Metamath Proof Explorer


Theorem dvcvx

Description: A real function with strictly increasing derivative is strictly convex. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses dvcvx.a φA
dvcvx.b φB
dvcvx.l φA<B
dvcvx.f φF:ABcn
dvcvx.d φFIsom<,<ABW
dvcvx.t φT01
dvcvx.c C=TA+1TB
Assertion dvcvx φFC<TFA+1TFB

Proof

Step Hyp Ref Expression
1 dvcvx.a φA
2 dvcvx.b φB
3 dvcvx.l φA<B
4 dvcvx.f φF:ABcn
5 dvcvx.d φFIsom<,<ABW
6 dvcvx.t φT01
7 dvcvx.c C=TA+1TB
8 elioore T01T
9 6 8 syl φT
10 9 1 remulcld φTA
11 1re 1
12 resubcl 1T1T
13 11 9 12 sylancr φ1T
14 13 2 remulcld φ1TB
15 10 14 readdcld φTA+1TB
16 7 15 eqeltrid φC
17 1cnd φ1
18 9 recnd φT
19 1 recnd φA
20 17 18 19 subdird φ1TA=1ATA
21 19 mullidd φ1A=A
22 21 oveq1d φ1ATA=ATA
23 20 22 eqtrd φ1TA=ATA
24 eliooord T010<TT<1
25 6 24 syl φ0<TT<1
26 25 simprd φT<1
27 posdif T1T<10<1T
28 9 11 27 sylancl φT<10<1T
29 26 28 mpbid φ0<1T
30 ltmul2 AB1T0<1TA<B1TA<1TB
31 1 2 13 29 30 syl112anc φA<B1TA<1TB
32 3 31 mpbid φ1TA<1TB
33 23 32 eqbrtrrd φATA<1TB
34 1 10 14 ltsubadd2d φATA<1TBA<TA+1TB
35 33 34 mpbid φA<TA+1TB
36 35 7 breqtrrdi φA<C
37 1 leidd φAA
38 2 recnd φB
39 17 18 38 subdird φ1TB=1BTB
40 38 mullidd φ1B=B
41 40 oveq1d φ1BTB=BTB
42 39 41 eqtrd φ1TB=BTB
43 9 2 remulcld φTB
44 25 simpld φ0<T
45 ltmul2 ABT0<TA<BTA<TB
46 1 2 9 44 45 syl112anc φA<BTA<TB
47 3 46 mpbid φTA<TB
48 10 43 2 47 ltsub2dd φBTB<BTA
49 42 48 eqbrtrd φ1TB<BTA
50 10 14 2 ltaddsub2d φTA+1TB<B1TB<BTA
51 49 50 mpbird φTA+1TB<B
52 7 51 eqbrtrid φC<B
53 16 2 52 ltled φCB
54 iccss ABAACBACAB
55 1 2 37 53 54 syl22anc φACAB
56 rescncf ACABF:ABcnFAC:ACcn
57 55 4 56 sylc φFAC:ACcn
58 ax-resscn
59 58 a1i φ
60 cncff F:ABcnF:AB
61 4 60 syl φF:AB
62 fss F:ABF:AB
63 61 58 62 sylancl φF:AB
64 iccssre ABAB
65 1 2 64 syl2anc φAB
66 iccssre ACAC
67 1 16 66 syl2anc φAC
68 eqid TopOpenfld=TopOpenfld
69 68 tgioo2 topGenran.=TopOpenfld𝑡
70 68 69 dvres F:ABABACDFAC=FinttopGenran.AC
71 59 63 65 67 70 syl22anc φDFAC=FinttopGenran.AC
72 iccntr ACinttopGenran.AC=AC
73 1 16 72 syl2anc φinttopGenran.AC=AC
74 73 reseq2d φFinttopGenran.AC=FAC
75 71 74 eqtrd φDFAC=FAC
76 75 dmeqd φdomFAC=domFAC
77 dmres domFAC=ACdomF
78 2 rexrd φB*
79 iooss2 B*CBACAB
80 78 53 79 syl2anc φACAB
81 isof1o FIsom<,<ABWF:AB1-1 ontoW
82 f1odm F:AB1-1 ontoWdomF=AB
83 5 81 82 3syl φdomF=AB
84 80 83 sseqtrrd φACdomF
85 df-ss ACdomFACdomF=AC
86 84 85 sylib φACdomF=AC
87 77 86 eqtrid φdomFAC=AC
88 76 87 eqtrd φdomFAC=AC
89 1 16 36 57 88 mvth φxACFACx=FACCFACACA
90 1 16 36 ltled φAC
91 2 leidd φBB
92 iccss ABACBBCBAB
93 1 2 90 91 92 syl22anc φCBAB
94 rescncf CBABF:ABcnFCB:CBcn
95 93 4 94 sylc φFCB:CBcn
96 iccssre CBCB
97 16 2 96 syl2anc φCB
