Metamath Proof Explorer


Theorem qustgplem

Description: Lemma for qustgp . (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses qustgp.h H=G/𝑠G~QGY
qustgpopn.x X=BaseG
qustgpopn.j J=TopOpenG
qustgpopn.k K=TopOpenH
qustgpopn.f F=xXxG~QGY
qustgplem.m -˙=zX,wXz-GwG~QGY
Assertion qustgplem GTopGrpYNrmSGrpGHTopGrp

Proof

Step Hyp Ref Expression
1 qustgp.h H=G/𝑠G~QGY
2 qustgpopn.x X=BaseG
3 qustgpopn.j J=TopOpenG
4 qustgpopn.k K=TopOpenH
5 qustgpopn.f F=xXxG~QGY
6 qustgplem.m -˙=zX,wXz-GwG~QGY
7 1 qusgrp YNrmSGrpGHGrp
8 7 adantl GTopGrpYNrmSGrpGHGrp
9 1 a1i GTopGrpYNrmSGrpGH=G/𝑠G~QGY
10 2 a1i GTopGrpYNrmSGrpGX=BaseG
11 ovex G~QGYV
12 11 a1i GTopGrpYNrmSGrpGG~QGYV
13 simpl GTopGrpYNrmSGrpGGTopGrp
14 9 10 5 12 13 qusval GTopGrpYNrmSGrpGH=F𝑠G
15 9 10 5 12 13 quslem GTopGrpYNrmSGrpGF:XontoX/G~QGY
16 14 10 15 13 3 4 imastopn GTopGrpYNrmSGrpGK=JqTopF
17 3 2 tgptopon GTopGrpJTopOnX
18 17 adantr GTopGrpYNrmSGrpGJTopOnX
19 qtoptopon JTopOnXF:XontoX/G~QGYJqTopFTopOnX/G~QGY
20 18 15 19 syl2anc GTopGrpYNrmSGrpGJqTopFTopOnX/G~QGY
21 16 20 eqeltrd GTopGrpYNrmSGrpGKTopOnX/G~QGY
22 9 10 12 13 qusbas GTopGrpYNrmSGrpGX/G~QGY=BaseH
23 22 fveq2d GTopGrpYNrmSGrpGTopOnX/G~QGY=TopOnBaseH
24 21 23 eleqtrd GTopGrpYNrmSGrpGKTopOnBaseH
25 eqid BaseH=BaseH
26 25 4 istps HTopSpKTopOnBaseH
27 24 26 sylibr GTopGrpYNrmSGrpGHTopSp
28 eqid -H=-H
29 25 28 grpsubf HGrp-H:BaseH×BaseHBaseH
30 8 29 syl GTopGrpYNrmSGrpG-H:BaseH×BaseHBaseH
31 cnvimass -H-1udom-H
32 30 fdmd GTopGrpYNrmSGrpGdom-H=BaseH×BaseH
33 32 adantr GTopGrpYNrmSGrpGuKdom-H=BaseH×BaseH
34 31 33 sseqtrid GTopGrpYNrmSGrpGuK-H-1uBaseH×BaseH
35 relxp RelBaseH×BaseH
36 relss -H-1uBaseH×BaseHRelBaseH×BaseHRel-H-1u
37 34 35 36 mpisyl GTopGrpYNrmSGrpGuKRel-H-1u
38 34 sseld GTopGrpYNrmSGrpGuKxy-H-1uxyBaseH×BaseH
39 vex xV
40 39 elqs xX/G~QGYaXx=aG~QGY
41 22 adantr GTopGrpYNrmSGrpGuKX/G~QGY=BaseH
42 41 eleq2d GTopGrpYNrmSGrpGuKxX/G~QGYxBaseH
43 40 42 bitr3id GTopGrpYNrmSGrpGuKaXx=aG~QGYxBaseH
44 vex yV
45 44 elqs yX/G~QGYbXy=bG~QGY
46 41 eleq2d GTopGrpYNrmSGrpGuKyX/G~QGYyBaseH
47 45 46 bitr3id GTopGrpYNrmSGrpGuKbXy=bG~QGYyBaseH
48 43 47 anbi12d GTopGrpYNrmSGrpGuKaXx=aG~QGYbXy=bG~QGYxBaseHyBaseH
49 reeanv aXbXx=aG~QGYy=bG~QGYaXx=aG~QGYbXy=bG~QGY
50 opelxp xyBaseH×BaseHxBaseHyBaseH
51 48 49 50 3bitr4g GTopGrpYNrmSGrpGuKaXbXx=aG~QGYy=bG~QGYxyBaseH×BaseH
52 8 ad2antrr GTopGrpYNrmSGrpGuKaXbXHGrp
