Metamath Proof Explorer


Theorem mbfi1fseqlem4

Description: Lemma for mbfi1fseq . This lemma is not as interesting as it is long - it is simply checking that G is in fact a sequence of simple functions, by verifying that its range is in ( 0 ... n 2 ^ n ) / ( 2 ^ n ) (which is to say, the numbers from 0 to n in increments of 1 / ( 2 ^ n ) ), and also that the preimage of each point k is measurable, because it is equal to ( -u n , n ) i^i (`' F " ( k [,) k + 1 / ( 2 ^ n ) ) ) for k < n and ( -u n , n ) i^i ( ``' F " ( k [,) +oo ) ) for k = n ` . (Contributed by Mario Carneiro, 16-Aug-2014)

Ref Expression
Hypotheses mbfi1fseq.1 ( 𝜑𝐹 ∈ MblFn )
mbfi1fseq.2 ( 𝜑𝐹 : ℝ ⟶ ( 0 [,) +∞ ) )
mbfi1fseq.3 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) )
mbfi1fseq.4 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) )
Assertion mbfi1fseqlem4 ( 𝜑𝐺 : ℕ ⟶ dom ∫1 )

Proof

Step Hyp Ref Expression
1 mbfi1fseq.1 ( 𝜑𝐹 ∈ MblFn )
2 mbfi1fseq.2 ( 𝜑𝐹 : ℝ ⟶ ( 0 [,) +∞ ) )
3 mbfi1fseq.3 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) )
4 mbfi1fseq.4 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) )
5 reex ℝ ∈ V
6 5 mptex ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ∈ V
7 6 4 fnmpti 𝐺 Fn ℕ
8 7 a1i ( 𝜑𝐺 Fn ℕ )
9 1 2 3 4 mbfi1fseqlem3 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐺𝑛 ) : ℝ ⟶ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) )
10 elfznn0 ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) → 𝑚 ∈ ℕ0 )
11 10 nn0red ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) → 𝑚 ∈ ℝ )
12 2nn 2 ∈ ℕ
13 nnnn0 ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 )
14 nnexpcl ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ )
15 12 13 14 sylancr ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ )
16 15 adantl ( ( 𝜑𝑛 ∈ ℕ ) → ( 2 ↑ 𝑛 ) ∈ ℕ )
17 nndivre ( ( 𝑚 ∈ ℝ ∧ ( 2 ↑ 𝑛 ) ∈ ℕ ) → ( 𝑚 / ( 2 ↑ 𝑛 ) ) ∈ ℝ )
18 11 16 17 syl2anr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑚 / ( 2 ↑ 𝑛 ) ) ∈ ℝ )
19 18 fmpttd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ⟶ ℝ )
20 19 frnd ( ( 𝜑𝑛 ∈ ℕ ) → ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ⊆ ℝ )
21 9 20 fssd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐺𝑛 ) : ℝ ⟶ ℝ )
22 fzfid ( ( 𝜑𝑛 ∈ ℕ ) → ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ∈ Fin )
23 19 ffnd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) Fn ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) )
24 dffn4 ( ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) Fn ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) –onto→ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) )
25 23 24 sylib ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) –onto→ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) )
26 fofi ( ( ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ∈ Fin ∧ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) –onto→ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) → ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ∈ Fin )
27 22 25 26 syl2anc ( ( 𝜑𝑛 ∈ ℕ ) → ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ∈ Fin )
28 9 frnd ( ( 𝜑𝑛 ∈ ℕ ) → ran ( 𝐺𝑛 ) ⊆ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) )
29 27 28 ssfid ( ( 𝜑𝑛 ∈ ℕ ) → ran ( 𝐺𝑛 ) ∈ Fin )
30 1 2 3 4 mbfi1fseqlem2 ( 𝑛 ∈ ℕ → ( 𝐺𝑛 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) )
31 30 fveq1d ( 𝑛 ∈ ℕ → ( ( 𝐺𝑛 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) )
32 31 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺𝑛 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) )
33 simpr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ )
34 ovex ( 𝑛 𝐽 𝑥 ) ∈ V
35 vex 𝑛 ∈ V
36 34 35 ifex if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ V
37 c0ex 0 ∈ V
38 36 37 ifex if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ V
39 eqid ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) )
40 39 fvmpt2 ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ V ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) )
41 33 38 40 sylancl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) )
42 32 41 eqtrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) )
43 42 adantlr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) )
44 43 eqeq1d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺𝑛 ) ‘ 𝑥 ) = 𝑘 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) )
45 eldifsni ( 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) → 𝑘 ≠ 0 )
46 45 ad2antlr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ≠ 0 )
47 neeq1 ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≠ 0 ↔ 𝑘 ≠ 0 ) )
48 46 47 syl5ibrcom ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≠ 0 ) )
49 iffalse ( ¬ 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 0 )
50 49 necon1ai ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≠ 0 → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) )
51 48 50 syl6 ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) )
52 51 pm4.71rd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) ) )
53 iftrue ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) )
54 53 eqeq1d ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ↔ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) )
