Metamath Proof Explorer


Theorem ovollb2lem

Description: Lemma for ovollb2 . (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypotheses ovollb2.1 S = seq 1 + abs F
ovollb2.2 G = n 1 st F n B 2 2 n 2 nd F n + B 2 2 n
ovollb2.3 T = seq 1 + abs G
ovollb2.4 φ F : 2
ovollb2.5 φ A ran . F
ovollb2.6 φ B +
ovollb2.7 φ sup ran S * <
Assertion ovollb2lem φ vol * A sup ran S * < + B

Proof

Step Hyp Ref Expression
1 ovollb2.1 S = seq 1 + abs F
2 ovollb2.2 G = n 1 st F n B 2 2 n 2 nd F n + B 2 2 n
3 ovollb2.3 T = seq 1 + abs G
4 ovollb2.4 φ F : 2
5 ovollb2.5 φ A ran . F
6 ovollb2.6 φ B +
7 ovollb2.7 φ sup ran S * <
8 ovolficcss F : 2 ran . F
9 4 8 syl φ ran . F
10 5 9 sstrd φ A
11 ovolcl A vol * A *
12 10 11 syl φ vol * A *
13 ovolfcl F : 2 n 1 st F n 2 nd F n 1 st F n 2 nd F n
14 4 13 sylan φ n 1 st F n 2 nd F n 1 st F n 2 nd F n
15 14 simp1d φ n 1 st F n
16 6 rphalfcld φ B 2 +
17 16 adantr φ n B 2 +
18 2nn 2
19 nnnn0 n n 0
20 19 adantl φ n n 0
21 nnexpcl 2 n 0 2 n
22 18 20 21 sylancr φ n 2 n
23 22 nnrpd φ n 2 n +
24 17 23 rpdivcld φ n B 2 2 n +
25 24 rpred φ n B 2 2 n
26 15 25 resubcld φ n 1 st F n B 2 2 n
27 14 simp2d φ n 2 nd F n
28 27 25 readdcld φ n 2 nd F n + B 2 2 n
29 15 24 ltsubrpd φ n 1 st F n B 2 2 n < 1 st F n
30 14 simp3d φ n 1 st F n 2 nd F n
31 27 24 ltaddrpd φ n 2 nd F n < 2 nd F n + B 2 2 n
32 15 27 28 30 31 lelttrd φ n 1 st F n < 2 nd F n + B 2 2 n
33 26 15 28 29 32 lttrd φ n 1 st F n B 2 2 n < 2 nd F n + B 2 2 n
34 26 28 33 ltled φ n 1 st F n B 2 2 n 2 nd F n + B 2 2 n
35 df-br 1 st F n B 2 2 n 2 nd F n + B 2 2 n 1 st F n B 2 2 n 2 nd F n + B 2 2 n
36 34 35 sylib φ n 1 st F n B 2 2 n 2 nd F n + B 2 2 n
37 26 28 opelxpd φ n 1 st F n B 2 2 n 2 nd F n + B 2 2 n 2
38 36 37 elind φ n 1 st F n B 2 2 n 2 nd F n + B 2 2 n 2
39 38 2 fmptd φ G : 2
40 eqid abs G = abs G
41 40 3 ovolsf G : 2 T : 0 +∞
42 39 41 syl φ T : 0 +∞
43 42 frnd φ ran T 0 +∞
44 icossxr 0 +∞ *
45 43 44 sstrdi φ ran T *
46 supxrcl ran T * sup ran T * < *
47 45 46 syl φ sup ran T * < *
48 6 rpred φ B
49 7 48 readdcld φ sup ran S * < + B
50 49 rexrd φ sup ran S * < + B *
51 2fveq3 n = m 1 st F n = 1 st F m
52 oveq2 n = m 2 n = 2 m
53 52 oveq2d n = m B 2 2 n = B 2 2 m
54 51 53 oveq12d n = m 1 st F n B 2 2 n = 1 st F m B 2 2 m
55 2fveq3 n = m 2 nd F n = 2 nd F m
56 55 53 oveq12d n = m 2 nd F n + B 2 2 n = 2 nd F m + B 2 2 m