53 52 29 syl GTopGrpYNrmSGrpGuKaXbX-H:BaseH×BaseHBaseH
54 ffn -H:BaseH×BaseHBaseH-HFnBaseH×BaseH
55 elpreima -HFnBaseH×BaseHaG~QGYbG~QGY-H-1uaG~QGYbG~QGYBaseH×BaseH-HaG~QGYbG~QGYu
56 53 54 55 3syl GTopGrpYNrmSGrpGuKaXbXaG~QGYbG~QGY-H-1uaG~QGYbG~QGYBaseH×BaseH-HaG~QGYbG~QGYu
57 df-ov aG~QGY-HbG~QGY=-HaG~QGYbG~QGY
58 simpllr GTopGrpYNrmSGrpGuKaXbXYNrmSGrpG
59 simprl GTopGrpYNrmSGrpGuKaXbXaX
60 simprr GTopGrpYNrmSGrpGuKaXbXbX
61 eqid -G=-G
62 1 2 61 28 qussub YNrmSGrpGaXbXaG~QGY-HbG~QGY=a-GbG~QGY
63 58 59 60 62 syl3anc GTopGrpYNrmSGrpGuKaXbXaG~QGY-HbG~QGY=a-GbG~QGY
64 57 63 eqtr3id GTopGrpYNrmSGrpGuKaXbX-HaG~QGYbG~QGY=a-GbG~QGY
65 64 eleq1d GTopGrpYNrmSGrpGuKaXbX-HaG~QGYbG~QGYua-GbG~QGYu
66 simpr GTopGrpYNrmSGrpGuKaXbXaXbX
67 tgpgrp GTopGrpGGrp
68 67 adantr GTopGrpYNrmSGrpGGGrp
69 2 61 grpsubf GGrp-G:X×XX
70 ffn -G:X×XX-GFnX×X
71 68 69 70 3syl GTopGrpYNrmSGrpG-GFnX×X
72 fnov -GFnX×X-G=zX,wXz-Gw
73 71 72 sylib GTopGrpYNrmSGrpG-G=zX,wXz-Gw
74 3 61 tgpsubcn GTopGrp-GJ×tJCnJ
75 74 adantr GTopGrpYNrmSGrpG-GJ×tJCnJ
76 73 75 eqeltrrd GTopGrpYNrmSGrpGzX,wXz-GwJ×tJCnJ
77 ecexg G~QGYVxG~QGYV
78 11 77 ax-mp xG~QGYV
79 78 5 fnmpti FFnX
80 qtopid JTopOnXFFnXFJCnJqTopF
81 18 79 80 sylancl GTopGrpYNrmSGrpGFJCnJqTopF
82 16 oveq2d GTopGrpYNrmSGrpGJCnK=JCnJqTopF
83 81 82 eleqtrrd GTopGrpYNrmSGrpGFJCnK
84 5 83 eqeltrrid GTopGrpYNrmSGrpGxXxG~QGYJCnK
85 eceq1 x=z-GwxG~QGY=z-GwG~QGY
86 18 18 76 18 84 85 cnmpt21 GTopGrpYNrmSGrpGzX,wXz-GwG~QGYJ×tJCnK
87 6 86 eqeltrid GTopGrpYNrmSGrpG-˙J×tJCnK
88 87 ad2antrr GTopGrpYNrmSGrpGuKaXbX-˙J×tJCnK
89 simplr GTopGrpYNrmSGrpGuKaXbXuK
90 cnima -˙J×tJCnKuK-˙-1uJ×tJ
91 88 89 90 syl2anc GTopGrpYNrmSGrpGuKaXbX-˙-1uJ×tJ
92 18 ad2antrr GTopGrpYNrmSGrpGuKaXbXJTopOnX
93 eltx JTopOnXJTopOnX-˙-1uJ×tJt-˙-1ucJdJtc×dc×d-˙-1u
94 92 92 93 syl2anc GTopGrpYNrmSGrpGuKaXbX-˙-1uJ×tJt-˙-1ucJdJtc×dc×d-˙-1u
95 91 94 mpbid GTopGrpYNrmSGrpGuKaXbXt-˙-1ucJdJtc×dc×d-˙-1u
96 ecexg G~QGYVz-GwG~QGYV
97 11 96 ax-mp z-GwG~QGYV
98 6 97 fnmpoi -˙FnX×X
99 elpreima -˙FnX×Xab-˙-1uabX×X-˙abu
100 98 99 ax-mp ab-˙-1uabX×X-˙abu
101 opelxp abX×XaXbX
102 101 anbi1i abX×X-˙abuaXbX-˙abu
103 df-ov a-˙b=-˙ab
104 oveq12 z=aw=bz-Gw=a-Gb
105 104 eceq1d z=aw=bz-GwG~QGY=a-GbG~QGY
106 ecexg G~QGYVa-GbG~QGYV
107 11 106 ax-mp a-GbG~QGYV
108 105 6 107 ovmpoa aXbXa-˙b=a-GbG~QGY
109 103 108 eqtr3id aXbX-˙ab=a-GbG~QGY
