Metamath Proof Explorer


Theorem lebnumlem3

Description: Lemma for lebnum . By the previous lemmas, F is continuous and positive on a compact set, so it has a positive minimum r . Then setting d = r / # ( U ) , since for each u e. U we have ball ( x , d ) C_ u iff d <_ d ( x , X \ u ) , if -. ball ( x , d ) C_ u for all u then summing over u yields sum_ u e. U d ( x , X \ u ) = F ( x ) < sum_ u e. U d = r , in contradiction to the assumption that r is the minimum of F . (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 5-Sep-2015) (Revised by AV, 30-Sep-2020)

Ref Expression
Hypotheses lebnum.j J=MetOpenD
lebnum.d φDMetX
lebnum.c φJComp
lebnum.s φUJ
lebnum.u φX=U
lebnumlem1.u φUFin
lebnumlem1.n φ¬XU
lebnumlem1.f F=yXkUsupranzXkyDz*<
lebnumlem2.k K=topGenran.
Assertion lebnumlem3 φd+xXuUxballDdu

Proof

Step Hyp Ref Expression
1 lebnum.j J=MetOpenD
2 lebnum.d φDMetX
3 lebnum.c φJComp
4 lebnum.s φUJ
5 lebnum.u φX=U
6 lebnumlem1.u φUFin
7 lebnumlem1.n φ¬XU
8 lebnumlem1.f F=yXkUsupranzXkyDz*<
9 lebnumlem2.k K=topGenran.
10 1rp 1+
11 10 ne0ii +
12 ral0 xuUxballDdu
13 simpr φX=X=
14 13 raleqdv φX=xXuUxballDduxuUxballDdu
15 12 14 mpbiri φX=xXuUxballDdu
16 15 ralrimivw φX=d+xXuUxballDdu
17 r19.2z +d+xXuUxballDdud+xXuUxballDdu
18 11 16 17 sylancr φX=d+xXuUxballDdu
19 1 2 3 4 5 6 7 8 lebnumlem1 φF:X+
20 19 adantr φXF:X+
21 20 frnd φXranF+
22 eqid J=J
23 3 adantr φXJComp
24 1 2 3 4 5 6 7 8 9 lebnumlem2 φFJCnK
25 24 adantr φXFJCnK
26 metxmet DMetXD∞MetX
27 1 mopnuni D∞MetXX=J
28 2 26 27 3syl φX=J
29 28 neeq1d φXJ
30 29 biimpa φXJ
31 22 9 23 25 30 evth2 φXwJxJFwFx
32 28 adantr φXX=J
33 raleq X=JxXFwFxxJFwFx
34 33 rexeqbi1dv X=JwXxXFwFxwJxJFwFx
35 32 34 syl φXwXxXFwFxwJxJFwFx
36 31 35 mpbird φXwXxXFwFx
37 ffn F:X+FFnX
38 breq1 r=FwrFxFwFx
39 38 ralbidv r=FwxXrFxxXFwFx
40 39 rexrn FFnXrranFxXrFxwXxXFwFx
41 20 37 40 3syl φXrranFxXrFxwXxXFwFx
42 36 41 mpbird φXrranFxXrFx
43 ssrexv ranF+rranFxXrFxr+xXrFx
44 21 42 43 sylc φXr+xXrFx
45 simpr φXr+r+
46 5 ad2antrr φXr+X=U
47 simplr φXr+X
48 46 47 eqnetrrd φXr+U
49 unieq U=U=
50 uni0 =
51 49 50 eqtrdi U=U=
52 51 necon3i UU
53 48 52 syl φXr+U
54 6 ad2antrr φXr+UFin
55 hashnncl UFinUU
56 54 55 syl φXr+UU
57 53 56 mpbird φXr+U
58 57 nnrpd φXr+U+
59 45 58 rpdivcld φXr+rU+
60 ralnex uU¬xballDrUu¬uUxballDrUu
61 54 adantr φXr+xXuU¬xballDrUuUFin
62 53 adantr φXr+xXuU¬xballDrUuU
63 simprl φXr+xXuU¬xballDrUuxX
64 63 adantr φXr+xXuU¬xballDrUukUxX
65 eqid yXsupranzXkyDz*<=yXsupranzXkyDz*<
66 65 metdsval xXyXsupranzXkyDz*<x=supranzXkxDz*<
67 64 66 syl φXr+xXuU¬xballDrUukUyXsupranzXkyDz*<x=supranzXkxDz*<
68 2 ad2antrr φXr+DMetX
69 68 ad2antrr φXr+xXuU¬xballDrUukUDMetX
70 difssd φXr+xXuU¬xballDrUukUXkX
71 elssuni kUkU
72 71 adantl φXr+xXuU¬xballDrUukUkU
73 46 ad2antrr φXr+xXuU¬xballDrUukUX=U
74 72 73 sseqtrrd φXr+xXuU¬xballDrUukUkX
75 eleq1 k=XkUXU
76 75 notbid k=X¬kU¬XU
77 7 76 syl5ibrcom φk=X¬kU
78 77 necon2ad φkUkX
79 78 ad3antrrr φXr+xXuU¬xballDrUukUkX
