Metamath Proof Explorer


Theorem areacirclem4

Description: Endpoint-inclusive continuity of antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 31-Aug-2017) (Revised by Brendan Leahy, 11-Jul-2018)

Ref Expression
Assertion areacirclem4 R+tRRR2arcsintR+tR1tR2:RRcn

Proof

Step Hyp Ref Expression
1 rpcn R+R
2 1 sqcld R+R2
3 rpre R+R
4 3 renegcld R+R
5 iccssre RRRR
6 4 3 5 syl2anc R+RR
7 ax-resscn
8 6 7 sstrdi R+RR
9 ssid
10 9 a1i R+
11 cncfmptc R2RRtRRR2:RRcn
12 2 8 10 11 syl3anc R+tRRR2:RRcn
13 eqid TopOpenfld=TopOpenfld
14 13 addcn +TopOpenfld×tTopOpenfldCnTopOpenfld
15 14 a1i R++TopOpenfld×tTopOpenfldCnTopOpenfld
16 8 sselda R+tRRt
17 1 adantr R+tRRR
18 rpne0 R+R0
19 18 adantr R+tRRR0
20 16 17 19 divcld R+tRRtR
21 asinval tRarcsintR=ilogitR+1tR2
22 20 21 syl R+tRRarcsintR=ilogitR+1tR2
23 ax-icn i
24 23 a1i R+tRRi
25 24 20 mulcld R+tRRitR
26 1cnd R+tRR1
27 20 sqcld R+tRRtR2
28 26 27 subcld R+tRR1tR2
29 28 sqrtcld R+tRR1tR2
30 25 29 addcld R+tRRitR+1tR2
31 0lt1 0<1
32 simp3 R+tRRt=0t=0
33 32 oveq1d R+tRRt=0tR=0R
34 1 18 div0d R+0R=0
35 34 3ad2ant1 R+tRRt=00R=0
36 33 35 eqtrd R+tRRt=0tR=0
37 36 oveq2d R+tRRt=0itR=i0
38 it0e0 i0=0
39 37 38 eqtrdi R+tRRt=0itR=0
40 36 oveq1d R+tRRt=0tR2=02
41 40 oveq2d R+tRRt=01tR2=102
42 41 fveq2d R+tRRt=01tR2=102
43 sq0 02=0
44 43 oveq2i 102=10
45 1m0e1 10=1
46 44 45 eqtri 102=1
47 46 fveq2i 102=1
48 sqrt1 1=1
49 47 48 eqtri 102=1
50 42 49 eqtrdi R+tRRt=01tR2=1
51 39 50 oveq12d R+tRRt=0itR+1tR2=0+1
52 0p1e1 0+1=1
53 51 52 eqtrdi R+tRRt=0itR+1tR2=1
54 53 breq2d R+tRRt=00<itR+1tR20<1
55 0red R+tRRt=00
56 1red R+tRRt=01
57 53 56 eqeltrd R+tRRt=0itR+1tR2
58 55 57 ltnled R+tRRt=00<itR+1tR2¬itR+1tR20
59 54 58 bitr3d R+tRRt=00<1¬itR+1tR20
60 31 59 mpbii R+tRRt=0¬itR+1tR20
61 60 3expa R+tRRt=0¬itR+1tR20
62 61 olcd R+tRRt=0¬itR+1tR2¬itR+1tR20
63 inelr ¬i
64 25 29 pncand R+tRRitR+1tR2-1tR2=itR
65 64 3adant3 R+tRRt0itR+1tR2-1tR2=itR
66 65 oveq1d R+tRRt0itR+1tR2-1tR2Rt=itRRt
67 23 a1i R+tRRt0i
68 20 3adant3 R+tRRt0tR
69 1 3ad2ant1 R+tRRt0R
70 16 3adant3 R+tRRt0t
71 simp3 R+tRRt0t0
72 69 70 71 divcld R+tRRt0Rt
73 67 68 72 mulassd R+tRRt0itRRt=itRRt
74 66 73 eqtrd R+tRRt0itR+1tR2-1tR2Rt=itRRt