110 109 eleq1d aXbX-˙abua-GbG~QGYu
111 110 pm5.32i aXbX-˙abuaXbXa-GbG~QGYu
112 100 102 111 3bitri ab-˙-1uaXbXa-GbG~QGYu
113 eleq1 t=abtc×dabc×d
114 opelxp abc×dacbd
115 113 114 bitrdi t=abtc×dacbd
116 115 anbi1d t=abtc×dc×d-˙-1uacbdc×d-˙-1u
117 116 2rexbidv t=abcJdJtc×dc×d-˙-1ucJdJacbdc×d-˙-1u
118 117 rspccv t-˙-1ucJdJtc×dc×d-˙-1uab-˙-1ucJdJacbdc×d-˙-1u
119 112 118 biimtrrid t-˙-1ucJdJtc×dc×d-˙-1uaXbXa-GbG~QGYucJdJacbdc×d-˙-1u
120 95 119 syl GTopGrpYNrmSGrpGuKaXbXaXbXa-GbG~QGYucJdJacbdc×d-˙-1u
121 66 120 mpand GTopGrpYNrmSGrpGuKaXbXa-GbG~QGYucJdJacbdc×d-˙-1u
122 simp-4l GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uGTopGrp
123 58 adantr GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uYNrmSGrpG
124 simprll GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1ucJ
125 1 2 3 4 5 qustgpopn GTopGrpYNrmSGrpGcJFcK
126 122 123 124 125 syl3anc GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uFcK
127 simprlr GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1udJ
128 1 2 3 4 5 qustgpopn GTopGrpYNrmSGrpGdJFdK
129 122 123 127 128 syl3anc GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uFdK
130 59 adantr GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uaX
131 eceq1 x=axG~QGY=aG~QGY
132 131 5 78 fvmpt3i aXFa=aG~QGY
133 130 132 syl GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uFa=aG~QGY
134 122 17 syl GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uJTopOnX
135 toponss JTopOnXcJcX
136 134 124 135 syl2anc GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1ucX
137 simprrl GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uacbd
138 137 simpld GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uac
139 fnfvima FFnXcXacFaFc
140 79 136 138 139 mp3an2i GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uFaFc
141 133 140 eqeltrrd GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uaG~QGYFc
142 60 adantr GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1ubX
143 eceq1 x=bxG~QGY=bG~QGY
144 143 5 78 fvmpt3i bXFb=bG~QGY
145 142 144 syl GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uFb=bG~QGY
146 toponss JTopOnXdJdX
147 134 127 146 syl2anc GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1udX
148 137 simprd GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1ubd
149 fnfvima FFnXdXbdFbFd
150 79 147 148 149 mp3an2i GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uFbFd