57 54 56 opeq12d n = m 1 st F n B 2 2 n 2 nd F n + B 2 2 n = 1 st F m B 2 2 m 2 nd F m + B 2 2 m
58 opex 1 st F m B 2 2 m 2 nd F m + B 2 2 m V
59 57 2 58 fvmpt m G m = 1 st F m B 2 2 m 2 nd F m + B 2 2 m
60 59 adantl φ m G m = 1 st F m B 2 2 m 2 nd F m + B 2 2 m
61 60 fveq2d φ m 1 st G m = 1 st 1 st F m B 2 2 m 2 nd F m + B 2 2 m
62 ovex 1 st F m B 2 2 m V
63 ovex 2 nd F m + B 2 2 m V
64 62 63 op1st 1 st 1 st F m B 2 2 m 2 nd F m + B 2 2 m = 1 st F m B 2 2 m
65 61 64 eqtrdi φ m 1 st G m = 1 st F m B 2 2 m
66 ovolfcl F : 2 m 1 st F m 2 nd F m 1 st F m 2 nd F m
67 4 66 sylan φ m 1 st F m 2 nd F m 1 st F m 2 nd F m
68 67 simp1d φ m 1 st F m
69 16 adantr φ m B 2 +
70 nnnn0 m m 0
71 70 adantl φ m m 0
72 nnexpcl 2 m 0 2 m
73 18 71 72 sylancr φ m 2 m
74 73 nnrpd φ m 2 m +
75 69 74 rpdivcld φ m B 2 2 m +
76 68 75 ltsubrpd φ m 1 st F m B 2 2 m < 1 st F m
77 65 76 eqbrtrd φ m 1 st G m < 1 st F m
78 77 adantlr φ z A m 1 st G m < 1 st F m
79 ovolfcl G : 2 m 1 st G m 2 nd G m 1 st G m 2 nd G m
80 39 79 sylan φ m 1 st G m 2 nd G m 1 st G m 2 nd G m
81 80 simp1d φ m 1 st G m
82 81 adantlr φ z A m 1 st G m
83 68 adantlr φ z A m 1 st F m
84 10 sselda φ z A z
85 84 adantr φ z A m z
86 ltletr 1 st G m 1 st F m z 1 st G m < 1 st F m 1 st F m z 1 st G m < z
87 82 83 85 86 syl3anc φ z A m 1 st G m < 1 st F m 1 st F m z 1 st G m < z
88 78 87 mpand φ z A m 1 st F m z 1 st G m < z
89 67 simp2d φ m 2 nd F m
90 89 75 ltaddrpd φ m 2 nd F m < 2 nd F m + B 2 2 m
91 60 fveq2d φ m 2 nd G m = 2 nd 1 st F m B 2 2 m 2 nd F m + B 2 2 m
92 62 63 op2nd 2 nd 1 st F m B 2 2 m 2 nd F m + B 2 2 m = 2 nd F m + B 2 2 m
93 91 92 eqtrdi φ m 2 nd G m = 2 nd F m + B 2 2 m
94 90 93 breqtrrd φ m 2 nd F m < 2 nd G m
95 94 adantlr φ z A m 2 nd F m < 2 nd G m
96 89 adantlr φ z A m 2 nd F m
97 80 simp2d φ m 2 nd G m
98 97 adantlr φ z A m 2 nd G m
99 lelttr z 2 nd F m 2 nd G m z 2 nd F m 2 nd F m < 2 nd G m z < 2 nd G m
100 85 96 98 99 syl3anc φ z A m z 2 nd F m 2 nd F m < 2 nd G m z < 2 nd G m
101 95 100 mpan2d φ z A m z 2 nd F m z < 2 nd G m
102 88 101 anim12d φ z A m 1 st F m z z 2 nd F m 1 st G m < z z < 2 nd G m
103 102 reximdva φ z A m 1 st F m z z 2 nd F m m 1 st G m < z z < 2 nd G m
104 103 ralimdva φ z A m 1 st F m z z 2 nd F m z A m 1 st G m < z z < 2 nd G m
105 ovolficc A F : 2 A ran . F z A m 1 st F m z z 2 nd F m
