Step |
Hyp |
Ref |
Expression |
1 |
|
meaiininclem.m |
|
2 |
|
meaiininclem.n |
|
3 |
|
meaiininclem.z |
|
4 |
|
meaiininclem.e |
|
5 |
|
meaiininclem.i |
|
6 |
|
meaiininclem.k |
|
7 |
|
meaiininclem.r |
|
8 |
|
meaiininclem.s |
|
9 |
|
meaiininclem.g |
|
10 |
|
meaiininclem.f |
|
11 |
|
uzss |
|
12 |
6 11
|
syl |
|
13 |
12 3
|
sseqtrrdi |
|
14 |
13
|
adantr |
|
15 |
|
simpr |
|
16 |
14 15
|
sseldd |
|
17 |
9
|
a1i |
|
18 |
|
eqid |
|
19 |
1 18
|
dmmeasal |
|
20 |
19
|
adantr |
|
21 |
6 3
|
eleqtrrdi |
|
22 |
4
|
ffvelrnda |
|
23 |
21 22
|
mpdan |
|
24 |
23
|
adantr |
|
25 |
4
|
ffvelrnda |
|
26 |
|
saldifcl2 |
|
27 |
20 24 25 26
|
syl3anc |
|
28 |
27
|
elexd |
|
29 |
17 28
|
fvmpt2d |
|
30 |
16 29
|
syldan |
|
31 |
30
|
fveq2d |
|
32 |
1
|
adantr |
|
33 |
23
|
adantr |
|
34 |
7
|
adantr |
|
35 |
16 25
|
syldan |
|
36 |
|
simpl |
|
37 |
36 13
|
syl |
|
38 |
|
elfzouz |
|
39 |
38
|
adantl |
|
40 |
37 39
|
sseldd |
|
41 |
|
eleq1w |
|
42 |
41
|
anbi2d |
|
43 |
|
fvoveq1 |
|
44 |
|
fveq2 |
|
45 |
43 44
|
sseq12d |
|
46 |
42 45
|
imbi12d |
|
47 |
46 5
|
chvarvv |
|
48 |
36 40 47
|
syl2anc |
|
49 |
48
|
adantlr |
|
50 |
15 49
|
ssdec |
|
51 |
32 33 34 35 50
|
meadif |
|
52 |
31 51
|
eqtrd |
|
53 |
52
|
oveq2d |
|
54 |
7
|
recnd |
|
55 |
54
|
adantr |
|
56 |
32 33 34 50 35
|
meassre |
|
57 |
56
|
recnd |
|
58 |
55 57
|
nncand |
|
59 |
53 58
|
eqtr2d |
|
60 |
59
|
mpteq2dva |
|
61 |
|
nfv |
|
62 |
|
eqid |
|
63 |
6
|
eluzelzd |
|
64 |
|
difssd |
|
65 |
29 64
|
eqsstrd |
|
66 |
16 65
|
syldan |
|
67 |
27 9
|
fmptd |
|
68 |
67
|
ffvelrnda |
|
69 |
16 68
|
syldan |
|
70 |
32 33 34 66 69
|
meassre |
|
71 |
70
|
recnd |
|
72 |
5
|
sscond |
|
73 |
44
|
difeq2d |
|
74 |
73
|
cbvmptv |
|
75 |
9 74
|
eqtri |
|
76 |
|
fveq2 |
|
77 |
76
|
difeq2d |
|
78 |
3
|
peano2uzs |
|
79 |
78
|
adantl |
|
80 |
|
fvex |
|
81 |
80
|
difexi |
|
82 |
81
|
a1i |
|
83 |
75 77 79 82
|
fvmptd3 |
|
84 |
29 83
|
sseq12d |
|
85 |
72 84
|
mpbird |
|
86 |
1
|
adantr |
|
87 |
86 18 68 24 65
|
meassle |
|
88 |
|
eqid |
|
89 |
1 2 3 67 85 7 87 88
|
meaiuninc2 |
|
90 |
|
eqid |
|
91 |
3 88 21 90
|
climresmpt |
|
92 |
89 91
|
mpbird |
|
93 |
10
|
eqcomi |
|
94 |
93
|
fveq2i |
|
95 |
94
|
a1i |