151 145 150 eqeltrrd GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1ubG~QGYFd
152 141 151 opelxpd GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uaG~QGYbG~QGYFc×Fd
153 136 sselda GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcpX
154 147 sselda GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uqdqX
155 153 154 anim12dan GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqdpXqX
156 eceq1 x=pxG~QGY=pG~QGY
157 156 5 78 fvmpt3i pXFp=pG~QGY
158 eceq1 x=qxG~QGY=qG~QGY
159 158 5 78 fvmpt3i qXFq=qG~QGY
160 opeq12 Fp=pG~QGYFq=qG~QGYFpFq=pG~QGYqG~QGY
161 157 159 160 syl2an pXqXFpFq=pG~QGYqG~QGY
162 155 161 syl GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqdFpFq=pG~QGYqG~QGY
163 123 adantr GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqdYNrmSGrpG
164 1 2 25 quseccl YNrmSGrpGpXpG~QGYBaseH
165 1 2 25 quseccl YNrmSGrpGqXqG~QGYBaseH
166 164 165 anim12dan YNrmSGrpGpXqXpG~QGYBaseHqG~QGYBaseH
167 163 155 166 syl2anc GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqdpG~QGYBaseHqG~QGYBaseH
168 opelxpi pG~QGYBaseHqG~QGYBaseHpG~QGYqG~QGYBaseH×BaseH
169 167 168 syl GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqdpG~QGYqG~QGYBaseH×BaseH
170 1 2 61 28 qussub YNrmSGrpGpXqXpG~QGY-HqG~QGY=p-GqG~QGY
171 170 3expb YNrmSGrpGpXqXpG~QGY-HqG~QGY=p-GqG~QGY
172 163 155 171 syl2anc GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqdpG~QGY-HqG~QGY=p-GqG~QGY
173 oveq12 z=pw=qz-Gw=p-Gq
174 173 eceq1d z=pw=qz-GwG~QGY=p-GqG~QGY
175 ecexg G~QGYVp-GqG~QGYV
176 11 175 ax-mp p-GqG~QGYV
177 174 6 176 ovmpoa pXqXp-˙q=p-GqG~QGY
178 155 177 syl GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqdp-˙q=p-GqG~QGY
179 172 178 eqtr4d GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqdpG~QGY-HqG~QGY=p-˙q
180 df-ov pG~QGY-HqG~QGY=-HpG~QGYqG~QGY
181 df-ov p-˙q=-˙pq
182 179 180 181 3eqtr3g GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqd-HpG~QGYqG~QGY=-˙pq
183 opelxpi pcqdpqc×d
184 simprrr GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uc×d-˙-1u
185 184 sselda GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upqc×dpq-˙-1u
186 183 185 sylan2 GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqdpq-˙-1u
187 elpreima -˙FnX×Xpq-˙-1upqX×X-˙pqu
188 98 187 ax-mp pq-˙-1upqX×X-˙pqu
189 188 simprbi pq-˙-1u-˙pqu
