Description: Lemma for lebnum . By the previous lemmas, F is continuous and positive on a compact set, so it has a positive minimum r . Then setting d = r / # ( U ) , since for each u e. U we have ball ( x , d ) C_ u iff d <_ d ( x , X \ u ) , if -. ball ( x , d ) C_ u for all u then summing over u yields sum_ u e. U d ( x , X \ u ) = F ( x ) < sum_ u e. U d = r , in contradiction to the assumption that r is the minimum of F . (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 5-Sep-2015) (Revised by AV, 30-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lebnum.j | |
|
lebnum.d | |
||
lebnum.c | |
||
lebnum.s | |
||
lebnum.u | |
||
lebnumlem1.u | |
||
lebnumlem1.n | |
||
lebnumlem1.f | |
||
lebnumlem2.k | |
||
Assertion | lebnumlem3 | |