75 18 3ad2ant1 R+tRRt0R0
76 70 69 71 75 divcan6d R+tRRt0tRRt=1
77 76 oveq2d R+tRRt0itRRt=i1
78 67 mulridd R+tRRt0i1=i
79 74 77 78 3eqtrrd R+tRRt0i=itR+1tR2-1tR2Rt
80 79 adantr R+tRRt0itR+1tR2i=itR+1tR2-1tR2Rt
81 simpr R+tRRt0itR+1tR2itR+1tR2
82 1red R+tRR1
83 6 sselda R+tRRt
84 3 adantr R+tRRR
85 83 84 19 redivcld R+tRRtR
86 85 resqcld R+tRRtR2
87 82 86 resubcld R+tRR1tR2
88 elicc2 RRtRRtRttR
89 4 3 88 syl2anc R+tRRtRttR
90 1red R+t1
91 simpr R+tt
92 3 adantr R+tR
93 18 adantr R+tR0
94 91 92 93 redivcld R+ttR
95 94 resqcld R+ttR2
96 90 95 subge0d R+t01tR2tR21
97 recn tt
98 97 adantl R+tt
99 1 adantr R+tR
100 98 99 93 sqdivd R+ttR2=t2R2
101 100 breq1d R+ttR21t2R21
102 resqcl tt2
103 102 adantl R+tt2
104 3 resqcld R+R2
105 rpgt0 R+0<R
106 0red R+0
107 0le0 00
108 107 a1i R+00
109 rpge0 R+0R
110 106 3 108 109 lt2sqd R+0<R02<R2
111 43 a1i R+02=0
112 111 breq1d R+02<R20<R2
113 110 112 bitrd R+0<R0<R2
114 105 113 mpbid R+0<R2
115 104 114 elrpd R+R2+
116 115 adantr R+tR2+
117 103 90 116 ledivmuld R+tt2R21t2R21
118 absresq tt2=t2
119 118 eqcomd tt2=t2
120 2 mulridd R+R21=R2
121 119 120 breqan12rd R+tt2R21t2R2
122 97 abscld tt
123 122 adantl R+tt
124 97 absge0d t0t
125 124 adantl R+t0t
126 109 adantr R+t0R
127 123 92 125 126 le2sqd R+ttRt2R2
128 91 92 absled R+ttRRttR
129 121 127 128 3bitr2d R+tt2R21RttR
130 117 129 bitrd R+tt2R21RttR
131 96 101 130 3bitrrd R+tRttR01tR2
132 131 biimpd R+tRttR01tR2
133 132 exp4b R+tRttR01tR2
134 133 3impd R+tRttR01tR2
135 89 134 sylbid R+tRR01tR2
136 135 imp R+tRR01tR2
137 87 136 resqrtcld R+tRR1tR2
138 137 3adant3 R+tRRt01tR2
139 138 adantr R+tRRt0itR+1tR21tR2
140 81 139 resubcld R+tRRt0itR+1tR2itR+1tR2-1tR2
141 3 3ad2ant1 R+tRRt0R
142 83 3adant3 R+tRRt0t
143 141 142 71 redivcld R+tRRt0Rt
144 143 adantr R+tRRt0itR+1tR2Rt
145 140 144 remulcld R+tRRt0itR+1tR2itR+1tR2-1tR2Rt
146 80 145 eqeltrd R+tRRt0itR+1tR2i
147 146 ex R+tRRt0itR+1tR2i
148 147 3expa R+tRRt0itR+1tR2i
149 63 148 mtoi R+tRRt0¬itR+1tR2
150 149 orcd R+tRRt0¬itR+1tR2¬itR+1tR20
151 62 150 pm2.61dane R+tRR¬itR+1tR2¬itR+1tR20
152 ianor ¬itR+1tR2itR+1tR20¬itR+1tR2¬itR+1tR20
153 151 152 sylibr R+tRR¬itR+1tR2itR+1tR20