190 186 189 syl GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqd-˙pqu
191 182 190 eqeltrd GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqd-HpG~QGYqG~QGYu
192 53 54 syl GTopGrpYNrmSGrpGuKaXbX-HFnBaseH×BaseH
193 192 ad2antrr GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqd-HFnBaseH×BaseH
194 elpreima -HFnBaseH×BaseHpG~QGYqG~QGY-H-1upG~QGYqG~QGYBaseH×BaseH-HpG~QGYqG~QGYu
195 193 194 syl GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqdpG~QGYqG~QGY-H-1upG~QGYqG~QGYBaseH×BaseH-HpG~QGYqG~QGYu
196 169 191 195 mpbir2and GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqdpG~QGYqG~QGY-H-1u
197 162 196 eqeltrd GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqdFpFq-H-1u
198 197 ralrimivva GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1upcqdFpFq-H-1u
199 opeq1 z=Fpzw=Fpw
200 199 eleq1d z=Fpzw-H-1uFpw-H-1u
201 200 ralbidv z=FpwFdzw-H-1uwFdFpw-H-1u
202 201 ralima FFnXcXzFcwFdzw-H-1upcwFdFpw-H-1u
203 79 202 mpan cXzFcwFdzw-H-1upcwFdFpw-H-1u
204 opeq2 w=FqFpw=FpFq
205 204 eleq1d w=FqFpw-H-1uFpFq-H-1u
206 205 ralima FFnXdXwFdFpw-H-1uqdFpFq-H-1u
207 79 206 mpan dXwFdFpw-H-1uqdFpFq-H-1u
208 207 ralbidv dXpcwFdFpw-H-1upcqdFpFq-H-1u
209 203 208 sylan9bb cXdXzFcwFdzw-H-1upcqdFpFq-H-1u
210 136 147 209 syl2anc GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uzFcwFdzw-H-1upcqdFpFq-H-1u
211 198 210 mpbird GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uzFcwFdzw-H-1u
212 dfss3 Fc×Fd-H-1uyFc×Fdy-H-1u
213 eleq1 y=zwy-H-1uzw-H-1u
214 213 ralxp yFc×Fdy-H-1uzFcwFdzw-H-1u
215 212 214 bitri Fc×Fd-H-1uzFcwFdzw-H-1u
216 211 215 sylibr GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1uFc×Fd-H-1u
217 xpeq1 r=Fcr×s=Fc×s
218 217 eleq2d r=FcaG~QGYbG~QGYr×saG~QGYbG~QGYFc×s
219 217 sseq1d r=Fcr×s-H-1uFc×s-H-1u
220 218 219 anbi12d r=FcaG~QGYbG~QGYr×sr×s-H-1uaG~QGYbG~QGYFc×sFc×s-H-1u
221 xpeq2 s=FdFc×s=Fc×Fd
222 221 eleq2d s=FdaG~QGYbG~QGYFc×saG~QGYbG~QGYFc×Fd
223 221 sseq1d s=FdFc×s-H-1uFc×Fd-H-1u
224 222 223 anbi12d s=FdaG~QGYbG~QGYFc×sFc×s-H-1uaG~QGYbG~QGYFc×FdFc×Fd-H-1u
225 220 224 rspc2ev FcKFdKaG~QGYbG~QGYFc×FdFc×Fd-H-1urKsKaG~QGYbG~QGYr×sr×s-H-1u
226 126 129 152 216 225 syl112anc GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1urKsKaG~QGYbG~QGYr×sr×s-H-1u
227 226 expr GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1urKsKaG~QGYbG~QGYr×sr×s-H-1u
