Metamath Proof Explorer


Theorem ovollb2lem

Description: Lemma for ovollb2 . (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypotheses ovollb2.1 S=seq1+absF
ovollb2.2 G=n1stFnB22n2ndFn+B22n
ovollb2.3 T=seq1+absG
ovollb2.4 φF:2
ovollb2.5 φAran.F
ovollb2.6 φB+
ovollb2.7 φsupranS*<
Assertion ovollb2lem φvol*AsupranS*<+B

Proof

Step Hyp Ref Expression
1 ovollb2.1 S=seq1+absF
2 ovollb2.2 G=n1stFnB22n2ndFn+B22n
3 ovollb2.3 T=seq1+absG
4 ovollb2.4 φF:2
5 ovollb2.5 φAran.F
6 ovollb2.6 φB+
7 ovollb2.7 φsupranS*<
8 ovolficcss F:2ran.F
9 4 8 syl φran.F
10 5 9 sstrd φA
11 ovolcl Avol*A*
12 10 11 syl φvol*A*
13 ovolfcl F:2n1stFn2ndFn1stFn2ndFn
14 4 13 sylan φn1stFn2ndFn1stFn2ndFn
15 14 simp1d φn1stFn
16 6 rphalfcld φB2+
17 16 adantr φnB2+
18 2nn 2
19 nnnn0 nn0
20 19 adantl φnn0
21 nnexpcl 2n02n
22 18 20 21 sylancr φn2n
23 22 nnrpd φn2n+
24 17 23 rpdivcld φnB22n+
25 24 rpred φnB22n
26 15 25 resubcld φn1stFnB22n
27 14 simp2d φn2ndFn
28 27 25 readdcld φn2ndFn+B22n
29 15 24 ltsubrpd φn1stFnB22n<1stFn
30 14 simp3d φn1stFn2ndFn
31 27 24 ltaddrpd φn2ndFn<2ndFn+B22n
32 15 27 28 30 31 lelttrd φn1stFn<2ndFn+B22n
33 26 15 28 29 32 lttrd φn1stFnB22n<2ndFn+B22n
34 26 28 33 ltled φn1stFnB22n2ndFn+B22n
35 df-br 1stFnB22n2ndFn+B22n1stFnB22n2ndFn+B22n
36 34 35 sylib φn1stFnB22n2ndFn+B22n
37 26 28 opelxpd φn1stFnB22n2ndFn+B22n2
38 36 37 elind φn1stFnB22n2ndFn+B22n2
39 38 2 fmptd φG:2
40 eqid absG=absG
41 40 3 ovolsf G:2T:0+∞
42 39 41 syl φT:0+∞
43 42 frnd φranT0+∞
44 icossxr 0+∞*
45 43 44 sstrdi φranT*
46 supxrcl ranT*supranT*<*
47 45 46 syl φsupranT*<*
48 6 rpred φB
49 7 48 readdcld φsupranS*<+B
50 49 rexrd φsupranS*<+B*
51 2fveq3 n=m1stFn=1stFm
52 oveq2 n=m2n=2m
53 52 oveq2d n=mB22n=B22m
54 51 53 oveq12d n=m1stFnB22n=1stFmB22m
55 2fveq3 n=m2ndFn=2ndFm
56 55 53 oveq12d n=m2ndFn+B22n=2ndFm+B22m
57 54 56 opeq12d n=m1stFnB22n2ndFn+B22n=1stFmB22m2ndFm+B22m
58 opex 1stFmB22m2ndFm+B22mV
59 57 2 58 fvmpt mGm=1stFmB22m2ndFm+B22m
60 59 adantl φmGm=1stFmB22m2ndFm+B22m
61 60 fveq2d φm1stGm=1st1stFmB22m2ndFm+B22m
62 ovex 1stFmB22mV
63 ovex 2ndFm+B22mV
64 62 63 op1st 1st1stFmB22m2ndFm+B22m=1stFmB22m
65 61 64 eqtrdi φm1stGm=1stFmB22m
66 ovolfcl F:2m1stFm2ndFm1stFm2ndFm
67 4 66 sylan φm1stFm2ndFm1stFm2ndFm
68 67 simp1d φm1stFm
69 16 adantr φmB2+
70 nnnn0 mm0
71 70 adantl φmm0
72 nnexpcl 2m02m
