| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lebnum.j |  | 
						
							| 2 |  | lebnum.d |  | 
						
							| 3 |  | lebnum.c |  | 
						
							| 4 |  | lebnum.s |  | 
						
							| 5 |  | lebnum.u |  | 
						
							| 6 |  | lebnumlem1.u |  | 
						
							| 7 |  | lebnumlem1.n |  | 
						
							| 8 |  | lebnumlem1.f |  | 
						
							| 9 |  | lebnumlem2.k |  | 
						
							| 10 |  | 1rp |  | 
						
							| 11 | 10 | ne0ii |  | 
						
							| 12 |  | ral0 |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 13 | raleqdv |  | 
						
							| 15 | 12 14 | mpbiri |  | 
						
							| 16 | 15 | ralrimivw |  | 
						
							| 17 |  | r19.2z |  | 
						
							| 18 | 11 16 17 | sylancr |  | 
						
							| 19 | 1 2 3 4 5 6 7 8 | lebnumlem1 |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 20 | frnd |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 3 | adantr |  | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 | lebnumlem2 |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 |  | metxmet |  | 
						
							| 27 | 1 | mopnuni |  | 
						
							| 28 | 2 26 27 | 3syl |  | 
						
							| 29 | 28 | neeq1d |  | 
						
							| 30 | 29 | biimpa |  | 
						
							| 31 | 22 9 23 25 30 | evth2 |  | 
						
							| 32 | 28 | adantr |  | 
						
							| 33 |  | raleq |  | 
						
							| 34 | 33 | rexeqbi1dv |  | 
						
							| 35 | 32 34 | syl |  | 
						
							| 36 | 31 35 | mpbird |  | 
						
							| 37 |  | ffn |  | 
						
							| 38 |  | breq1 |  | 
						
							| 39 | 38 | ralbidv |  | 
						
							| 40 | 39 | rexrn |  | 
						
							| 41 | 20 37 40 | 3syl |  | 
						
							| 42 | 36 41 | mpbird |  | 
						
							| 43 |  | ssrexv |  | 
						
							| 44 | 21 42 43 | sylc |  | 
						
							| 45 |  | simpr |  | 
						
							| 46 | 5 | ad2antrr |  | 
						
							| 47 |  | simplr |  | 
						
							| 48 | 46 47 | eqnetrrd |  | 
						
							| 49 |  | unieq |  | 
						
							| 50 |  | uni0 |  | 
						
							| 51 | 49 50 | eqtrdi |  | 
						
							| 52 | 51 | necon3i |  | 
						
							| 53 | 48 52 | syl |  | 
						
							| 54 | 6 | ad2antrr |  | 
						
							| 55 |  | hashnncl |  | 
						
							| 56 | 54 55 | syl |  | 
						
							| 57 | 53 56 | mpbird |  | 
						
							| 58 | 57 | nnrpd |  | 
						
							| 59 | 45 58 | rpdivcld |  | 
						
							| 60 |  | ralnex |  | 
						
							| 61 | 54 | adantr |  | 
						
							| 62 | 53 | adantr |  | 
						
							| 63 |  | simprl |  | 
						
							| 64 | 63 | adantr |  | 
						
							| 65 |  | eqid |  | 
						
							| 66 | 65 | metdsval |  | 
						
							| 67 | 64 66 | syl |  | 
						
							| 68 | 2 | ad2antrr |  | 
						
							| 69 | 68 | ad2antrr |  | 
						
							| 70 |  | difssd |  | 
						
							| 71 |  | elssuni |  | 
						
							| 72 | 71 | adantl |  | 
						
							| 73 | 46 | ad2antrr |  | 
						
							| 74 | 72 73 | sseqtrrd |  | 
						
							| 75 |  | eleq1 |  | 
						