55 simpllr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℕ )
56 55 nnred ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℝ )
57 56 adantr ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑛 ∈ ℝ )
58 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
59 simpr ( ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ )
60 ffvelrn ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹𝑦 ) ∈ ( 0 [,) +∞ ) )
61 2 59 60 syl2an ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹𝑦 ) ∈ ( 0 [,) +∞ ) )
62 58 61 sseldi ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹𝑦 ) ∈ ℝ )
63 nnnn0 ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 )
64 nnexpcl ( ( 2 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ∈ ℕ )
65 12 63 64 sylancr ( 𝑚 ∈ ℕ → ( 2 ↑ 𝑚 ) ∈ ℕ )
66 65 ad2antrl ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℕ )
67 66 nnred ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℝ )
68 62 67 remulcld ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝐹𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ )
69 reflcl ( ( ( 𝐹𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ )
70 68 69 syl ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ⌊ ‘ ( ( 𝐹𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ )
71 70 66 nndivred ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( ⌊ ‘ ( ( 𝐹𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ )
72 71 ralrimivva ( 𝜑 → ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ )
73 3 fmpo ( ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ↔ 𝐽 : ( ℕ × ℝ ) ⟶ ℝ )
74 72 73 sylib ( 𝜑𝐽 : ( ℕ × ℝ ) ⟶ ℝ )
75 fovrn ( ( 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ )
76 74 75 syl3an1 ( ( 𝜑𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ )
77 76 3expa ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ )
78 77 adantlr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ )
79 78 adantr ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ )
80 lemin ( ( 𝑛 ∈ ℝ ∧ ( 𝑛 𝐽 𝑥 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ↔ ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ∧ 𝑛𝑛 ) ) )
81 57 79 57 80 syl3anc ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ↔ ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ∧ 𝑛𝑛 ) ) )
82 79 57 ifcld ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ ℝ )
83 82 57 letri3d ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑛 ↔ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) ) )
84 simpr ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑘 = 𝑛 )
85 84 eqeq2d ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑛 ) )
86 min2 ( ( ( 𝑛 𝐽 𝑥 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 )
87 79 57 86 syl2anc ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 )
88 87 biantrurd ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ↔ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) ) )
89 83 85 88 3bitr4d ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) )
90 57 leidd ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑛𝑛 )
91 90 biantrud ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ↔ ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ∧ 𝑛𝑛 ) ) )
92 81 89 91 3bitr4d ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ) )
93 breq1 ( 𝑘 = 𝑛 → ( 𝑘 ≤ ( 𝐹𝑥 ) ↔ 𝑛 ≤ ( 𝐹𝑥 ) ) )
94 2 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) )
95 94 ffvelrnda ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) )
96 elrege0 ( ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹𝑥 ) ) )
97 95 96 sylib ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹𝑥 ) ) )
98 97 simpld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) ∈ ℝ )
99 98 adantlr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) ∈ ℝ )
100 55 15 syl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ∈ ℕ )
101 100 nnred ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ∈ ℝ )
102 99 101 remulcld ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ )
103 reflcl ( ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ )
104 102 103 syl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ )
105 100 nngt0d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 0 < ( 2 ↑ 𝑛 ) )
106 lemuldiv ( ( 𝑛 ∈ ℝ ∧ ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ↔ 𝑛 ≤ ( ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) )
107 56 104 101 105 106 syl112anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ↔ 𝑛 ≤ ( ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) )
108 lemul1 ( ( 𝑛 ∈ ℝ ∧ ( 𝐹𝑥 ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( 𝑛 ≤ ( 𝐹𝑥 ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) )
109 56 99 101 105 108 syl112anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝐹𝑥 ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) )
110 nnmulcl ( ( 𝑛 ∈ ℕ ∧ ( 2 ↑ 𝑛 ) ∈ ℕ ) → ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℕ )
111 55 15 110 syl2anc2 ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℕ )
112 111 nnzd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℤ )
113 flge ( ( ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ ∧ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) )
114 102 112 113 syl2anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) )