106 10 4 105 syl2anc φ A ran . F z A m 1 st F m z z 2 nd F m
107 ovolfioo A G : 2 A ran . G z A m 1 st G m < z z < 2 nd G m
108 10 39 107 syl2anc φ A ran . G z A m 1 st G m < z z < 2 nd G m
109 104 106 108 3imtr4d φ A ran . F A ran . G
110 5 109 mpd φ A ran . G
111 3 ovollb G : 2 A ran . G vol * A sup ran T * <
112 39 110 111 syl2anc φ vol * A sup ran T * <
113 3 fveq1i T k = seq 1 + abs G k
114 fzfid φ k 1 k Fin
115 rge0ssre 0 +∞
116 eqid abs F = abs F
117 116 ovolfsf F : 2 abs F : 0 +∞
118 4 117 syl φ abs F : 0 +∞
119 118 adantr φ k abs F : 0 +∞
120 elfznn m 1 k m
121 ffvelrn abs F : 0 +∞ m abs F m 0 +∞
122 119 120 121 syl2an φ k m 1 k abs F m 0 +∞
123 115 122 sselid φ k m 1 k abs F m
124 123 recnd φ k m 1 k abs F m
125 6 adantr φ m B +
126 125 74 rpdivcld φ m B 2 m +
127 126 rpcnd φ m B 2 m
128 120 127 sylan2 φ m 1 k B 2 m
129 128 adantlr φ k m 1 k B 2 m
130 114 124 129 fsumadd φ k m = 1 k abs F m + B 2 m = m = 1 k abs F m + m = 1 k B 2 m
131 40 ovolfsval G : 2 m abs G m = 2 nd G m 1 st G m
132 39 131 sylan φ m abs G m = 2 nd G m 1 st G m
133 89 recnd φ m 2 nd F m
134 75 rpcnd φ m B 2 2 m
135 68 recnd φ m 1 st F m
136 135 134 subcld φ m 1 st F m B 2 2 m
137 133 134 136 addsubassd φ m 2 nd F m + B 2 2 m - 1 st F m B 2 2 m = 2 nd F m + B 2 2 m - 1 st F m B 2 2 m
138 93 65 oveq12d φ m 2 nd G m 1 st G m = 2 nd F m + B 2 2 m - 1 st F m B 2 2 m
139 133 135 127 subadd23d φ m 2 nd F m - 1 st F m + B 2 m = 2 nd F m + B 2 m - 1 st F m
140 116 ovolfsval F : 2 m abs F m = 2 nd F m 1 st F m
141 4 140 sylan φ m abs F m = 2 nd F m 1 st F m
142 141 oveq1d φ m abs F m + B 2 m = 2 nd F m - 1 st F m + B 2 m
143 134 135 134 subsub3d φ m B 2 2 m 1 st F m B 2 2 m = B 2 2 m + B 2 2 m - 1 st F m
144 69 rpcnd φ m B 2
145 73 nncnd φ m 2 m
146 73 nnne0d φ m 2 m 0
147 144 144 145 146 divdird φ m B 2 + B 2 2 m = B 2 2 m + B 2 2 m
148 125 rpcnd φ m B
149 148 2halvesd φ m B 2 + B 2 = B
150 149 oveq1d φ m B 2 + B 2 2 m = B 2 m
151 147 150 eqtr3d φ m B 2 2 m + B 2 2 m = B 2 m
152 151 oveq1d φ m B 2 2 m + B 2 2 m - 1 st F m = B 2 m 1 st F m
153 143 152 eqtrd φ m B 2 2 m 1 st F m B 2 2 m = B 2 m 1 st F m
154 153 oveq2d φ m 2 nd F m + B 2 2 m - 1 st F m B 2 2 m = 2 nd F m + B 2 m - 1 st F m
155 139 142 154 3eqtr4d φ m abs F m + B 2 m = 2 nd F m + B 2 2 m - 1 st F m B 2 2 m