154 mnfxr −∞*
155 0re 0
156 elioc2 −∞*0itR+1tR2−∞0itR+1tR2−∞<itR+1tR2itR+1tR20
157 154 155 156 mp2an itR+1tR2−∞0itR+1tR2−∞<itR+1tR2itR+1tR20
158 3simpb itR+1tR2−∞<itR+1tR2itR+1tR20itR+1tR2itR+1tR20
159 157 158 sylbi itR+1tR2−∞0itR+1tR2itR+1tR20
160 153 159 nsyl R+tRR¬itR+1tR2−∞0
161 30 160 eldifd R+tRRitR+1tR2−∞0
162 fvres itR+1tR2−∞0log−∞0itR+1tR2=logitR+1tR2
163 161 162 syl R+tRRlog−∞0itR+1tR2=logitR+1tR2
164 163 oveq2d R+tRRilog−∞0itR+1tR2=ilogitR+1tR2
165 22 164 eqtr4d R+tRRarcsintR=ilog−∞0itR+1tR2
166 165 mpteq2dva R+tRRarcsintR=tRRilog−∞0itR+1tR2
167 negicn i
168 167 a1i R+i
169 cncfmptc iRRtRRi:RRcn
170 168 8 10 169 syl3anc R+tRRi:RRcn
171 13 cnfldtopon TopOpenfldTopOn
172 171 a1i R+TopOpenfldTopOn
173 resttopon TopOpenfldTopOnRRTopOpenfld𝑡RRTopOnRR
174 172 8 173 syl2anc R+TopOpenfld𝑡RRTopOnRR
175 161 fmpttd R+tRRitR+1tR2:RR−∞0
176 difssd R+−∞0
177 16 17 19 divrec2d R+tRRtR=1Rt
178 177 oveq2d R+tRRitR=i1Rt
179 1 18 reccld R+1R
180 179 adantr R+tRR1R
181 24 180 16 mulassd R+tRRi1Rt=i1Rt
182 178 181 eqtr4d R+tRRitR=i1Rt
183 182 mpteq2dva R+tRRitR=tRRi1Rt
184 23 a1i R+i
185 184 179 mulcld R+i1R
186 cncfmptc i1RRRtRRi1R:RRcn
187 185 8 10 186 syl3anc R+tRRi1R:RRcn
188 cncfmptid RRtRRt:RRcn
189 8 10 188 syl2anc R+tRRt:RRcn
190 187 189 mulcncf R+tRRi1Rt:RRcn
191 183 190 eqeltrd R+tRRitR:RRcn
192 17 29 mulcld R+tRRR1tR2
193 192 17 19 divrec2d R+tRRR1tR2R=1RR1tR2
194 29 17 19 divcan3d R+tRRR1tR2R=1tR2
195 104 adantr R+tRRR2
196 3 sqge0d R+0R2
197 196 adantr R+tRR0R2
198 195 197 87 136 sqrtmuld R+tRRR21tR2=R21tR2
199 2 adantr R+tRRR2
200 199 26 27 subdid R+tRRR21tR2=R21R2tR2
201 199 mulridd R+tRRR21=R2
202 16 17 19 sqdivd R+tRRtR2=t2R2
203 202 oveq2d R+tRRR2tR2=R2t2R2
204 16 sqcld R+tRRt2
205 sqne0 RR20R0
206 1 205 syl R+R20R0
207 18 206 mpbird R+R20
208 207 adantr R+tRRR20
209 204 199 208 divcan2d R+tRRR2t2R2=t2
210 203 209 eqtrd R+tRRR2tR2=t2
211 201 210 oveq12d R+tRRR21R2tR2=R2t2
212 200 211 eqtrd R+tRRR21tR2=R2t2
213 212 fveq2d R+tRRR21tR2=R2t2
214 109 adantr R+tRR0R
215 84 214 sqrtsqd R+tRRR2=R
216 215 oveq1d R+tRRR21tR2=R1tR2
217 198 213 216 3eqtr3rd R+tRRR1tR2=R2t2