73 18 71 72 sylancr φm2m
74 73 nnrpd φm2m+
75 69 74 rpdivcld φmB22m+
76 68 75 ltsubrpd φm1stFmB22m<1stFm
77 65 76 eqbrtrd φm1stGm<1stFm
78 77 adantlr φzAm1stGm<1stFm
79 ovolfcl G:2m1stGm2ndGm1stGm2ndGm
80 39 79 sylan φm1stGm2ndGm1stGm2ndGm
81 80 simp1d φm1stGm
82 81 adantlr φzAm1stGm
83 68 adantlr φzAm1stFm
84 10 sselda φzAz
85 84 adantr φzAmz
86 ltletr 1stGm1stFmz1stGm<1stFm1stFmz1stGm<z
87 82 83 85 86 syl3anc φzAm1stGm<1stFm1stFmz1stGm<z
88 78 87 mpand φzAm1stFmz1stGm<z
89 67 simp2d φm2ndFm
90 89 75 ltaddrpd φm2ndFm<2ndFm+B22m
91 60 fveq2d φm2ndGm=2nd1stFmB22m2ndFm+B22m
92 62 63 op2nd 2nd1stFmB22m2ndFm+B22m=2ndFm+B22m
93 91 92 eqtrdi φm2ndGm=2ndFm+B22m
94 90 93 breqtrrd φm2ndFm<2ndGm
95 94 adantlr φzAm2ndFm<2ndGm
96 89 adantlr φzAm2ndFm
97 80 simp2d φm2ndGm
98 97 adantlr φzAm2ndGm
99 lelttr z2ndFm2ndGmz2ndFm2ndFm<2ndGmz<2ndGm
100 85 96 98 99 syl3anc φzAmz2ndFm2ndFm<2ndGmz<2ndGm
101 95 100 mpan2d φzAmz2ndFmz<2ndGm
102 88 101 anim12d φzAm1stFmzz2ndFm1stGm<zz<2ndGm
103 102 reximdva φzAm1stFmzz2ndFmm1stGm<zz<2ndGm
104 103 ralimdva φzAm1stFmzz2ndFmzAm1stGm<zz<2ndGm
105 ovolficc AF:2Aran.FzAm1stFmzz2ndFm
106 10 4 105 syl2anc φAran.FzAm1stFmzz2ndFm
107 ovolfioo AG:2Aran.GzAm1stGm<zz<2ndGm
108 10 39 107 syl2anc φAran.GzAm1stGm<zz<2ndGm
109 104 106 108 3imtr4d φAran.FAran.G
110 5 109 mpd φAran.G
111 3 ovollb G:2Aran.Gvol*AsupranT*<
112 39 110 111 syl2anc φvol*AsupranT*<
113 3 fveq1i Tk=seq1+absGk
114 fzfid φk1kFin
115 rge0ssre 0+∞
116 eqid absF=absF
117 116 ovolfsf F:2absF:0+∞
118 4 117 syl φabsF:0+∞
119 118 adantr φkabsF:0+∞
120 elfznn m1km
121 ffvelcdm absF:0+∞mabsFm0+∞
122 119 120 121 syl2an φkm1kabsFm0+∞
123 115 122 sselid φkm1kabsFm
124 123 recnd φkm1kabsFm
125 6 adantr φmB+
126 125 74 rpdivcld φmB2m+
127 126 rpcnd φmB2m
128 120 127 sylan2 φm1kB2m
129 128 adantlr φkm1kB2m
130 114 124 129 fsumadd φkm=1kabsFm+B2m=m=1kabsFm+m=1kB2m
131 40 ovolfsval G:2mabsGm=2ndGm1stGm
132 39 131 sylan φmabsGm=2ndGm1stGm
133 89 recnd φm2ndFm
134 75 rpcnd φmB22m
135 68 recnd φm1stFm
136 135 134 subcld φm1stFmB22m
137 133 134 136 addsubassd φm2ndFm+B22m-1stFmB22m=2ndFm+B22m-1stFmB22m
138 93 65 oveq12d φm2ndGm1stGm=2ndFm+B22m-1stFmB22m
139 133 135 127 subadd23d φm2ndFm-1stFm+B2m=2ndFm+B2m-1stFm
140 116 ovolfsval F:2mabsFm=2ndFm1stFm
141 4 140 sylan φmabsFm=2ndFm1stFm