115 109 114 bitrd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝐹𝑥 ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) )
116 simpr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ )
117 simpr ( ( 𝑚 = 𝑛𝑦 = 𝑥 ) → 𝑦 = 𝑥 )
118 117 fveq2d ( ( 𝑚 = 𝑛𝑦 = 𝑥 ) → ( 𝐹𝑦 ) = ( 𝐹𝑥 ) )
119 simpl ( ( 𝑚 = 𝑛𝑦 = 𝑥 ) → 𝑚 = 𝑛 )
120 119 oveq2d ( ( 𝑚 = 𝑛𝑦 = 𝑥 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑛 ) )
121 118 120 oveq12d ( ( 𝑚 = 𝑛𝑦 = 𝑥 ) → ( ( 𝐹𝑦 ) · ( 2 ↑ 𝑚 ) ) = ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) )
122 121 fveq2d ( ( 𝑚 = 𝑛𝑦 = 𝑥 ) → ( ⌊ ‘ ( ( 𝐹𝑦 ) · ( 2 ↑ 𝑚 ) ) ) = ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) )
123 122 120 oveq12d ( ( 𝑚 = 𝑛𝑦 = 𝑥 ) → ( ( ⌊ ‘ ( ( 𝐹𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) = ( ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) )
124 ovex ( ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ∈ V
125 123 3 124 ovmpoa ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) )
126 55 116 125 syl2anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) )
127 126 breq2d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ↔ 𝑛 ≤ ( ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) )
128 107 115 127 3bitr4d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝐹𝑥 ) ↔ 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ) )
129 93 128 sylan9bbr ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑘 ≤ ( 𝐹𝑥 ) ↔ 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ) )
130 116 adantr ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑥 ∈ ℝ )
131 iftrue ( 𝑘 = 𝑛 → if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) = ℝ )
132 131 adantl ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) = ℝ )
133 130 132 eleqtrrd ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) )
134 133 biantrurd ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑘 ≤ ( 𝐹𝑥 ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹𝑥 ) ) ) )
135 92 129 134 3bitr2d ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹𝑥 ) ) ) )
136 28 ssdifssd ( ( 𝜑𝑛 ∈ ℕ ) → ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ⊆ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) )
137 136 sselda ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) )
138 eqid ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) )
139 138 rnmpt ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) = { 𝑘 ∣ ∃ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) }
140 139 abeq2i ( 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) )
141 elfzelz ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) → 𝑚 ∈ ℤ )
142 141 adantl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → 𝑚 ∈ ℤ )
143 142 zcnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → 𝑚 ∈ ℂ )
144 15 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ )
145 144 nncnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ∈ ℂ )
146 144 nnne0d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ≠ 0 )
147 143 145 146 divcan1d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) = 𝑚 )
148 147 142 eqeltrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ∈ ℤ )
149 oveq1 ( 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) = ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) )
150 149 eleq1d ( 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ↔ ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) )
151 148 150 syl5ibrcom ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) )
152 151 rexlimdva ( ( 𝜑𝑛 ∈ ℕ ) → ( ∃ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) )
153 140 152 syl5bi ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) )
154 153 imp ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ )
155 137 154 syldan ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ )
156 155 adantr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ )
157 flbi ( ( ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ ∧ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) )
158 102 156 157 syl2anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) )
159 158 adantr ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘𝑛 ) → ( ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) )
160 neeq1 ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≠ 𝑛𝑘𝑛 ) )
161 160 biimparc ( ( 𝑘𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≠ 𝑛 )
162 iffalse ( ¬ ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑛 )
163 162 necon1ai ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≠ 𝑛 → ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 )
164 161 163 syl ( ( 𝑘𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 )
165 164 iftrued ( ( 𝑘𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = ( 𝑛 𝐽 𝑥 ) )
166 simpr ( ( 𝑘𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 )
167 165 166 eqtr3d ( ( 𝑘𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) = 𝑘 )
168 167 164 eqbrtrrd ( ( 𝑘𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → 𝑘𝑛 )
169 168 167 jca ( ( 𝑘𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → ( 𝑘𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) )
170 169 ex ( 𝑘𝑛 → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 → ( 𝑘𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) )