98 68 69 dvres F:ABABCBDFCB=FinttopGenran.CB
99 59 63 65 97 98 syl22anc φDFCB=FinttopGenran.CB
100 iccntr CBinttopGenran.CB=CB
101 16 2 100 syl2anc φinttopGenran.CB=CB
102 101 reseq2d φFinttopGenran.CB=FCB
103 99 102 eqtrd φDFCB=FCB
104 103 dmeqd φdomFCB=domFCB
105 dmres domFCB=CBdomF
106 1 rexrd φA*
107 iooss1 A*ACCBAB
108 106 90 107 syl2anc φCBAB
109 108 83 sseqtrrd φCBdomF
110 df-ss CBdomFCBdomF=CB
111 109 110 sylib φCBdomF=CB
112 105 111 eqtrid φdomFCB=CB
113 104 112 eqtrd φdomFCB=CB
114 16 2 52 95 113 mvth φyCBFCBy=FCBBFCBCBC
115 reeanv xACyCBFACx=FACCFACACAFCBy=FCBBFCBCBCxACFACx=FACCFACACAyCBFCBy=FCBBFCBCBC
116 75 fveq1d φFACx=FACx
117 fvres xACFACx=Fx
118 117 adantr xACyCBFACx=Fx
119 116 118 sylan9eq φxACyCBFACx=Fx
120 16 rexrd φC*
121 ubicc2 A*C*ACCAC
122 106 120 90 121 syl3anc φCAC
123 122 fvresd φFACC=FC
124 lbicc2 A*C*ACAAC
125 106 120 90 124 syl3anc φAAC
126 125 fvresd φFACA=FA
127 123 126 oveq12d φFACCFACA=FCFA
128 127 oveq1d φFACCFACACA=FCFACA
129 128 adantr φxACyCBFACCFACACA=FCFACA
130 119 129 eqeq12d φxACyCBFACx=FACCFACACAFx=FCFACA
131 103 fveq1d φFCBy=FCBy
132 fvres yCBFCBy=Fy
133 132 adantl xACyCBFCBy=Fy
134 131 133 sylan9eq φxACyCBFCBy=Fy
135 ubicc2 C*B*CBBCB
136 120 78 53 135 syl3anc φBCB
137 136 fvresd φFCBB=FB
138 lbicc2 C*B*CBCCB
139 120 78 53 138 syl3anc φCCB
140 139 fvresd φFCBC=FC
141 137 140 oveq12d φFCBBFCBC=FBFC
142 141 oveq1d φFCBBFCBCBC=FBFCBC
143 142 adantr φxACyCBFCBBFCBCBC=FBFCBC
144 134 143 eqeq12d φxACyCBFCBy=FCBBFCBCBCFy=FBFCBC
145 130 144 anbi12d φxACyCBFACx=FACCFACACAFCBy=FCBBFCBCBCFx=FCFACAFy=FBFCBC
146 elioore xACx
147 146 ad2antrl φxACyCBx
148 16 adantr φxACyCBC
149 elioore yCBy
150 149 ad2antll φxACyCBy
151 eliooord xACA<xx<C
152 151 ad2antrl φxACyCBA<xx<C
153 152 simprd φxACyCBx<C
154 eliooord yCBC<yy<B
155 154 ad2antll φxACyCBC<yy<B
156 155 simpld φxACyCBC<y
157 147 148 150 153 156 lttrd φxACyCBx<y
158 5 adantr φxACyCBFIsom<,<ABW
159 80 sselda φxACxAB
160 159 adantrr φxACyCBxAB
161 108 sselda φyCByAB
162 161 adantrl φxACyCByAB
163 isorel FIsom<,<ABWxAByABx<yFx<Fy
164 158 160 162 163 syl12anc φxACyCBx<yFx<Fy
165 157 164 mpbid φxACyCBFx<Fy
166 breq12 Fx=FCFACAFy=FBFCBCFx<FyFCFACA<FBFCBC
167 165 166 syl5ibcom φxACyCBFx=FCFACAFy=FBFCBCFCFACA<FBFCBC
168 55 122 sseldd φCAB
169 61 168 ffvelcdmd φFC
170 55 125 sseldd φAAB
171 61 170 ffvelcdmd φFA
172 169 171 resubcld φFCFA
173 29 gt0ne0d φ1T0
174 172 13 173 redivcld φFCFA1T
175 93 136 sseldd φBAB
176 61 175 ffvelcdmd φFB
177 176 169 resubcld φFBFC
178 44 gt0ne0d φT0
179 177 9 178 redivcld φFBFCT
180 2 1 resubcld φBA
181 1 2 posdifd φA<B0<BA
182 3 181 mpbid φ0<BA
183 ltdiv1 FCFA1TFBFCTBA0<BAFCFA1T<FBFCTFCFA1TBA<FBFCTBA
