Metamath Proof Explorer


Theorem mdetunilem7

Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses mdetuni.a A = N Mat R
mdetuni.b B = Base A
mdetuni.k K = Base R
mdetuni.0g 0 ˙ = 0 R
mdetuni.1r 1 ˙ = 1 R
mdetuni.pg + ˙ = + R
mdetuni.tg · ˙ = R
mdetuni.n φ N Fin
mdetuni.r φ R Ring
mdetuni.ff φ D : B K
mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
Assertion mdetunilem7 φ E : N 1-1 onto N F B D a N , b N E a F b = ℤRHom R pmSgn N E · ˙ D F

Proof

Step Hyp Ref Expression
1 mdetuni.a A = N Mat R
2 mdetuni.b B = Base A
3 mdetuni.k K = Base R
4 mdetuni.0g 0 ˙ = 0 R
5 mdetuni.1r 1 ˙ = 1 R
6 mdetuni.pg + ˙ = + R
7 mdetuni.tg · ˙ = R
8 mdetuni.n φ N Fin
9 mdetuni.r φ R Ring
10 mdetuni.ff φ D : B K
11 mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
12 mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
13 mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
14 fveq1 c = d c a = d a
15 14 oveq1d c = d c a F b = d a F b
16 15 mpoeq3dv c = d a N , b N c a F b = a N , b N d a F b
17 16 fveq2d c = d D a N , b N c a F b = D a N , b N d a F b
18 fveq2 c = d ℤRHom R pmSgn N c = ℤRHom R pmSgn N d
19 18 oveq1d c = d ℤRHom R pmSgn N c · ˙ D F = ℤRHom R pmSgn N d · ˙ D F
20 17 19 eqeq12d c = d D a N , b N c a F b = ℤRHom R pmSgn N c · ˙ D F D a N , b N d a F b = ℤRHom R pmSgn N d · ˙ D F
21 fveq1 c = d + SymGrp N e c a = d + SymGrp N e a
22 21 oveq1d c = d + SymGrp N e c a F b = d + SymGrp N e a F b
23 22 mpoeq3dv c = d + SymGrp N e a N , b N c a F b = a N , b N d + SymGrp N e a F b
24 23 fveq2d c = d + SymGrp N e D a N , b N c a F b = D a N , b N d + SymGrp N e a F b
25 fveq2 c = d + SymGrp N e ℤRHom R pmSgn N c = ℤRHom R pmSgn N d + SymGrp N e
26 25 oveq1d c = d + SymGrp N e ℤRHom R pmSgn N c · ˙ D F = ℤRHom R pmSgn N d + SymGrp N e · ˙ D F
27 24 26 eqeq12d c = d + SymGrp N e D a N , b N c a F b = ℤRHom R pmSgn N c · ˙ D F D a N , b N d + SymGrp N e a F b = ℤRHom R pmSgn N d + SymGrp N e · ˙ D F
28 fveq1 c = 0 SymGrp N c a = 0 SymGrp N a
29 28 oveq1d c = 0 SymGrp N c a F b = 0 SymGrp N a F b
30 29 mpoeq3dv c = 0 SymGrp N a N , b N c a F b = a N , b N 0 SymGrp N a F b
31 30 fveq2d c = 0 SymGrp N D a N , b N c a F b = D a N , b N 0 SymGrp N a F b
32 fveq2 c = 0 SymGrp N ℤRHom R pmSgn N c = ℤRHom R pmSgn N 0 SymGrp N
33 32 oveq1d c = 0 SymGrp N ℤRHom R pmSgn N c · ˙ D F = ℤRHom R pmSgn N 0 SymGrp N · ˙ D F
34 31 33 eqeq12d c = 0 SymGrp N D a N , b N c a F b = ℤRHom R pmSgn N c · ˙ D F D a N , b N 0 SymGrp N a F b = ℤRHom R pmSgn N 0 SymGrp N · ˙ D F
35 fveq1 c = E c a = E a
36 35 oveq1d c = E c a F b = E a F b
37 36 mpoeq3dv c = E a N , b N c a F b = a N , b N E a F b
38 37 fveq2d c = E D a N , b N c a F b = D a N , b N E a F b
39 fveq2 c = E ℤRHom R pmSgn N c = ℤRHom R pmSgn N E
40 39 oveq1d c = E ℤRHom R pmSgn N c · ˙ D F = ℤRHom R pmSgn N E · ˙ D F
41 38 40 eqeq12d c = E D a N , b N c a F b = ℤRHom R pmSgn N c · ˙ D F D a N , b N E a F b = ℤRHom R pmSgn N E · ˙ D F
42 eqid 0 SymGrp N = 0 SymGrp N
43 eqid + SymGrp N = + SymGrp N