171 breq1 ( ( 𝑛 𝐽 𝑥 ) = 𝑘 → ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛𝑘𝑛 ) )
172 171 biimparc ( ( 𝑘𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 )
173 172 iftrued ( ( 𝑘𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = ( 𝑛 𝐽 𝑥 ) )
174 simpr ( ( 𝑘𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) = 𝑘 )
175 173 174 eqtrd ( ( 𝑘𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 )
176 170 175 impbid1 ( 𝑘𝑛 → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑘𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) )
177 176 adantl ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑘𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) )
178 eldifi ( 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) → 𝑘 ∈ ran ( 𝐺𝑛 ) )
179 nnre ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ )
180 179 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℝ )
181 77 180 86 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 )
182 13 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℕ0 )
183 182 nn0ge0d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ 𝑛 )
184 breq1 ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 ) )
185 breq1 ( 0 = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) → ( 0 ≤ 𝑛 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 ) )
186 184 185 ifboth ( ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ∧ 0 ≤ 𝑛 ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 )
187 181 183 186 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 )
188 42 187 eqbrtrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺𝑛 ) ‘ 𝑥 ) ≤ 𝑛 )
189 188 ralrimiva ( ( 𝜑𝑛 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ ( ( 𝐺𝑛 ) ‘ 𝑥 ) ≤ 𝑛 )
190 9 ffnd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐺𝑛 ) Fn ℝ )
191 breq1 ( 𝑘 = ( ( 𝐺𝑛 ) ‘ 𝑥 ) → ( 𝑘𝑛 ↔ ( ( 𝐺𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) )
192 191 ralrn ( ( 𝐺𝑛 ) Fn ℝ → ( ∀ 𝑘 ∈ ran ( 𝐺𝑛 ) 𝑘𝑛 ↔ ∀ 𝑥 ∈ ℝ ( ( 𝐺𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) )
193 190 192 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( ∀ 𝑘 ∈ ran ( 𝐺𝑛 ) 𝑘𝑛 ↔ ∀ 𝑥 ∈ ℝ ( ( 𝐺𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) )
194 189 193 mpbird ( ( 𝜑𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ ran ( 𝐺𝑛 ) 𝑘𝑛 )
195 194 r19.21bi ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ran ( 𝐺𝑛 ) ) → 𝑘𝑛 )
196 178 195 sylan2 ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → 𝑘𝑛 )
197 196 ad2antrr ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘𝑛 ) → 𝑘𝑛 )
198 197 biantrurd ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘𝑛 ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( 𝑘𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) )
199 126 eqeq1d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) = 𝑘 ) )
200 104 recnd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℂ )
201 28 20 sstrd ( ( 𝜑𝑛 ∈ ℕ ) → ran ( 𝐺𝑛 ) ⊆ ℝ )
202 201 ssdifssd ( ( 𝜑𝑛 ∈ ℕ ) → ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ⊆ ℝ )
203 202 sselda ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → 𝑘 ∈ ℝ )
204 203 adantr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ∈ ℝ )
205 204 recnd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ∈ ℂ )
206 100 nncnd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ∈ ℂ )
207 100 nnne0d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ≠ 0 )
208 200 205 206 207 divmul3d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) )
209 199 208 bitrd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) )
210 209 adantr ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘𝑛 ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) )
211 177 198 210 3bitr2d ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) )
212 ifnefalse ( 𝑘𝑛 → if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) = ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) )
213 212 eleq2d ( 𝑘𝑛 → ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ↔ 𝑥 ∈ ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) )
214 100 nnrecred ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 1 / ( 2 ↑ 𝑛 ) ) ∈ ℝ )
215 204 214 readdcld ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ )
216 215 rexrd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ* )
217 elioomnf ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ* → ( ( 𝐹𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ ( 𝐹𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) )
218 216 217 syl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ ( 𝐹𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) )
219 94 ad2antrr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) )
220 219 ffnd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝐹 Fn ℝ )
221 elpreima ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) )
222 220 221 syl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) )
223 116 222 mpbirand ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝐹𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) )
224 99 biantrurd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ ( 𝐹𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) )