|
96 |
92 95
|
breqtrd |
|
97 |
61 62 63 54 71 96
|
climsubc1mpt |
|
98 |
60 97
|
eqbrtrd |
|
99 |
|
eqid |
|
100 |
|
eqid |
|
101 |
3 99 21 100
|
climresmpt |
|
102 |
98 101
|
mpbid |
|
103 |
8
|
a1i |
|
104 |
|
eqidd |
|
105 |
3
|
uzct |
|
106 |
105
|
a1i |
|
107 |
19 106 68
|
saliuncl |
|
108 |
10 107
|
eqeltrid |
|
109 |
|
saldifcl2 |
|
110 |
19 23 108 109
|
syl3anc |
|
111 |
|
disjdif |
|
112 |
111
|
a1i |
|
113 |
65
|
iunssd |
|
114 |
10 113
|
eqsstrid |
|
115 |
1 23 7 114 108
|
meassre |
|
116 |
|
difssd |
|
117 |
1 23 7 116 110
|
meassre |
|
118 |
1 18 108 110 112 115 117
|
meadjunre |
|
119 |
|
undif |
|
120 |
114 119
|
sylib |
|
121 |
120
|
fveq2d |
|
122 |
104 118 121
|
3eqtr3d |
|
123 |
115
|
recnd |
|
124 |
117
|
recnd |
|
125 |
54 123 124
|
subaddd |
|
126 |
122 125
|
mpbird |
|
127 |
|
simpllr |
|
128 |
|
simplr |
|
129 |
|
eldifi |
|
130 |
129
|
ad2antrr |
|
131 |
|
simpr |
|
132 |
130 131
|
eldifd |
|
133 |
|
rspe |
|
134 |
128 132 133
|
syl2anc |
|
135 |
|
eliun |
|
136 |
134 135
|
sylibr |
|
137 |
136
|
adantlll |
|
138 |
10
|
a1i |
|
139 |
29
|
iuneq2dv |
|
140 |
138 139
|
eqtrd |
|
141 |
140
|
eqcomd |
|
142 |
141
|
ad3antrrr |
|
143 |
137 142
|
eleqtrd |
|
144 |
|
elndif |
|
145 |
143 144
|
syl |
|
146 |
127 145
|
condan |
|
147 |
146
|
ralrimiva |
|
148 |
|
vex |
|
149 |
|
eliin |
|
150 |
148 149
|
ax-mp |
|
151 |
147 150
|
sylibr |
|
152 |
151
|
ssd |
|
153 |
|
ssid |
|
154 |
153
|
a1i |
|
155 |
|
fveq2 |
|
156 |
155
|
sseq1d |
|
157 |
156
|
rspcev |
|
158 |
21 154 157
|
syl2anc |
|
159 |
|
iinss |
|
160 |
158 159
|
syl |
|
161 |
160
|
adantr |
|
162 |
|
simpr |
|
163 |
161 162
|
sseldd |
|
164 |
|
nfcv |
|
165 |
|
nfii1 |
|
166 |
164 165
|
nfel |
|
167 |
|
iinss2 |
|
168 |
167
|
adantl |
|
169 |
|
simpl |
|
170 |
168 169
|
sseldd |
|
171 |
|
elndif |
|
172 |
170 171
|
syl |
|
173 |
172
|
ex |
|
174 |
166 173
|
ralrimi |
|
175 |
|
ralnex |
|
176 |
174 175
|
sylib |
|
177 |
176 135
|
sylnibr |
|
178 |
177
|
adantl |
|
179 |
140
|
adantr |
|
180 |
178 179
|
neleqtrrd |
|
181 |
163 180
|
eldifd |
|
182 |
152 181
|
eqelssd |
|
183 |
182
|
fveq2d |
|
184 |
126 183
|
eqtr2d |
|
185 |
103 184
|
breq12d |
|
186 |
102 185
|
mpbird |
|