184 174 179 180 182 183 syl112anc φFCFA1T<FBFCTFCFA1TBA<FBFCTBA
185 172 recnd φFCFA
186 185 18 mulcomd φFCFAT=TFCFA
187 169 recnd φFC
188 171 recnd φFA
189 18 187 188 subdid φTFCFA=TFCTFA
190 186 189 eqtrd φFCFAT=TFCTFA
191 177 recnd φFBFC
192 13 recnd φ1T
193 191 192 mulcomd φFBFC1T=1TFBFC
194 176 recnd φFB
195 192 194 187 subdid φ1TFBFC=1TFB1TFC
196 193 195 eqtrd φFBFC1T=1TFB1TFC
197 190 196 breq12d φFCFAT<FBFC1TTFCTFA<1TFB1TFC
198 9 44 jca φT0<T
199 13 29 jca φ1T0<1T
200 lt2mul2div FCFAT0<TFBFC1T0<1TFCFAT<FBFC1TFCFA1T<FBFCT
201 172 198 177 199 200 syl22anc φFCFAT<FBFC1TFCFA1T<FBFCT
202 9 169 remulcld φTFC
203 202 recnd φTFC
204 13 169 remulcld φ1TFC
205 204 recnd φ1TFC
206 9 171 remulcld φTFA
207 206 recnd φTFA
208 203 205 207 addsubd φTFC+1TFC-TFA=TFC-TFA+1TFC
209 ax-1cn 1
210 pncan3 T1T+1-T=1
211 18 209 210 sylancl φT+1-T=1
212 211 oveq1d φT+1-TFC=1FC
213 18 192 187 adddird φT+1-TFC=TFC+1TFC
214 187 mullidd φ1FC=FC
215 212 213 214 3eqtr3d φTFC+1TFC=FC
216 215 oveq1d φTFC+1TFC-TFA=FCTFA
217 208 216 eqtr3d φTFC-TFA+1TFC=FCTFA
218 217 breq1d φTFC-TFA+1TFC<1TFBFCTFA<1TFB
219 202 206 resubcld φTFCTFA
220 13 176 remulcld φ1TFB
221 219 204 220 ltaddsubd φTFC-TFA+1TFC<1TFBTFCTFA<1TFB1TFC
222 169 206 220 ltsubadd2d φFCTFA<1TFBFC<TFA+1TFB
223 218 221 222 3bitr3d φTFCTFA<1TFB1TFCFC<TFA+1TFB
224 197 201 223 3bitr3d φFCFA1T<FBFCTFC<TFA+1TFB
225 180 recnd φBA
226 182 gt0ne0d φBA0
227 185 192 225 173 226 divdiv1d φFCFA1TBA=FCFA1TBA
228 23 oveq2d φ1TB1TA=1TBATA
229 14 recnd φ1TB
230 10 recnd φTA
231 229 19 230 subsub3d φ1TBATA=1TB+TA-A
232 228 231 eqtrd φ1TB1TA=1TB+TA-A
233 192 38 19 subdid φ1TBA=1TB1TA
234 230 229 addcomd φTA+1TB=1TB+TA
235 7 234 eqtrid φC=1TB+TA
236 235 oveq1d φCA=1TB+TA-A
237 232 233 236 3eqtr4d φ1TBA=CA
238 237 oveq2d φFCFA1TBA=FCFACA
239 227 238 eqtrd φFCFA1TBA=FCFACA
240 191 18 225 178 226 divdiv1d φFBFCTBA=FBFCTBA
241 38 229 230 subsub4d φB-1TB-TA=B1TB+TA
242 42 oveq2d φB1TB=BBTB
243 43 recnd φTB
244 38 243 nncand φBBTB=TB
245 242 244 eqtrd φB1TB=TB
246 245 oveq1d φB-1TB-TA=TBTA
247 241 246 eqtr3d φB1TB+TA=TBTA
248 235 oveq2d φBC=B1TB+TA
249 18 38 19 subdid φTBA=TBTA
250 247 248 249 3eqtr4d φBC=TBA
251 250 oveq2d φFBFCBC=FBFCTBA
252 240 251 eqtr4d φFBFCTBA=FBFCBC
253 239 252 breq12d φFCFA1TBA<FBFCTBAFCFACA<FBFCBC
254 184 224 253 3bitr3rd φFCFACA<FBFCBCFC<TFA+1TFB
255 254 adantr φxACyCBFCFACA<FBFCBCFC<TFA+1TFB
256 167 255 sylibd φxACyCBFx=FCFACAFy=FBFCBCFC<TFA+1TFB
257 145 256 sylbid φxACyCBFACx=FACCFACACAFCBy=FCBBFCBCBCFC<TFA+1TFB
258 257 rexlimdvva φxACyCBFACx=FACCFACACAFCBy=FCBBFCBCBCFC<TFA+1TFB
259 115 258 biimtrrid φxACFACx=FACCFACACAyCBFCBy=FCBBFCBCBCFC<TFA+1TFB
260 89 114 259 mp2and φFC<TFA+1TFB