44 eqid Base SymGrp N = Base SymGrp N
45 8 3ad2ant1 φ E : N 1-1 onto N F B N Fin
46 eqid SymGrp N = SymGrp N
47 46 symggrp N Fin SymGrp N Grp
48 grpmnd SymGrp N Grp SymGrp N Mnd
49 45 47 48 3syl φ E : N 1-1 onto N F B SymGrp N Mnd
50 eqid ran pmTrsp N = ran pmTrsp N
51 50 46 44 symgtrf ran pmTrsp N Base SymGrp N
52 51 a1i φ E : N 1-1 onto N F B ran pmTrsp N Base SymGrp N
53 eqid mrCls SubMnd SymGrp N = mrCls SubMnd SymGrp N
54 50 46 44 53 symggen2 N Fin mrCls SubMnd SymGrp N ran pmTrsp N = Base SymGrp N
55 8 54 syl φ mrCls SubMnd SymGrp N ran pmTrsp N = Base SymGrp N
56 55 eqcomd φ Base SymGrp N = mrCls SubMnd SymGrp N ran pmTrsp N
57 56 3ad2ant1 φ E : N 1-1 onto N F B Base SymGrp N = mrCls SubMnd SymGrp N ran pmTrsp N
58 9 3ad2ant1 φ E : N 1-1 onto N F B R Ring
59 10 3ad2ant1 φ E : N 1-1 onto N F B D : B K
60 simp3 φ E : N 1-1 onto N F B F B
61 59 60 ffvelrnd φ E : N 1-1 onto N F B D F K
62 3 7 5 ringlidm R Ring D F K 1 ˙ · ˙ D F = D F
63 58 61 62 syl2anc φ E : N 1-1 onto N F B 1 ˙ · ˙ D F = D F
64 zrhpsgnmhm R Ring N Fin ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
65 9 8 64 syl2anc φ ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
66 eqid mulGrp R = mulGrp R
67 66 5 ringidval 1 ˙ = 0 mulGrp R
68 42 67 mhm0 ℤRHom R pmSgn N SymGrp N MndHom mulGrp R ℤRHom R pmSgn N 0 SymGrp N = 1 ˙
69 65 68 syl φ ℤRHom R pmSgn N 0 SymGrp N = 1 ˙
70 69 3ad2ant1 φ E : N 1-1 onto N F B ℤRHom R pmSgn N 0 SymGrp N = 1 ˙
71 70 oveq1d φ E : N 1-1 onto N F B ℤRHom R pmSgn N 0 SymGrp N · ˙ D F = 1 ˙ · ˙ D F
72 46 symgid N Fin I N = 0 SymGrp N
73 8 72 syl φ I N = 0 SymGrp N
74 73 3ad2ant1 φ E : N 1-1 onto N F B I N = 0 SymGrp N
75 74 3ad2ant1 φ E : N 1-1 onto N F B a N b N I N = 0 SymGrp N
76 75 fveq1d φ E : N 1-1 onto N F B a N b N I N a = 0 SymGrp N a
77 simp2 φ E : N 1-1 onto N F B a N b N a N
78 fvresi a N I N a = a
79 77 78 syl φ E : N 1-1 onto N F B a N b N I N a = a
80 76 79 eqtr3d φ E : N 1-1 onto N F B a N b N 0 SymGrp N a = a
81 80 oveq1d φ E : N 1-1 onto N F B a N b N 0 SymGrp N a F b = a F b
82 81 mpoeq3dva φ E : N 1-1 onto N F B a N , b N 0 SymGrp N a F b = a N , b N a F b
83 1 3 2 matbas2i F B F K N × N
84 83 3ad2ant3 φ E : N 1-1 onto N F B F K N × N
85 elmapi F K N × N F : N × N K
86 ffn F : N × N K F Fn N × N
87 84 85 86 3syl φ E : N 1-1 onto N F B F Fn N × N
88 fnov F Fn N × N F = a N , b N a F b
89 87 88 sylib φ E : N 1-1 onto N F B F = a N , b N a F b
90 82 89 eqtr4d φ E : N 1-1 onto N F B a N , b N 0 SymGrp N a F b = F
91 90 fveq2d φ E : N 1-1 onto N F B D a N , b N 0 SymGrp N a F b = D F
92 63 71 91 3eqtr4rd φ E : N 1-1 onto N F B D a N , b N 0 SymGrp N a F b = ℤRHom R pmSgn N 0 SymGrp N · ˙ D F
93 simp2 φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N d Base SymGrp N
94 51 sseli e ran pmTrsp N e Base SymGrp N
95 94 3ad2ant3 φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N e Base SymGrp N
96 46 44 43 symgov d Base SymGrp N e Base SymGrp N d + SymGrp N e = d e
