1 0˙=0W
4 simp-4r WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvx=WvVavWv
5 fveq2 u=vau=av
6 id u=vu=v
7 5 6 oveq12d u=vauWu=avWv
8 7 cbvmptv uVauWu=vVavWv
9 8 oveq2i WuVauWu=WvVavWv
10 4 9 eqtr4di WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvx=WuVauWu
11 simp-4r WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbfinSupp0ScalarWa
12 simpr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbfinSupp0ScalarWb
13 simp-8l WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbWLVec
14 simplr WLVecBJVBBJ
15 14 ad6antr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbBJ
16 simpr WLVecBJVBVB
17 16 ad6antr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbVB
18 simp-5r WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbaBaseScalarWV
19 fvexd WLVecBJVBBaseScalarWV
20 14 16 ssexd WLVecBJVBVV
21 19 20 elmapd WLVecBJVBaBaseScalarWVa:VBaseScalarW
22 21 biimpa WLVecBJVBaBaseScalarWVa:VBaseScalarW
23 13 15 17 18 22 syl1111anc WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWba:VBaseScalarW
24 simplr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbbBaseScalarWBV
25 lveclmod WLVecWLMod
26 25 ad2antrr WLVecBJVBWLMod
27 eqid BaseW=BaseW
28 27 1 lbsss BJBBaseW
29 28 ad2antlr WLVecBJVBBBaseW
30 29 ssdifssd WLVecBJVBBVBaseW
31 3 27 2 0ellsp WLModBVBaseW0˙NBV
32 26 30 31 syl2anc WLVecBJVB0˙NBV
33 32 elfvexd WLVecBJVBBVV
34 19 33 elmapd WLVecBJVBbBaseScalarWBVb:BVBaseScalarW
35 34 biimpa WLVecBJVBbBaseScalarWBVb:BVBaseScalarW
36 13 15 17 24 35 syl1111anc WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbb:BVBaseScalarW
37 disjdif VBV=
38 37 a1i WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbVBV=
39 23 36 38 fun2d WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbab:VBVBaseScalarW
40 undif VBVBV=B
41 17 40 sylib WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbVBV=B
42 41 feq2d WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbab:VBVBaseScalarWab:BBaseScalarW
43 39 42 mpbid WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbab:BBaseScalarW
44 43 ffund WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbFunab
45 44 fsuppunbi WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbfinSupp0ScalarWabfinSupp0ScalarWafinSupp0ScalarWb
46 11 12 45 mpbir2and WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbfinSupp0ScalarWab
47 46 adantr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvfinSupp0ScalarWab
48 eqid +W=+W
49 lmodcmn WLModWCMnd
50 25 49 syl WLVecWCMnd
51 50 ad9antr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvWCMnd
52 14 ad7antr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvBJ
53 26 ad8antr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBWLMod
54 elmapfn aBaseScalarWVaFnV
55 54 ad6antlr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvaFnV
56 55 adantr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVaFnV
57 elmapfn bBaseScalarWBVbFnBV
58 57 ad3antlr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvbFnBV
59 58 adantr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVbFnBV
60 37 a1i WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVVBV=
61 simpr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVuV
62 fvun1 aFnVbFnBVVBV=uVabu=au
63 56 59 60 61 62 syl112anc WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVabu=au
64 63 adantlr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBuVabu=au
65 23 ad3antrrr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBuVa:VBaseScalarW
66 simpr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBuVuV
67 65 66 ffvelcdmd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBuVauBaseScalarW
68 64 67 eqeltrd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBuVabuBaseScalarW
69 55 adantr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBVaFnV
70 58 adantr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBVbFnBV
71 37 a1i WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBVVBV=
72 simpr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBVuBV
73 fvun2 aFnVbFnBVVBV=uBVabu=bu
74 69 70 71 72 73 syl112anc WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBVabu=bu
75 74 adantlr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBuBVabu=bu
76 36 ad3antrrr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBuBVb:BVBaseScalarW