80 79 imp φXr+xXuU¬xballDrUukUkX
81 pssdifn0 kXkXXk
82 74 80 81 syl2anc φXr+xXuU¬xballDrUukUXk
83 65 metdsre DMetXXkXXkyXsupranzXkyDz*<:X
84 69 70 82 83 syl3anc φXr+xXuU¬xballDrUukUyXsupranzXkyDz*<:X
85 84 64 ffvelcdmd φXr+xXuU¬xballDrUukUyXsupranzXkyDz*<x
86 67 85 eqeltrrd φXr+xXuU¬xballDrUukUsupranzXkxDz*<
87 59 ad2antrr φXr+xXuU¬xballDrUukUrU+
88 87 rpred φXr+xXuU¬xballDrUukUrU
89 simprr φXr+xXuU¬xballDrUuuU¬xballDrUu
90 sseq2 u=kxballDrUuxballDrUk
91 90 notbid u=k¬xballDrUu¬xballDrUk
92 91 rspccva uU¬xballDrUukU¬xballDrUk
93 89 92 sylan φXr+xXuU¬xballDrUukU¬xballDrUk
94 69 26 syl φXr+xXuU¬xballDrUukUD∞MetX
95 87 rpxrd φXr+xXuU¬xballDrUukUrU*
96 65 metdsge D∞MetXXkXxXrU*rUyXsupranzXkyDz*<xXkxballDrU=
97 94 70 64 95 96 syl31anc φXr+xXuU¬xballDrUukUrUyXsupranzXkyDz*<xXkxballDrU=
98 blssm D∞MetXxXrU*xballDrUX
99 94 64 95 98 syl3anc φXr+xXuU¬xballDrUukUxballDrUX
100 difin0ss XkxballDrU=xballDrUXxballDrUk
101 99 100 syl5com φXr+xXuU¬xballDrUukUXkxballDrU=xballDrUk
102 97 101 sylbid φXr+xXuU¬xballDrUukUrUyXsupranzXkyDz*<xxballDrUk
103 93 102 mtod φXr+xXuU¬xballDrUukU¬rUyXsupranzXkyDz*<x
104 85 88 ltnled φXr+xXuU¬xballDrUukUyXsupranzXkyDz*<x<rU¬rUyXsupranzXkyDz*<x
105 103 104 mpbird φXr+xXuU¬xballDrUukUyXsupranzXkyDz*<x<rU
106 67 105 eqbrtrrd φXr+xXuU¬xballDrUukUsupranzXkxDz*<<rU
107 61 62 86 88 106 fsumlt φXr+xXuU¬xballDrUukUsupranzXkxDz*<<kUrU
108 oveq1 y=xyDz=xDz
109 108 mpteq2dv y=xzXkyDz=zXkxDz
110 109 rneqd y=xranzXkyDz=ranzXkxDz
111 110 infeq1d y=xsupranzXkyDz*<=supranzXkxDz*<
112 111 sumeq2sdv y=xkUsupranzXkyDz*<=kUsupranzXkxDz*<
113 sumex kUsupranzXkxDz*<V
114 112 8 113 fvmpt xXFx=kUsupranzXkxDz*<
115 63 114 syl φXr+xXuU¬xballDrUuFx=kUsupranzXkxDz*<
116 59 adantr φXr+xXuU¬xballDrUurU+
117 116 rpcnd φXr+xXuU¬xballDrUurU
118 fsumconst UFinrUkUrU=UrU
119 61 117 118 syl2anc φXr+xXuU¬xballDrUukUrU=UrU
120 simplr φXr+xXuU¬xballDrUur+
121 120 rpcnd φXr+xXuU¬xballDrUur
122 57 adantr φXr+xXuU¬xballDrUuU
123 122 nncnd φXr+xXuU¬xballDrUuU
124 122 nnne0d φXr+xXuU¬xballDrUuU0
125 121 123 124 divcan2d φXr+xXuU¬xballDrUuUrU=r
126 119 125 eqtr2d φXr+xXuU¬xballDrUur=kUrU
127 107 115 126 3brtr4d φXr+xXuU¬xballDrUuFx<r
128 20 ad2antrr φXr+xXuU¬xballDrUuF:X+
129 128 63 ffvelcdmd φXr+xXuU¬xballDrUuFx+
130 129 rpred φXr+xXuU¬xballDrUuFx
131 120 rpred φXr+xXuU¬xballDrUur
132 130 131 ltnled φXr+xXuU¬xballDrUuFx<r¬rFx
133 127 132 mpbid φXr+xXuU¬xballDrUu¬rFx
134 133 expr φXr+xXuU¬xballDrUu¬rFx
135 60 134 biimtrrid φXr+xX¬uUxballDrUu¬rFx
136 135 con4d φXr+xXrFxuUxballDrUu
137 136 ralimdva φXr+xXrFxxXuUxballDrUu
138 oveq2 d=rUxballDd=xballDrU
139 138 sseq1d d=rUxballDduxballDrUu
140 139 rexbidv d=rUuUxballDduuUxballDrUu
141 140 ralbidv d=rUxXuUxballDduxXuUxballDrUu
142 141 rspcev rU+xXuUxballDrUud+xXuUxballDdu
143 59 137 142 syl6an φXr+xXrFxd+xXuUxballDdu
144 143 rexlimdva φXr+xXrFxd+xXuUxballDdu
145 44 144 mpd φXd+xXuUxballDdu
146 18 145 pm2.61dane φd+xXuUxballDdu