97 93 95 96 syl2anc φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N d + SymGrp N e = d e
98 97 fveq1d φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N d + SymGrp N e a = d e a
99 98 3ad2ant1 φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N a N b N d + SymGrp N e a = d e a
100 46 44 symgbasf1o e Base SymGrp N e : N 1-1 onto N
101 f1of e : N 1-1 onto N e : N N
102 95 100 101 3syl φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N e : N N
103 102 3ad2ant1 φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N a N b N e : N N
104 simp2 φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N a N b N a N
105 fvco3 e : N N a N d e a = d e a
106 103 104 105 syl2anc φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N a N b N d e a = d e a
107 99 106 eqtrd φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N a N b N d + SymGrp N e a = d e a
108 107 oveq1d φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N a N b N d + SymGrp N e a F b = d e a F b
109 108 mpoeq3dva φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N a N , b N d + SymGrp N e a F b = a N , b N d e a F b
110 109 fveq2d φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N D a N , b N d + SymGrp N e a F b = D a N , b N d e a F b
111 46 44 symgbasf d Base SymGrp N d : N N
112 eqid pmTrsp N = pmTrsp N
113 112 50 pmtrrn2 e ran pmTrsp N c N f N c f e = pmTrsp N c f
114 simpll1 φ E : N 1-1 onto N F B d : N N c N f N c f φ
115 df-3an c N f N c f c N f N c f
116 115 biimpri c N f N c f c N f N c f
117 116 adantl φ E : N 1-1 onto N F B d : N N c N f N c f c N f N c f
118 84 85 syl φ E : N 1-1 onto N F B F : N × N K
119 118 adantr φ E : N 1-1 onto N F B d : N N F : N × N K
120 119 ad2antrr φ E : N 1-1 onto N F B d : N N c N f N c f b N F : N × N K
121 simpllr φ E : N 1-1 onto N F B d : N N c N f N c f b N d : N N
122 simprlr φ E : N 1-1 onto N F B d : N N c N f N c f f N
123 122 adantr φ E : N 1-1 onto N F B d : N N c N f N c f b N f N
124 121 123 ffvelrnd φ E : N 1-1 onto N F B d : N N c N f N c f b N d f N
125 simpr φ E : N 1-1 onto N F B d : N N c N f N c f b N b N
126 120 124 125 fovrnd φ E : N 1-1 onto N F B d : N N c N f N c f b N d f F b K
127 simprll φ E : N 1-1 onto N F B d : N N c N f N c f c N
128 127 adantr φ E : N 1-1 onto N F B d : N N c N f N c f b N c N
129 121 128 ffvelrnd φ E : N 1-1 onto N F B d : N N c N f N c f b N d c N
130 120 129 125 fovrnd φ E : N 1-1 onto N F B d : N N c N f N c f b N d c F b K
131 126 130 jca φ E : N 1-1 onto N F B d : N N c N f N c f b N d f F b K d c F b K
132 118 ad2antrr φ E : N 1-1 onto N F B d : N N c N f N c f F : N × N K
133 132 3ad2ant1 φ E : N 1-1 onto N F B d : N N c N f N c f a N b N F : N × N K
134 simp1lr φ E : N 1-1 onto N F B d : N N c N f N c f a N b N d : N N
135 simp2 φ E : N 1-1 onto N F B d : N N c N f N c f a N b N a N
136 134 135 ffvelrnd φ E : N 1-1 onto N F B d : N N c N f N c f a N b N d a N
137 simp3 φ E : N 1-1 onto N F B d : N N c N f N c f a N b N b N
138 133 136 137 fovrnd φ E : N 1-1 onto N F B d : N N c N f N c f a N b N d a F b K