225 218 223 224 3bitr4d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝐹𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) )
226 ltmul1 ( ( ( 𝐹𝑥 ) ∈ ℝ ∧ ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( ( 𝐹𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) ) )
227 99 215 101 105 226 syl112anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) ) )
228 214 recnd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 1 / ( 2 ↑ 𝑛 ) ) ∈ ℂ )
229 206 207 recid2d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 1 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) = 1 )
230 229 oveq2d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + ( ( 1 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ) = ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) )
231 205 206 228 230 joinlmuladdmuld ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) = ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) )
232 231 breq2d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) )
233 225 227 232 3bitrd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) )
234 213 233 sylan9bbr ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘𝑛 ) → ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ↔ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) )
235 lemul1 ( ( 𝑘 ∈ ℝ ∧ ( 𝐹𝑥 ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( 𝑘 ≤ ( 𝐹𝑥 ) ↔ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) )
236 204 99 101 105 235 syl112anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 ≤ ( 𝐹𝑥 ) ↔ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) )
237 236 adantr ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘𝑛 ) → ( 𝑘 ≤ ( 𝐹𝑥 ) ↔ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) )
238 234 237 anbi12d ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘𝑛 ) → ( ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹𝑥 ) ) ↔ ( ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ∧ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) )
239 238 biancomd ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘𝑛 ) → ( ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹𝑥 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) )
240 159 211 239 3bitr4d ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹𝑥 ) ) ) )
241 135 240 pm2.61dane ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹𝑥 ) ) ) )
242 eldif ( 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ ¬ 𝑥 ∈ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) )
243 204 rexrd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ∈ ℝ* )
244 elioomnf ( 𝑘 ∈ ℝ* → ( ( 𝐹𝑥 ) ∈ ( -∞ (,) 𝑘 ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ ( 𝐹𝑥 ) < 𝑘 ) ) )
245 243 244 syl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑥 ) ∈ ( -∞ (,) 𝑘 ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ ( 𝐹𝑥 ) < 𝑘 ) ) )
246 elpreima ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ∈ ( -∞ (,) 𝑘 ) ) ) )
247 220 246 syl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ∈ ( -∞ (,) 𝑘 ) ) ) )
248 116 247 mpbirand ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝐹𝑥 ) ∈ ( -∞ (,) 𝑘 ) ) )
249 99 biantrurd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑥 ) < 𝑘 ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ ( 𝐹𝑥 ) < 𝑘 ) ) )
250 245 248 249 3bitr4d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝐹𝑥 ) < 𝑘 ) )
251 250 notbid ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ∈ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ¬ ( 𝐹𝑥 ) < 𝑘 ) )
252 204 99 lenltd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 ≤ ( 𝐹𝑥 ) ↔ ¬ ( 𝐹𝑥 ) < 𝑘 ) )
253 251 252 bitr4d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ∈ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ 𝑘 ≤ ( 𝐹𝑥 ) ) )
254 253 anbi2d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ ¬ 𝑥 ∈ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹𝑥 ) ) ) )
255 242 254 syl5bb ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹𝑥 ) ) ) )
256 241 255 bitr4d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) )
257 54 256 sylan9bbr ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) )
258 257 pm5.32da ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) )
259 44 52 258 3bitrd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺𝑛 ) ‘ 𝑥 ) = 𝑘 ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) )
260 259 pm5.32da ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ℝ ∧ ( ( 𝐺𝑛 ) ‘ 𝑥 ) = 𝑘 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) )
261 21 adantr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( 𝐺𝑛 ) : ℝ ⟶ ℝ )
262 261 ffnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( 𝐺𝑛 ) Fn ℝ )
263 fniniseg ( ( 𝐺𝑛 ) Fn ℝ → ( 𝑥 ∈ ( ( 𝐺𝑛 ) “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( 𝐺𝑛 ) ‘ 𝑥 ) = 𝑘 ) ) )
264 262 263 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ( 𝐺𝑛 ) “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( 𝐺𝑛 ) ‘ 𝑥 ) = 𝑘 ) ) )
265 elin ( 𝑥 ∈ ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) )
266 179 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → 𝑛 ∈ ℝ )
267 266 renegcld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → - 𝑛 ∈ ℝ )
268 iccmbl ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( - 𝑛 [,] 𝑛 ) ∈ dom vol )