156 137 138 155 3eqtr4d φ m 2 nd G m 1 st G m = abs F m + B 2 m
157 132 156 eqtrd φ m abs G m = abs F m + B 2 m
158 120 157 sylan2 φ m 1 k abs G m = abs F m + B 2 m
159 158 adantlr φ k m 1 k abs G m = abs F m + B 2 m
160 simpr φ k k
161 nnuz = 1
162 160 161 eleqtrdi φ k k 1
163 124 129 addcld φ k m 1 k abs F m + B 2 m
164 159 162 163 fsumser φ k m = 1 k abs F m + B 2 m = seq 1 + abs G k
165 eqidd φ k m 1 k abs F m = abs F m
166 165 162 124 fsumser φ k m = 1 k abs F m = seq 1 + abs F k
167 1 fveq1i S k = seq 1 + abs F k
168 166 167 eqtr4di φ k m = 1 k abs F m = S k
169 6 adantr φ k B +
170 169 rpcnd φ k B
171 geo2sum k B m = 1 k B 2 m = B B 2 k
172 160 170 171 syl2anc φ k m = 1 k B 2 m = B B 2 k
173 168 172 oveq12d φ k m = 1 k abs F m + m = 1 k B 2 m = S k + B - B 2 k
174 130 164 173 3eqtr3d φ k seq 1 + abs G k = S k + B - B 2 k
175 113 174 eqtrid φ k T k = S k + B - B 2 k
176 116 1 ovolsf F : 2 S : 0 +∞
177 4 176 syl φ S : 0 +∞
178 177 ffvelrnda φ k S k 0 +∞
179 115 178 sselid φ k S k
180 169 rpred φ k B
181 nnnn0 k k 0
182 181 adantl φ k k 0
183 nnexpcl 2 k 0 2 k
184 18 182 183 sylancr φ k 2 k
185 184 nnrpd φ k 2 k +
186 169 185 rpdivcld φ k B 2 k +
187 186 rpred φ k B 2 k
188 180 187 resubcld φ k B B 2 k
189 7 adantr φ k sup ran S * <
190 177 frnd φ ran S 0 +∞
191 190 44 sstrdi φ ran S *
192 191 adantr φ k ran S *
193 177 ffnd φ S Fn
194 fnfvelrn S Fn k S k ran S
195 193 194 sylan φ k S k ran S
196 supxrub ran S * S k ran S S k sup ran S * <
197 192 195 196 syl2anc φ k S k sup ran S * <
198 180 186 ltsubrpd φ k B B 2 k < B
199 188 180 198 ltled φ k B B 2 k B
200 179 188 189 180 197 199 le2addd φ k S k + B - B 2 k sup ran S * < + B
201 175 200 eqbrtrd φ k T k sup ran S * < + B
202 201 ralrimiva φ k T k sup ran S * < + B
203 ffn T : 0 +∞ T Fn
204 breq1 y = T k y sup ran S * < + B T k sup ran S * < + B
205 204 ralrn T Fn y ran T y sup ran S * < + B k T k sup ran S * < + B
206 42 203 205 3syl φ y ran T y sup ran S * < + B k T k sup ran S * < + B
207 202 206 mpbird φ y ran T y sup ran S * < + B
208 supxrleub ran T * sup ran S * < + B * sup ran T * < sup ran S * < + B y ran T y sup ran S * < + B
209 45 50 208 syl2anc φ sup ran T * < sup ran S * < + B y ran T y sup ran S * < + B
210 207 209 mpbird φ sup ran T * < sup ran S * < + B
211 12 47 50 112 210 xrletrd φ vol * A sup ran S * < + B