							| 76 | 75 | notbid |  | 
						
							| 77 | 7 76 | syl5ibrcom |  | 
						
							| 78 | 77 | necon2ad |  | 
						
							| 79 | 78 | ad3antrrr |  | 
						
							| 80 | 79 | imp |  | 
						
							| 81 |  | pssdifn0 |  | 
						
							| 82 | 74 80 81 | syl2anc |  | 
						
							| 83 | 65 | metdsre |  | 
						
							| 84 | 69 70 82 83 | syl3anc |  | 
						
							| 85 | 84 64 | ffvelcdmd |  | 
						
							| 86 | 67 85 | eqeltrrd |  | 
						
							| 87 | 59 | ad2antrr |  | 
						
							| 88 | 87 | rpred |  | 
						
							| 89 |  | simprr |  | 
						
							| 90 |  | sseq2 |  | 
						
							| 91 | 90 | notbid |  | 
						
							| 92 | 91 | rspccva |  | 
						
							| 93 | 89 92 | sylan |  | 
						
							| 94 | 69 26 | syl |  | 
						
							| 95 | 87 | rpxrd |  | 
						
							| 96 | 65 | metdsge |  | 
						
							| 97 | 94 70 64 95 96 | syl31anc |  | 
						
							| 98 |  | blssm |  | 
						
							| 99 | 94 64 95 98 | syl3anc |  | 
						
							| 100 |  | difin0ss |  | 
						
							| 101 | 99 100 | syl5com |  | 
						
							| 102 | 97 101 | sylbid |  | 
						
							| 103 | 93 102 | mtod |  | 
						
							| 104 | 85 88 | ltnled |  | 
						
							| 105 | 103 104 | mpbird |  | 
						
							| 106 | 67 105 | eqbrtrrd |  | 
						
							| 107 | 61 62 86 88 106 | fsumlt |  | 
						
							| 108 |  | oveq1 |  | 
						
							| 109 | 108 | mpteq2dv |  | 
						
							| 110 | 109 | rneqd |  | 
						
							| 111 | 110 | infeq1d |  | 
						
							| 112 | 111 | sumeq2sdv |  | 
						
							| 113 |  | sumex |  | 
						
							| 114 | 112 8 113 | fvmpt |  | 
						
							| 115 | 63 114 | syl |  | 
						
							| 116 | 59 | adantr |  | 
						
							| 117 | 116 | rpcnd |  | 
						
							| 118 |  | fsumconst |  | 
						
							| 119 | 61 117 118 | syl2anc |  | 
						
							| 120 |  | simplr |  | 
						
							| 121 | 120 | rpcnd |  | 
						
							| 122 | 57 | adantr |  | 
						
							| 123 | 122 | nncnd |  | 
						
							| 124 | 122 | nnne0d |  | 
						
							| 125 | 121 123 124 | divcan2d |  | 
						
							| 126 | 119 125 | eqtr2d |  | 
						
							| 127 | 107 115 126 | 3brtr4d |  | 
						
							| 128 | 20 | ad2antrr |  | 
						
							| 129 | 128 63 | ffvelcdmd |  | 
						
							| 130 | 129 | rpred |  | 
						
							| 131 | 120 | rpred |  | 
						
							| 132 | 130 131 | ltnled |  | 
						
							| 133 | 127 132 | mpbid |  | 
						
							| 134 | 133 | expr |  | 
						
							| 135 | 60 134 | biimtrrid |  | 
						
							| 136 | 135 | con4d |  | 
						
							| 137 | 136 | ralimdva |  | 
						
							| 138 |  | oveq2 |  | 
						
							| 139 | 138 | sseq1d |  | 
						
							| 140 | 139 | rexbidv |  | 
						
							| 141 | 140 | ralbidv |  | 
						
							| 142 | 141 | rspcev |  | 
						
							| 143 | 59 137 142 | syl6an |  | 
						
							| 144 | 143 | rexlimdva |  | 
						
							| 145 | 44 144 | mpd |  | 
						
							| 146 | 18 145 | pm2.61dane |  |