Metamath Proof Explorer


Theorem meaiininclem

Description: Measures are continuous from above: if E is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of Fremlin1 p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meaiininclem.m φMMeas
meaiininclem.n φN
meaiininclem.z Z=N
meaiininclem.e φE:ZdomM
meaiininclem.i φnZEn+1En
meaiininclem.k φKN
meaiininclem.r φMEK
meaiininclem.s S=nZMEn
meaiininclem.g G=nZEKEn
meaiininclem.f F=nZGn
Assertion meaiininclem φSMnZEn

Proof

Step Hyp Ref Expression
1 meaiininclem.m φMMeas
2 meaiininclem.n φN
3 meaiininclem.z Z=N
4 meaiininclem.e φE:ZdomM
5 meaiininclem.i φnZEn+1En
6 meaiininclem.k φKN
7 meaiininclem.r φMEK
8 meaiininclem.s S=nZMEn
9 meaiininclem.g G=nZEKEn
10 meaiininclem.f F=nZGn
11 uzss KNKN
12 6 11 syl φKN
13 12 3 sseqtrrdi φKZ
14 13 adantr φnKKZ
15 simpr φnKnK
16 14 15 sseldd φnKnZ
17 9 a1i φG=nZEKEn
18 eqid domM=domM
19 1 18 dmmeasal φdomMSAlg
20 19 adantr φnZdomMSAlg
21 6 3 eleqtrrdi φKZ
22 4 ffvelcdmda φKZEKdomM
23 21 22 mpdan φEKdomM
24 23 adantr φnZEKdomM
25 4 ffvelcdmda φnZEndomM
26 saldifcl2 domMSAlgEKdomMEndomMEKEndomM
27 20 24 25 26 syl3anc φnZEKEndomM
28 27 elexd φnZEKEnV
29 17 28 fvmpt2d φnZGn=EKEn
30 16 29 syldan φnKGn=EKEn
31 30 fveq2d φnKMGn=MEKEn
32 1 adantr φnKMMeas
33 23 adantr φnKEKdomM
34 7 adantr φnKMEK
35 16 25 syldan φnKEndomM
36 simpl φmK..^nφ
37 36 13 syl φmK..^nKZ
38 elfzouz mK..^nmK
39 38 adantl φmK..^nmK
40 37 39 sseldd φmK..^nmZ
41 eleq1w n=mnZmZ
42 41 anbi2d n=mφnZφmZ
43 fvoveq1 n=mEn+1=Em+1
44 fveq2 n=mEn=Em
45 43 44 sseq12d n=mEn+1EnEm+1Em
46 42 45 imbi12d n=mφnZEn+1EnφmZEm+1Em
47 46 5 chvarvv φmZEm+1Em
48 36 40 47 syl2anc φmK..^nEm+1Em
49 48 adantlr φnKmK..^nEm+1Em
50 15 49 ssdec φnKEnEK
51 32 33 34 35 50 meadif φnKMEKEn=MEKMEn
52 31 51 eqtrd φnKMGn=MEKMEn
53 52 oveq2d φnKMEKMGn=MEKMEKMEn
54 7 recnd φMEK
55 54 adantr φnKMEK
56 32 33 34 50 35 meassre φnKMEn
57 56 recnd φnKMEn
58 55 57 nncand φnKMEKMEKMEn=MEn
59 53 58 eqtr2d φnKMEn=MEKMGn
60 59 mpteq2dva φnKMEn=nKMEKMGn
61 nfv nφ
62 eqid K=K
63 6 eluzelzd φK
64 difssd φnZEKEnEK
65 29 64 eqsstrd φnZGnEK
66 16 65 syldan φnKGnEK
67 27 9 fmptd φG:ZdomM
68 67 ffvelcdmda φnZGndomM
69 16 68 syldan φnKGndomM
70 32 33 34 66 69 meassre φnKMGn
71 70 recnd φnKMGn
72 5 sscond φnZEKEnEKEn+1
73 44 difeq2d n=mEKEn=EKEm
74 73 cbvmptv nZEKEn=mZEKEm
75 9 74 eqtri G=mZEKEm
76 fveq2 m=n+1Em=En+1
77 76 difeq2d m=n+1EKEm=EKEn+1
78 3 peano2uzs nZn+1Z
79 78 adantl φnZn+1Z
80 fvex EKV
81 80 difexi EKEn+1V
82 81 a1i φnZEKEn+1V
83 75 77 79 82 fvmptd3 φnZGn+1=EKEn+1
84 29 83 sseq12d φnZGnGn+1EKEnEKEn+1
85 72 84 mpbird φnZGnGn+1
86 1 adantr φnZMMeas
87 86 18 68 24 65 meassle φnZMGnMEK
88 eqid nZMGn=nZMGn
89 1 2 3 67 85 7 87 88 meaiuninc2 φnZMGnMnZGn