77 simpr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBuBVuBV
78 76 77 ffvelcdmd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBuBVbuBaseScalarW
79 75 78 eqeltrd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBuBVabuBaseScalarW
80 simpr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBuB
81 40 biimpi VBVBV=B
82 81 ad8antlr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvVBV=B
83 82 eqcomd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvB=VBV
84 83 adantr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBB=VBV
85 80 84 eleqtrd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBuVBV
86 elun uVBVuVuBV
87 85 86 sylib WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBuVuBV
88 68 79 87 mpjaodan WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBabuBaseScalarW
89 29 ad8antr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBBBaseW
90 89 80 sseldd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBuBaseW
91 eqid ScalarW=ScalarW
92 eqid W=W
93 eqid BaseScalarW=BaseScalarW
94 27 91 92 93 lmodvscl WLModabuBaseScalarWuBaseWabuWuBaseW
95 53 88 90 94 syl3anc WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBabuWuBaseW
96 simp-9l WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvWLVec
97 96 25 syl WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvWLMod
98 eqidd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvScalarW=ScalarW
99 eqid 0ScalarW=0ScalarW
100 43 adantr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvab:BBaseScalarW
101 100 feqmptd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvab=uBabu
102 101 47 eqbrtrrd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvfinSupp0ScalarWuBabu
103 52 97 98 27 88 90 3 99 92 102 mptscmfsupp0 WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvfinSupp0˙uBabuWu
104 37 a1i WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvVBV=
105 27 3 48 51 52 95 103 104 83 gsumsplit2 WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvWuBabuWu=WuVabuWu+WWuBVabuWu
106 63 oveq1d WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVabuWu=auWu
107 106 mpteq2dva WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVabuWu=uVauWu
108 107 oveq2d WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvWuVabuWu=WuVauWu
109 74 oveq1d WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBVabuWu=buWu
110 109 mpteq2dva WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuBVabuWu=uBVbuWu
111 110 oveq2d WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvWuBVabuWu=WuBVbuWu
112 108 111 oveq12d WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvWuVabuWu+WWuBVabuWu=WuVauWu+WWuBVbuWu
113 simpr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvinvgWx=WvBVbvWv
114 fveq2 u=vbu=bv
115 114 6 oveq12d u=vbuWu=bvWv
116 115 cbvmptv uBVbuWu=vBVbvWv
117 116 oveq2i WuBVbuWu=WvBVbvWv
118 113 117 eqtr4di WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvinvgWx=WuBVbuWu
119 10 118 oveq12d WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvx+WinvgWx=WuVauWu+WWuBVbuWu
120 lmodgrp WLModWGrp
121 96 25 120 3syl WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvWGrp
122 16 29 sstrd WLVecBJVBVBaseW
123 27 2 lspssv WLModVBaseWNVBaseW
124 26 122 123 syl2anc WLVecBJVBNVBaseW
125 124 ad7antr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvNVBaseW
126 simpr WLVecBJVBxNBVNVxNBVNV
127 126 elin2d WLVecBJVBxNBVNVxNV
128 127 ad6antr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvxNV
129 125 128 sseldd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvxBaseW
130 eqid invgW=invgW
131 27 48 3 130 grprinv WGrpxBaseWx+WinvgWx=0˙
132 121 129 131 syl2anc WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvx+WinvgWx=0˙
133 112 119 132 3eqtr2d WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvWuVabuWu+WWuBVabuWu=0˙
134 105 133 eqtrd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvWuBabuWu=0˙
135 breq1 c=abfinSupp0ScalarWcfinSupp0ScalarWab
136 fveq1 c=abcu=abu
137 136 oveq1d c=abcuWu=abuWu
138 137 mpteq2dv c=abuBcuWu=uBabuWu
139 138 oveq2d c=abWuBcuWu=WuBabuWu
140 139 eqeq1d c=abWuBcuWu=0˙WuBabuWu=0˙
141 135 140 anbi12d c=abfinSupp0ScalarWcWuBcuWu=0˙finSupp0ScalarWabWuBabuWu=0˙
142 eqeq1 c=abc=B×0ScalarWab=B×0ScalarW
143 141 142 imbi12d c=abfinSupp0ScalarWcWuBcuWu=0˙c=B×0ScalarWfinSupp0ScalarWabWuBabuWu=0˙ab=B×0ScalarW