218 217 oveq2d R+tRR1RR1tR2=1RR2t2
219 193 194 218 3eqtr3d R+tRR1tR2=1RR2t2
220 219 mpteq2dva R+tRR1tR2=tRR1RR2t2
221 cncfmptc 1RRRtRR1R:RRcn
222 179 8 10 221 syl3anc R+tRR1R:RRcn
223 areacirclem2 R0RtRRR2t2:RRcn
224 3 109 223 syl2anc R+tRRR2t2:RRcn
225 222 224 mulcncf R+tRR1RR2t2:RRcn
226 220 225 eqeltrd R+tRR1tR2:RRcn
227 13 15 191 226 cncfmpt2f R+tRRitR+1tR2:RRcn
228 cncfcdm −∞0tRRitR+1tR2:RRcntRRitR+1tR2:RRcn−∞0tRRitR+1tR2:RR−∞0
229 176 227 228 syl2anc R+tRRitR+1tR2:RRcn−∞0tRRitR+1tR2:RR−∞0
230 175 229 mpbird R+tRRitR+1tR2:RRcn−∞0
231 eqid TopOpenfld𝑡RR=TopOpenfld𝑡RR
232 eqid TopOpenfld𝑡−∞0=TopOpenfld𝑡−∞0
233 13 231 232 cncfcn RR−∞0RRcn−∞0=TopOpenfld𝑡RRCnTopOpenfld𝑡−∞0
234 8 176 233 syl2anc R+RRcn−∞0=TopOpenfld𝑡RRCnTopOpenfld𝑡−∞0
235 230 234 eleqtrd R+tRRitR+1tR2TopOpenfld𝑡RRCnTopOpenfld𝑡−∞0
236 eqid −∞0=−∞0
237 236 logcn log−∞0:−∞0cn
238 difss −∞0
239 eqid TopOpenfld𝑡=TopOpenfld𝑡
240 13 232 239 cncfcn −∞0−∞0cn=TopOpenfld𝑡−∞0CnTopOpenfld𝑡
241 238 9 240 mp2an −∞0cn=TopOpenfld𝑡−∞0CnTopOpenfld𝑡
242 237 241 eleqtri log−∞0TopOpenfld𝑡−∞0CnTopOpenfld𝑡
243 242 a1i R+log−∞0TopOpenfld𝑡−∞0CnTopOpenfld𝑡
244 174 235 243 cnmpt11f R+tRRlog−∞0itR+1tR2TopOpenfld𝑡RRCnTopOpenfld𝑡
245 13 231 239 cncfcn RRRRcn=TopOpenfld𝑡RRCnTopOpenfld𝑡
246 8 10 245 syl2anc R+RRcn=TopOpenfld𝑡RRCnTopOpenfld𝑡
247 244 246 eleqtrrd R+tRRlog−∞0itR+1tR2:RRcn
248 170 247 mulcncf R+tRRilog−∞0itR+1tR2:RRcn
249 166 248 eqeltrd R+tRRarcsintR:RRcn
250 219 oveq2d R+tRRtR1tR2=tR1RR2t2
251 199 204 subcld R+tRRR2t2
252 251 sqrtcld R+tRRR2t2
253 20 180 252 mulassd R+tRRtR1RR2t2=tR1RR2t2
254 16 17 19 divrecd R+tRRtR=t1R
255 254 oveq1d R+tRRtR1R=t1R1R
256 16 180 180 mulassd R+tRRt1R1R=t1R1R
257 255 256 eqtrd R+tRRtR1R=t1R1R
258 257 oveq1d R+tRRtR1RR2t2=t1R1RR2t2
259 250 253 258 3eqtr2d R+tRRtR1tR2=t1R1RR2t2
260 259 mpteq2dva R+tRRtR1tR2=tRRt1R1RR2t2
261 179 179 mulcld R+1R1R
262 cncfmptc 1R1RRRtRR1R1R:RRcn
263 261 8 10 262 syl3anc R+tRR1R1R:RRcn
264 189 263 mulcncf R+tRRt1R1R:RRcn
265 264 224 mulcncf R+tRRt1R1RR2t2:RRcn
266 260 265 eqeltrd R+tRRtR1tR2:RRcn
267 13 15 249 266 cncfmpt2f R+tRRarcsintR+tR1tR2:RRcn
268 12 267 mulcncf R+tRRR2arcsintR+tR1tR2:RRcn