139 1 2 3 4 5 6 7 8 9 10 11 12 13 114 117 131 138 mdetunilem6 φ E : N 1-1 onto N F B d : N N c N f N c f D a N , b N if a = c d f F b if a = f d c F b d a F b = inv g R D a N , b N if a = c d c F b if a = f d f F b d a F b
140 simpl1 φ E : N 1-1 onto N F B d : N N φ
141 fveq2 a = c pmTrsp N c f a = pmTrsp N c f c
142 8 adantr φ c N f N c f N Fin
143 simprll φ c N f N c f c N
144 simprlr φ c N f N c f f N
145 simprr φ c N f N c f c f
146 112 pmtrprfv N Fin c N f N c f pmTrsp N c f c = f
147 142 143 144 145 146 syl13anc φ c N f N c f pmTrsp N c f c = f
148 147 adantr φ c N f N c f a N pmTrsp N c f c = f
149 141 148 sylan9eqr φ c N f N c f a N a = c pmTrsp N c f a = f
150 149 fveq2d φ c N f N c f a N a = c d pmTrsp N c f a = d f
151 150 oveq1d φ c N f N c f a N a = c d pmTrsp N c f a F b = d f F b
152 iftrue a = c if a = c d f F b if a = f d c F b d a F b = d f F b
153 152 adantl φ c N f N c f a N a = c if a = c d f F b if a = f d c F b d a F b = d f F b
154 151 153 eqtr4d φ c N f N c f a N a = c d pmTrsp N c f a F b = if a = c d f F b if a = f d c F b d a F b
155 fveq2 a = f pmTrsp N c f a = pmTrsp N c f f
156 prcom c f = f c
157 156 fveq2i pmTrsp N c f = pmTrsp N f c
158 157 fveq1i pmTrsp N c f f = pmTrsp N f c f
159 8 ad2antrr φ c N f N c f a N N Fin
160 simplrl φ c N f N c f a N c N f N
161 160 simprd φ c N f N c f a N f N
162 160 simpld φ c N f N c f a N c N
163 simplrr φ c N f N c f a N c f
164 163 necomd φ c N f N c f a N f c
165 112 pmtrprfv N Fin f N c N f c pmTrsp N f c f = c
166 159 161 162 164 165 syl13anc φ c N f N c f a N pmTrsp N f c f = c
167 158 166 eqtrid φ c N f N c f a N pmTrsp N c f f = c
168 155 167 sylan9eqr φ c N f N c f a N a = f pmTrsp N c f a = c
169 168 fveq2d φ c N f N c f a N a = f d pmTrsp N c f a = d c
170 169 oveq1d φ c N f N c f a N a = f d pmTrsp N c f a F b = d c F b
171 iftrue a = f if a = f d c F b d a F b = d c F b
172 171 adantl φ c N f N c f a N a = f if a = f d c F b d a F b = d c F b
173 170 172 eqtr4d φ c N f N c f a N a = f d pmTrsp N c f a F b = if a = f d c F b d a F b
174 173 adantlr φ c N f N c f a N ¬ a = c a = f d pmTrsp N c f a F b = if a = f d c F b d a F b
175 vex a V
176 175 elpr a c f a = c a = f
177 176 notbii ¬ a c f ¬ a = c a = f
178 ioran ¬ a = c a = f ¬ a = c ¬ a = f
179 177 178 sylbbr ¬ a = c ¬ a = f ¬ a c f
180 179 adantll φ c N f N c f a N ¬ a = c ¬ a = f ¬ a c f
181 prssi c N f N c f N
182 160 181 syl φ c N f N c f a N c f N
183 pr2ne c N f N c f 2 𝑜 c f
184 160 183 syl φ c N f N c f a N c f 2 𝑜 c f
185 163 184 mpbird φ c N f N c f a N c f 2 𝑜
186 112 pmtrmvd N Fin c f N c f 2 𝑜 dom pmTrsp N c f I = c f
187 159 182 185 186 syl3anc φ c N f N c f a N dom pmTrsp N c f I = c f
188 187 eleq2d φ c N f N c f a N a dom pmTrsp N c f I a c f
189 188 notbid φ c N f N c f a N ¬ a dom pmTrsp N c f I ¬ a c f
190 189 ad2antrr φ c N f N c f a N ¬ a = c ¬ a = f ¬ a dom pmTrsp N c f I ¬ a c f
191 180 190 mpbird φ c N f N c f a N ¬ a = c ¬ a = f ¬ a dom pmTrsp N c f I