142 141 oveq1d φmabsFm+B2m=2ndFm-1stFm+B2m
143 134 135 134 subsub3d φmB22m1stFmB22m=B22m+B22m-1stFm
144 69 rpcnd φmB2
145 73 nncnd φm2m
146 73 nnne0d φm2m0
147 144 144 145 146 divdird φmB2+B22m=B22m+B22m
148 125 rpcnd φmB
149 148 2halvesd φmB2+B2=B
150 149 oveq1d φmB2+B22m=B2m
151 147 150 eqtr3d φmB22m+B22m=B2m
152 151 oveq1d φmB22m+B22m-1stFm=B2m1stFm
153 143 152 eqtrd φmB22m1stFmB22m=B2m1stFm
154 153 oveq2d φm2ndFm+B22m-1stFmB22m=2ndFm+B2m-1stFm
155 139 142 154 3eqtr4d φmabsFm+B2m=2ndFm+B22m-1stFmB22m
156 137 138 155 3eqtr4d φm2ndGm1stGm=absFm+B2m
157 132 156 eqtrd φmabsGm=absFm+B2m
158 120 157 sylan2 φm1kabsGm=absFm+B2m
159 158 adantlr φkm1kabsGm=absFm+B2m
160 simpr φkk
161 nnuz =1
162 160 161 eleqtrdi φkk1
163 124 129 addcld φkm1kabsFm+B2m
164 159 162 163 fsumser φkm=1kabsFm+B2m=seq1+absGk
165 eqidd φkm1kabsFm=absFm
166 165 162 124 fsumser φkm=1kabsFm=seq1+absFk
167 1 fveq1i Sk=seq1+absFk
168 166 167 eqtr4di φkm=1kabsFm=Sk
169 6 adantr φkB+
170 169 rpcnd φkB
171 geo2sum kBm=1kB2m=BB2k
172 160 170 171 syl2anc φkm=1kB2m=BB2k
173 168 172 oveq12d φkm=1kabsFm+m=1kB2m=Sk+B-B2k
174 130 164 173 3eqtr3d φkseq1+absGk=Sk+B-B2k
175 113 174 eqtrid φkTk=Sk+B-B2k
176 116 1 ovolsf F:2S:0+∞
177 4 176 syl φS:0+∞
178 177 ffvelcdmda φkSk0+∞
179 115 178 sselid φkSk
180 169 rpred φkB
181 nnnn0 kk0
182 181 adantl φkk0
183 nnexpcl 2k02k
184 18 182 183 sylancr φk2k
185 184 nnrpd φk2k+
186 169 185 rpdivcld φkB2k+
187 186 rpred φkB2k
188 180 187 resubcld φkBB2k
189 7 adantr φksupranS*<
190 177 frnd φranS0+∞
191 190 44 sstrdi φranS*
192 191 adantr φkranS*
193 177 ffnd φSFn
194 fnfvelrn SFnkSkranS
195 193 194 sylan φkSkranS
196 supxrub ranS*SkranSSksupranS*<
197 192 195 196 syl2anc φkSksupranS*<
198 180 186 ltsubrpd φkBB2k<B
199 188 180 198 ltled φkBB2kB
200 179 188 189 180 197 199 le2addd φkSk+B-B2ksupranS*<+B
201 175 200 eqbrtrd φkTksupranS*<+B
202 201 ralrimiva φkTksupranS*<+B
203 ffn T:0+∞TFn
204 breq1 y=TkysupranS*<+BTksupranS*<+B
205 204 ralrn TFnyranTysupranS*<+BkTksupranS*<+B
206 42 203 205 3syl φyranTysupranS*<+BkTksupranS*<+B
207 202 206 mpbird φyranTysupranS*<+B
208 supxrleub ranT*supranS*<+B*supranT*<supranS*<+ByranTysupranS*<+B
209 45 50 208 syl2anc φsupranT*<supranS*<+ByranTysupranS*<+B
210 207 209 mpbird φsupranT*<supranS*<+B
211 12 47 50 112 210 xrletrd φvol*AsupranS*<+B