269 267 266 268 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( - 𝑛 [,] 𝑛 ) ∈ dom vol )
270 mblss ( ( - 𝑛 [,] 𝑛 ) ∈ dom vol → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ )
271 269 270 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ )
272 271 sseld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → 𝑥 ∈ ℝ ) )
273 272 adantrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) → 𝑥 ∈ ℝ ) )
274 273 pm4.71rd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) )
275 265 274 syl5bb ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) )
276 260 264 275 3bitr4d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ( 𝐺𝑛 ) “ { 𝑘 } ) ↔ 𝑥 ∈ ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) )
277 276 eqrdv ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( ( 𝐺𝑛 ) “ { 𝑘 } ) = ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) )
278 rembl ℝ ∈ dom vol
279 fss ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ )
280 2 58 279 sylancl ( 𝜑𝐹 : ℝ ⟶ ℝ )
281 mbfima ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ∈ dom vol )
282 1 280 281 syl2anc ( 𝜑 → ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ∈ dom vol )
283 ifcl ( ( ℝ ∈ dom vol ∧ ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ∈ dom vol ) → if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∈ dom vol )
284 278 282 283 sylancr ( 𝜑 → if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∈ dom vol )
285 mbfima ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ∈ dom vol )
286 1 280 285 syl2anc ( 𝜑 → ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ∈ dom vol )
287 difmbl ( ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∈ dom vol ∧ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ∈ dom vol ) → ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol )
288 284 286 287 syl2anc ( 𝜑 → ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol )
289 288 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol )
290 inmbl ( ( ( - 𝑛 [,] 𝑛 ) ∈ dom vol ∧ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol ) → ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ∈ dom vol )
291 269 289 290 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ∈ dom vol )
292 277 291 eqeltrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( ( 𝐺𝑛 ) “ { 𝑘 } ) ∈ dom vol )
293 mblvol ( ( ( 𝐺𝑛 ) “ { 𝑘 } ) ∈ dom vol → ( vol ‘ ( ( 𝐺𝑛 ) “ { 𝑘 } ) ) = ( vol* ‘ ( ( 𝐺𝑛 ) “ { 𝑘 } ) ) )
294 292 293 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( ( 𝐺𝑛 ) “ { 𝑘 } ) ) = ( vol* ‘ ( ( 𝐺𝑛 ) “ { 𝑘 } ) ) )
295 190 adantr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( 𝐺𝑛 ) Fn ℝ )
296 295 263 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ( 𝐺𝑛 ) “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( 𝐺𝑛 ) ‘ 𝑥 ) = 𝑘 ) ) )
297 77 180 ifcld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ ℝ )
298 0re 0 ∈ ℝ
299 ifcl ( ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ ℝ )
300 297 298 299 sylancl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ ℝ )
301 39 fvmpt2 ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) )
302 33 300 301 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) )
303 32 302 eqtrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) )
304 303 adantlr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) )
305 304 eqeq1d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺𝑛 ) ‘ 𝑥 ) = 𝑘 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) )
306 305 51 sylbid ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺𝑛 ) ‘ 𝑥 ) = 𝑘𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) )
307 306 expimpd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ℝ ∧ ( ( 𝐺𝑛 ) ‘ 𝑥 ) = 𝑘 ) → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) )
308 296 307 sylbid ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ( 𝐺𝑛 ) “ { 𝑘 } ) → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) )
309 308 ssrdv ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( ( 𝐺𝑛 ) “ { 𝑘 } ) ⊆ ( - 𝑛 [,] 𝑛 ) )
310 iccssre ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ )
311 267 266 310 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ )
312 mblvol ( ( - 𝑛 [,] 𝑛 ) ∈ dom vol → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) = ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) )
313 269 312 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) = ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) )
314 iccvolcl ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ )
315 267 266 314 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ )
316 313 315 eqeltrrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ )
317 ovolsscl ( ( ( ( 𝐺𝑛 ) “ { 𝑘 } ) ⊆ ( - 𝑛 [,] 𝑛 ) ∧ ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐺𝑛 ) “ { 𝑘 } ) ) ∈ ℝ )
318 309 311 316 317 syl3anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( vol* ‘ ( ( 𝐺𝑛 ) “ { 𝑘 } ) ) ∈ ℝ )
319 294 318 eqeltrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( ( 𝐺𝑛 ) “ { 𝑘 } ) ) ∈ ℝ )
320 21 29 292 319 i1fd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐺𝑛 ) ∈ dom ∫1 )
321 320 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐺𝑛 ) ∈ dom ∫1 )
322 ffnfv ( 𝐺 : ℕ ⟶ dom ∫1 ↔ ( 𝐺 Fn ℕ ∧ ∀ 𝑛 ∈ ℕ ( 𝐺𝑛 ) ∈ dom ∫1 ) )
323 8 321 322 sylanbrc ( 𝜑𝐺 : ℕ ⟶ dom ∫1 )