192 112 pmtrf N Fin c f N c f 2 𝑜 pmTrsp N c f : N N
193 159 182 185 192 syl3anc φ c N f N c f a N pmTrsp N c f : N N
194 193 ffnd φ c N f N c f a N pmTrsp N c f Fn N
195 simpr φ c N f N c f a N a N
196 fnelnfp pmTrsp N c f Fn N a N a dom pmTrsp N c f I pmTrsp N c f a a
197 196 necon2bbid pmTrsp N c f Fn N a N pmTrsp N c f a = a ¬ a dom pmTrsp N c f I
198 194 195 197 syl2anc φ c N f N c f a N pmTrsp N c f a = a ¬ a dom pmTrsp N c f I
199 198 ad2antrr φ c N f N c f a N ¬ a = c ¬ a = f pmTrsp N c f a = a ¬ a dom pmTrsp N c f I
200 191 199 mpbird φ c N f N c f a N ¬ a = c ¬ a = f pmTrsp N c f a = a
201 200 fveq2d φ c N f N c f a N ¬ a = c ¬ a = f d pmTrsp N c f a = d a
202 201 oveq1d φ c N f N c f a N ¬ a = c ¬ a = f d pmTrsp N c f a F b = d a F b
203 iffalse ¬ a = f if a = f d c F b d a F b = d a F b
204 203 adantl φ c N f N c f a N ¬ a = c ¬ a = f if a = f d c F b d a F b = d a F b
205 202 204 eqtr4d φ c N f N c f a N ¬ a = c ¬ a = f d pmTrsp N c f a F b = if a = f d c F b d a F b
206 174 205 pm2.61dan φ c N f N c f a N ¬ a = c d pmTrsp N c f a F b = if a = f d c F b d a F b
207 iffalse ¬ a = c if a = c d f F b if a = f d c F b d a F b = if a = f d c F b d a F b
208 207 adantl φ c N f N c f a N ¬ a = c if a = c d f F b if a = f d c F b d a F b = if a = f d c F b d a F b
209 206 208 eqtr4d φ c N f N c f a N ¬ a = c d pmTrsp N c f a F b = if a = c d f F b if a = f d c F b d a F b
210 154 209 pm2.61dan φ c N f N c f a N d pmTrsp N c f a F b = if a = c d f F b if a = f d c F b d a F b
211 210 3adant3 φ c N f N c f a N b N d pmTrsp N c f a F b = if a = c d f F b if a = f d c F b d a F b
212 211 mpoeq3dva φ c N f N c f a N , b N d pmTrsp N c f a F b = a N , b N if a = c d f F b if a = f d c F b d a F b
213 140 212 sylan φ E : N 1-1 onto N F B d : N N c N f N c f a N , b N d pmTrsp N c f a F b = a N , b N if a = c d f F b if a = f d c F b d a F b
214 213 fveq2d φ E : N 1-1 onto N F B d : N N c N f N c f D a N , b N d pmTrsp N c f a F b = D a N , b N if a = c d f F b if a = f d c F b d a F b
215 fveq2 a = c d a = d c
216 215 oveq1d a = c d a F b = d c F b
217 iftrue a = c if a = c d c F b if a = f d f F b d a F b = d c F b
218 216 217 eqtr4d a = c d a F b = if a = c d c F b if a = f d f F b d a F b
219 fveq2 a = f d a = d f
220 219 oveq1d a = f d a F b = d f F b
221 iftrue a = f if a = f d f F b d a F b = d f F b
222 220 221 eqtr4d a = f d a F b = if a = f d f F b d a F b
223 222 adantl ¬ a = c a = f d a F b = if a = f d f F b d a F b
224 iffalse ¬ a = f if a = f d f F b d a F b = d a F b
225 224 eqcomd ¬ a = f d a F b = if a = f d f F b d a F b
226 225 adantl ¬ a = c ¬ a = f d a F b = if a = f d f F b d a F b
227 223 226 pm2.61dan ¬ a = c d a F b = if a = f d f F b d a F b
228 iffalse ¬ a = c if a = c d c F b if a = f d f F b d a F b = if a = f d f F b d a F b
229 227 228 eqtr4d ¬ a = c d a F b = if a = c d c F b if a = f d f F b d a F b
230 218 229 pm2.61i d a F b = if a = c d c F b if a = f d f F b d a F b