144 1 lbslinds JLIndSW
145 144 14 sselid WLVecBJVBBLIndSW
146 27 93 91 92 3 99 islinds5 WLModBBaseWBLIndSWcBaseScalarWBfinSupp0ScalarWcWuBcuWu=0˙c=B×0ScalarW
147 146 biimpa WLModBBaseWBLIndSWcBaseScalarWBfinSupp0ScalarWcWuBcuWu=0˙c=B×0ScalarW
148 26 29 145 147 syl21anc WLVecBJVBcBaseScalarWBfinSupp0ScalarWcWuBcuWu=0˙c=B×0ScalarW
149 148 ad7antr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvcBaseScalarWBfinSupp0ScalarWcWuBcuWu=0˙c=B×0ScalarW
150 fvexd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvBaseScalarWV
151 150 52 elmapd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvabBaseScalarWBab:BBaseScalarW
152 100 151 mpbird WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvabBaseScalarWB
153 143 149 152 rspcdva WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvfinSupp0ScalarWabWuBabuWu=0˙ab=B×0ScalarW
154 47 134 153 mp2and WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvab=B×0ScalarW
155 154 reseq1d WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvabV=B×0ScalarWV
156 fnunres1 aFnVbFnBVVBV=abV=a
157 55 58 104 156 syl3anc WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvabV=a
158 xpssres VBB×0ScalarWV=V×0ScalarW
159 158 ad8antlr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvB×0ScalarWV=V×0ScalarW
160 155 157 159 3eqtr3d WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWva=V×0ScalarW
161 160 adantr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVa=V×0ScalarW
162 161 fveq1d WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVau=V×0ScalarWu
163 fvex 0ScalarWV
164 163 fvconst2 uVV×0ScalarWu=0ScalarW
165 61 164 syl WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVV×0ScalarWu=0ScalarW
166 162 165 eqtrd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVau=0ScalarW
167 166 oveq1d WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVauWu=0ScalarWWu
168 122 ad8antr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVVBaseW
169 168 61 sseldd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVuBaseW
170 27 91 92 99 3 lmod0vs WLModuBaseW0ScalarWWu=0˙
171 97 169 170 syl2an2r WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuV0ScalarWWu=0˙
172 167 171 eqtrd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVauWu=0˙
173 172 mpteq2dva WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvuVauWu=uV0˙
174 173 oveq2d WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvWuVauWu=WuV0˙
175 cmnmnd WCMndWMnd
176 51 175 syl WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvWMnd
177 128 elfvexd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvVV
178 3 gsumz WMndVVWuV0˙=0˙
179 176 177 178 syl2anc WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvWuV0˙=0˙
180 10 174 179 3eqtrd WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvx=0˙
181 180 anasss WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWvx=0˙
182 eqid LSubSpW=LSubSpW
183 27 182 2 lspcl WLModBVBaseWNBVLSubSpW
184 26 30 183 syl2anc WLVecBJVBNBVLSubSpW
185 184 adantr WLVecBJVBxNBVNVNBVLSubSpW
186 182 lsssubg WLModNBVLSubSpWNBVSubGrpW
187 26 185 186 syl2an2r WLVecBJVBxNBVNVNBVSubGrpW
188 126 elin1d WLVecBJVBxNBVNVxNBV
189 130 subginvcl NBVSubGrpWxNBVinvgWxNBV
190 187 188 189 syl2anc WLVecBJVBxNBVNVinvgWxNBV
191 2 27 93 91 99 92 26 30 ellspds WLVecBJVBinvgWxNBVbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWv
192 191 biimpa WLVecBJVBinvgWxNBVbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWv
193 190 192 syldan WLVecBJVBxNBVNVbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWv
194 193 ad3antrrr WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvbBaseScalarWBVfinSupp0ScalarWbinvgWx=WvBVbvWv
195 181 194 r19.29a WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvx=0˙
196 195 anasss WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWvx=0˙
197 2 27 93 91 99 92 26 122 ellspds WLVecBJVBxNVaBaseScalarWVfinSupp0ScalarWax=WvVavWv
198 197 biimpa WLVecBJVBxNVaBaseScalarWVfinSupp0ScalarWax=WvVavWv
199 127 198 syldan WLVecBJVBxNBVNVaBaseScalarWVfinSupp0ScalarWax=WvVavWv
200 196 199 r19.29a WLVecBJVBxNBVNVx=0˙
201 3 27 2 0ellsp WLModVBaseW0˙NV
202 26 122 201 syl2anc WLVecBJVB0˙NV
203 32 202 elind WLVecBJVB0˙NBVNV
204 200 203 eqsnd WLVecBJVBNBVNV=0˙
205 204 3impa WLVecBJVBNBVNV=0˙