228 227 rexlimdvva GTopGrpYNrmSGrpGuKaXbXcJdJacbdc×d-˙-1urKsKaG~QGYbG~QGYr×sr×s-H-1u
229 121 228 syld GTopGrpYNrmSGrpGuKaXbXa-GbG~QGYurKsKaG~QGYbG~QGYr×sr×s-H-1u
230 65 229 sylbid GTopGrpYNrmSGrpGuKaXbX-HaG~QGYbG~QGYurKsKaG~QGYbG~QGYr×sr×s-H-1u
231 230 adantld GTopGrpYNrmSGrpGuKaXbXaG~QGYbG~QGYBaseH×BaseH-HaG~QGYbG~QGYurKsKaG~QGYbG~QGYr×sr×s-H-1u
232 56 231 sylbid GTopGrpYNrmSGrpGuKaXbXaG~QGYbG~QGY-H-1urKsKaG~QGYbG~QGYr×sr×s-H-1u
233 opeq12 x=aG~QGYy=bG~QGYxy=aG~QGYbG~QGY
234 233 eleq1d x=aG~QGYy=bG~QGYxy-H-1uaG~QGYbG~QGY-H-1u
235 233 eleq1d x=aG~QGYy=bG~QGYxyw|rKsKwr×sr×s-H-1uaG~QGYbG~QGYw|rKsKwr×sr×s-H-1u
236 opex aG~QGYbG~QGYV
237 eleq1 w=aG~QGYbG~QGYwr×saG~QGYbG~QGYr×s
238 237 anbi1d w=aG~QGYbG~QGYwr×sr×s-H-1uaG~QGYbG~QGYr×sr×s-H-1u
239 238 2rexbidv w=aG~QGYbG~QGYrKsKwr×sr×s-H-1urKsKaG~QGYbG~QGYr×sr×s-H-1u
240 236 239 elab aG~QGYbG~QGYw|rKsKwr×sr×s-H-1urKsKaG~QGYbG~QGYr×sr×s-H-1u
241 235 240 bitrdi x=aG~QGYy=bG~QGYxyw|rKsKwr×sr×s-H-1urKsKaG~QGYbG~QGYr×sr×s-H-1u
242 234 241 imbi12d x=aG~QGYy=bG~QGYxy-H-1uxyw|rKsKwr×sr×s-H-1uaG~QGYbG~QGY-H-1urKsKaG~QGYbG~QGYr×sr×s-H-1u
243 232 242 syl5ibrcom GTopGrpYNrmSGrpGuKaXbXx=aG~QGYy=bG~QGYxy-H-1uxyw|rKsKwr×sr×s-H-1u
244 243 rexlimdvva GTopGrpYNrmSGrpGuKaXbXx=aG~QGYy=bG~QGYxy-H-1uxyw|rKsKwr×sr×s-H-1u
245 51 244 sylbird GTopGrpYNrmSGrpGuKxyBaseH×BaseHxy-H-1uxyw|rKsKwr×sr×s-H-1u
246 245 com23 GTopGrpYNrmSGrpGuKxy-H-1uxyBaseH×BaseHxyw|rKsKwr×sr×s-H-1u
247 38 246 mpdd GTopGrpYNrmSGrpGuKxy-H-1uxyw|rKsKwr×sr×s-H-1u
248 37 247 relssdv GTopGrpYNrmSGrpGuK-H-1uw|rKsKwr×sr×s-H-1u
249 ssabral -H-1uw|rKsKwr×sr×s-H-1uw-H-1urKsKwr×sr×s-H-1u
250 248 249 sylib GTopGrpYNrmSGrpGuKw-H-1urKsKwr×sr×s-H-1u
251 eltx KTopOnBaseHKTopOnBaseH-H-1uK×tKw-H-1urKsKwr×sr×s-H-1u
252 24 24 251 syl2anc GTopGrpYNrmSGrpG-H-1uK×tKw-H-1urKsKwr×sr×s-H-1u
253 252 adantr GTopGrpYNrmSGrpGuK-H-1uK×tKw-H-1urKsKwr×sr×s-H-1u
254 250 253 mpbird GTopGrpYNrmSGrpGuK-H-1uK×tK
255 254 ralrimiva GTopGrpYNrmSGrpGuK-H-1uK×tK
256 txtopon KTopOnBaseHKTopOnBaseHK×tKTopOnBaseH×BaseH
257 24 24 256 syl2anc GTopGrpYNrmSGrpGK×tKTopOnBaseH×BaseH
258 iscn K×tKTopOnBaseH×BaseHKTopOnBaseH-HK×tKCnK-H:BaseH×BaseHBaseHuK-H-1uK×tK
259 257 24 258 syl2anc GTopGrpYNrmSGrpG-HK×tKCnK-H:BaseH×BaseHBaseHuK-H-1uK×tK
260 30 255 259 mpbir2and GTopGrpYNrmSGrpG-HK×tKCnK
261 4 28 istgp2 HTopGrpHGrpHTopSp-HK×tKCnK
262 8 27 260 261 syl3anbrc GTopGrpYNrmSGrpGHTopGrp