231 230 a1i a N b N d a F b = if a = c d c F b if a = f d f F b d a F b
232 231 mpoeq3ia a N , b N d a F b = a N , b N if a = c d c F b if a = f d f F b d a F b
233 232 fveq2i D a N , b N d a F b = D a N , b N if a = c d c F b if a = f d f F b d a F b
234 233 fveq2i inv g R D a N , b N d a F b = inv g R D a N , b N if a = c d c F b if a = f d f F b d a F b
235 234 a1i φ E : N 1-1 onto N F B d : N N c N f N c f inv g R D a N , b N d a F b = inv g R D a N , b N if a = c d c F b if a = f d f F b d a F b
236 139 214 235 3eqtr4d φ E : N 1-1 onto N F B d : N N c N f N c f D a N , b N d pmTrsp N c f a F b = inv g R D a N , b N d a F b
237 fveq1 e = pmTrsp N c f e a = pmTrsp N c f a
238 237 fveq2d e = pmTrsp N c f d e a = d pmTrsp N c f a
239 238 oveq1d e = pmTrsp N c f d e a F b = d pmTrsp N c f a F b
240 239 mpoeq3dv e = pmTrsp N c f a N , b N d e a F b = a N , b N d pmTrsp N c f a F b
241 240 fveqeq2d e = pmTrsp N c f D a N , b N d e a F b = inv g R D a N , b N d a F b D a N , b N d pmTrsp N c f a F b = inv g R D a N , b N d a F b
242 236 241 syl5ibrcom φ E : N 1-1 onto N F B d : N N c N f N c f e = pmTrsp N c f D a N , b N d e a F b = inv g R D a N , b N d a F b
243 242 expr φ E : N 1-1 onto N F B d : N N c N f N c f e = pmTrsp N c f D a N , b N d e a F b = inv g R D a N , b N d a F b
244 243 impd φ E : N 1-1 onto N F B d : N N c N f N c f e = pmTrsp N c f D a N , b N d e a F b = inv g R D a N , b N d a F b
245 244 rexlimdvva φ E : N 1-1 onto N F B d : N N c N f N c f e = pmTrsp N c f D a N , b N d e a F b = inv g R D a N , b N d a F b
246 113 245 syl5 φ E : N 1-1 onto N F B d : N N e ran pmTrsp N D a N , b N d e a F b = inv g R D a N , b N d a F b
247 246 3impia φ E : N 1-1 onto N F B d : N N e ran pmTrsp N D a N , b N d e a F b = inv g R D a N , b N d a F b
248 111 247 syl3an2 φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N D a N , b N d e a F b = inv g R D a N , b N d a F b
249 110 248 eqtrd φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N D a N , b N d + SymGrp N e a F b = inv g R D a N , b N d a F b
250 249 adantr φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N D a N , b N d a F b = ℤRHom R pmSgn N d · ˙ D F D a N , b N d + SymGrp N e a F b = inv g R D a N , b N d a F b
251 fveq2 D a N , b N d a F b = ℤRHom R pmSgn N d · ˙ D F inv g R D a N , b N d a F b = inv g R ℤRHom R pmSgn N d · ˙ D F
252 251 adantl φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N D a N , b N d a F b = ℤRHom R pmSgn N d · ˙ D F inv g R D a N , b N d a F b = inv g R ℤRHom R pmSgn N d · ˙ D F
253 eqid inv g R = inv g R
254 58 3ad2ant1 φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N R Ring
255 65 3ad2ant1 φ E : N 1-1 onto N F B ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
256 255 3ad2ant1 φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
257 66 3 mgpbas K = Base mulGrp R
258 44 257 mhmf ℤRHom R pmSgn N SymGrp N MndHom mulGrp R ℤRHom R pmSgn N : Base SymGrp N K
259 256 258 syl φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N ℤRHom R pmSgn N : Base SymGrp N K