90 eqid nKMGn=nKMGn
91 3 88 21 90 climresmpt φnKMGnMnZGnnZMGnMnZGn
92 89 91 mpbird φnKMGnMnZGn
93 10 eqcomi nZGn=F
94 93 fveq2i MnZGn=MF
95 94 a1i φMnZGn=MF
96 92 95 breqtrd φnKMGnMF
97 61 62 63 54 71 96 climsubc1mpt φnKMEKMGnMEKMF
98 60 97 eqbrtrd φnKMEnMEKMF
99 eqid nZMEn=nZMEn
100 eqid nKMEn=nKMEn
101 3 99 21 100 climresmpt φnKMEnMEKMFnZMEnMEKMF
102 98 101 mpbid φnZMEnMEKMF
103 8 a1i φS=nZMEn
104 eqidd φMFEKF=MFEKF
105 3 uzct Zω
106 105 a1i φZω
107 19 106 68 saliuncl φnZGndomM
108 10 107 eqeltrid φFdomM
109 saldifcl2 domMSAlgEKdomMFdomMEKFdomM
110 19 23 108 109 syl3anc φEKFdomM
111 disjdif FEKF=
112 111 a1i φFEKF=
113 65 iunssd φnZGnEK
114 10 113 eqsstrid φFEK
115 1 23 7 114 108 meassre φMF
116 difssd φEKFEK
117 1 23 7 116 110 meassre φMEKF
118 1 18 108 110 112 115 117 meadjunre φMFEKF=MF+MEKF
119 undif FEKFEKF=EK
120 114 119 sylib φFEKF=EK
121 120 fveq2d φMFEKF=MEK
122 104 118 121 3eqtr3d φMF+MEKF=MEK
123 115 recnd φMF
124 117 recnd φMEKF
125 54 123 124 subaddd φMEKMF=MEKFMF+MEKF=MEK
126 122 125 mpbird φMEKMF=MEKF
127 simpllr φxEKFnZ¬xEnxEKF
128 simplr xEKFnZ¬xEnnZ
129 eldifi xEKFxEK
130 129 ad2antrr xEKFnZ¬xEnxEK
131 simpr xEKFnZ¬xEn¬xEn
132 130 131 eldifd xEKFnZ¬xEnxEKEn
133 rspe nZxEKEnnZxEKEn
134 128 132 133 syl2anc xEKFnZ¬xEnnZxEKEn
135 eliun xnZEKEnnZxEKEn
136 134 135 sylibr xEKFnZ¬xEnxnZEKEn
137 136 adantlll φxEKFnZ¬xEnxnZEKEn
138 10 a1i φF=nZGn
139 29 iuneq2dv φnZGn=nZEKEn
140 138 139 eqtrd φF=nZEKEn
141 140 eqcomd φnZEKEn=F
142 141 ad3antrrr φxEKFnZ¬xEnnZEKEn=F
143 137 142 eleqtrd φxEKFnZ¬xEnxF
144 elndif xF¬xEKF
145 143 144 syl φxEKFnZ¬xEn¬xEKF
146 127 145 condan φxEKFnZxEn
147 146 ralrimiva φxEKFnZxEn
148 vex xV
149 eliin xVxnZEnnZxEn
150 148 149 ax-mp xnZEnnZxEn
151 147 150 sylibr φxEKFxnZEn
152 151 ssd φEKFnZEn
153 ssid EKEK
154 153 a1i φEKEK
155 fveq2 n=KEn=EK
156 155 sseq1d n=KEnEKEKEK
157 156 rspcev KZEKEKnZEnEK
158 21 154 157 syl2anc φnZEnEK
159 iinss nZEnEKnZEnEK
160 158 159 syl φnZEnEK
161 160 adantr φxnZEnnZEnEK
162 simpr φxnZEnxnZEn
163 161 162 sseldd φxnZEnxEK
164 nfcv _nx
165 nfii1 _nnZEn
166 164 165 nfel nxnZEn
167 iinss2 nZnZEnEn
168 167 adantl xnZEnnZnZEnEn
169 simpl xnZEnnZxnZEn
170 168 169 sseldd xnZEnnZxEn
171 elndif xEn¬xEKEn
172 170 171 syl xnZEnnZ¬xEKEn
173 172 ex xnZEnnZ¬xEKEn
174 166 173 ralrimi xnZEnnZ¬xEKEn
175 ralnex nZ¬xEKEn¬nZxEKEn
176 174 175 sylib xnZEn¬nZxEKEn
177 176 135 sylnibr xnZEn¬xnZEKEn
178 177 adantl φxnZEn¬xnZEKEn
179 140 adantr φxnZEnF=nZEKEn
180 178 179 neleqtrrd φxnZEn¬xF
181 163 180 eldifd φxnZEnxEKF
182 152 181 eqelssd φEKF=nZEn
183 182 fveq2d φMEKF=MnZEn
184 126 183 eqtr2d φMnZEn=MEKMF
185 103 184 breq12d φSMnZEnnZMEnMEKMF
186 102 185 mpbird φSMnZEn