260 259 93 ffvelrnd φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N ℤRHom R pmSgn N d K
261 59 3ad2ant1 φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N D : B K
262 simp13 φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N F B
263 261 262 ffvelrnd φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N D F K
264 3 7 253 254 260 263 ringmneg1 φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N inv g R ℤRHom R pmSgn N d · ˙ D F = inv g R ℤRHom R pmSgn N d · ˙ D F
265 66 7 mgpplusg · ˙ = + mulGrp R
266 44 43 265 mhmlin ℤRHom R pmSgn N SymGrp N MndHom mulGrp R d Base SymGrp N e Base SymGrp N ℤRHom R pmSgn N d + SymGrp N e = ℤRHom R pmSgn N d · ˙ ℤRHom R pmSgn N e
267 256 93 95 266 syl3anc φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N ℤRHom R pmSgn N d + SymGrp N e = ℤRHom R pmSgn N d · ˙ ℤRHom R pmSgn N e
268 45 3ad2ant1 φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N N Fin
269 simp3 φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N e ran pmTrsp N
270 46 44 50 pmtrodpm N Fin e ran pmTrsp N e Base SymGrp N pmEven N
271 268 269 270 syl2anc φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N e Base SymGrp N pmEven N
272 eqid ℤRHom R = ℤRHom R
273 eqid pmSgn N = pmSgn N
274 272 273 5 44 253 zrhpsgnodpm R Ring N Fin e Base SymGrp N pmEven N ℤRHom R pmSgn N e = inv g R 1 ˙
275 254 268 271 274 syl3anc φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N ℤRHom R pmSgn N e = inv g R 1 ˙
276 275 oveq2d φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N ℤRHom R pmSgn N d · ˙ ℤRHom R pmSgn N e = ℤRHom R pmSgn N d · ˙ inv g R 1 ˙
277 3 7 5 253 254 260 rngnegr φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N ℤRHom R pmSgn N d · ˙ inv g R 1 ˙ = inv g R ℤRHom R pmSgn N d
278 267 276 277 3eqtrrd φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N inv g R ℤRHom R pmSgn N d = ℤRHom R pmSgn N d + SymGrp N e
279 278 oveq1d φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N inv g R ℤRHom R pmSgn N d · ˙ D F = ℤRHom R pmSgn N d + SymGrp N e · ˙ D F
280 264 279 eqtr3d φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N inv g R ℤRHom R pmSgn N d · ˙ D F = ℤRHom R pmSgn N d + SymGrp N e · ˙ D F
281 280 adantr φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N D a N , b N d a F b = ℤRHom R pmSgn N d · ˙ D F inv g R ℤRHom R pmSgn N d · ˙ D F = ℤRHom R pmSgn N d + SymGrp N e · ˙ D F
282 250 252 281 3eqtrd φ E : N 1-1 onto N F B d Base SymGrp N e ran pmTrsp N D a N , b N d a F b = ℤRHom R pmSgn N d · ˙ D F D a N , b N d + SymGrp N e a F b = ℤRHom R pmSgn N d + SymGrp N e · ˙ D F
283 simp2 φ E : N 1-1 onto N F B E : N 1-1 onto N
284 46 44 elsymgbas N Fin E Base SymGrp N E : N 1-1 onto N
285 45 284 syl φ E : N 1-1 onto N F B E Base SymGrp N E : N 1-1 onto N
286 283 285 mpbird φ E : N 1-1 onto N F B E Base SymGrp N
287 20 27 34 41 42 43 44 49 52 57 92 282 286 mndind φ E : N 1-1 onto N F B D a N , b N E a F b = ℤRHom R pmSgn N E · ˙ D F