Metamath Proof Explorer


Theorem dvivthlem1

Description: Lemma for dvivth . (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses dvivth.1 φMAB
dvivth.2 φNAB
dvivth.3 φF:ABcn
dvivth.4 φdomF=AB
dvivth.5 φM<N
dvivth.6 φCFNFM
dvivth.7 G=yABFyCy
Assertion dvivthlem1 φxMNFx=C

Proof

Step Hyp Ref Expression
1 dvivth.1 φMAB
2 dvivth.2 φNAB
3 dvivth.3 φF:ABcn
4 dvivth.4 φdomF=AB
5 dvivth.5 φM<N
6 dvivth.6 φCFNFM
7 dvivth.7 G=yABFyCy
8 ioossre AB
9 8 1 sselid φM
10 8 2 sselid φN
11 9 10 5 ltled φMN
12 cncff F:ABcnF:AB
13 3 12 syl φF:AB
14 13 ffvelcdmda φyABFy
15 dvfre F:ABABF:domF
16 13 8 15 sylancl φF:domF
17 2 4 eleqtrrd φNdomF
18 16 17 ffvelcdmd φFN
19 1 4 eleqtrrd φMdomF
20 16 19 ffvelcdmd φFM
21 iccssre FNFMFNFM
22 18 20 21 syl2anc φFNFM
23 22 6 sseldd φC
24 23 adantr φyABC
25 8 a1i φAB
26 25 sselda φyABy
27 24 26 remulcld φyABCy
28 14 27 resubcld φyABFyCy
29 28 7 fmptd φG:AB
30 iccssioo2 MABNABMNAB
31 1 2 30 syl2anc φMNAB
32 29 31 fssresd φGMN:MN
33 ax-resscn
34 33 a1i φ
35 fss G:ABG:AB
36 29 33 35 sylancl φG:AB
37 7 oveq2i DG=dyABFyCydy
38 reelprrecn
39 38 a1i φ
40 14 recnd φyABFy
41 4 feq2d φF:domFF:AB
42 16 41 mpbid φF:AB
43 42 ffvelcdmda φyABFy
44 13 feqmptd φF=yABFy
45 44 oveq2d φDF=dyABFydy
46 42 feqmptd φDF=yABFy
47 45 46 eqtr3d φdyABFydy=yABFy
48 27 recnd φyABCy
49 remulcl CyCy
50 23 49 sylan φyCy
51 50 recnd φyCy
52 23 adantr φyC
53 34 sselda φyy
54 1cnd φy1
55 39 dvmptid φdyydy=y1
56 23 recnd φC
57 39 53 54 55 56 dvmptcmul φdyCydy=yC1
58 56 mulridd φC1=C
59 58 mpteq2dv φyC1=yC
60 57 59 eqtrd φdyCydy=yC
61 eqid TopOpenfld=TopOpenfld
62 61 tgioo2 topGenran.=TopOpenfld𝑡
63 iooretop ABtopGenran.
64 63 a1i φABtopGenran.
65 39 51 52 60 25 62 61 64 dvmptres φdyABCydy=yABC
66 39 40 43 47 48 24 65 dvmptsub φdyABFyCydy=yABFyC
67 37 66 eqtrid φDG=yABFyC
68 67 dmeqd φdomG=domyABFyC
69 dmmptg yABFyCVdomyABFyC=AB
70 ovex FyCV
71 70 a1i yABFyCV
72 69 71 mprg domyABFyC=AB
73 68 72 eqtrdi φdomG=AB
74 dvcn G:ABABdomG=ABG:ABcn
75 34 36 25 73 74 syl31anc φG:ABcn
76 rescncf MNABG:ABcnGMN:MNcn
77 31 75 76 sylc φGMN:MNcn
78 cncfcdm GMN:MNcnGMN:MNcnGMN:MN
79 33 77 78 sylancr φGMN:MNcnGMN:MN
80 32 79 mpbird φGMN:MNcn
81 9 10 11 80 evthicc φxMNzMNGMNzGMNxxMNzMNGMNxGMNz
82 81 simpld φxMNzMNGMNzGMNx
83 fvres zMNGMNz=Gz
84 fvres xMNGMNx=Gx
85 83 84 breqan12rd xMNzMNGMNzGMNxGzGx
86 85 ralbidva xMNzMNGMNzGMNxzMNGzGx
87 86 adantl φxMNzMNGMNzGMNxzMNGzGx
88 ioossicc MNMN
89 ssralv MNMNzMNGzGxzMNGzGx
90 88 89 ax-mp zMNGzGxzMNGzGx
91 87 90 syl6bi φxMNzMNGMNzGMNxzMNGzGx
92 31 sselda φxMNxAB
93 42 ffvelcdmda φxABFx
94 92 93 syldan φxMNFx
95 94 recnd φxMNFx
96 95 adantr φxMNxMNzMNGzGxFx
97 56 ad2antrr φxMNxMNzMNGzGxC
98 67 fveq1d φGx=yABFyCx
99 98 adantr φxMNGx=yABFyCx
100 fveq2 y=xFy=Fx
101 100 oveq1d y=xFyC=FxC
102 eqid yABFyC=yABFyC
103 ovex FxCV
104 101 102 103 fvmpt xAByABFyCx=FxC
105 92 104 syl φxMNyABFyCx=FxC
106 99 105 eqtrd φxMNGx=FxC
107 106 adantr φxMNxMNzMNGzGxGx=FxC
108 29 ad2antrr φxMNxMNzMNGzGxG:AB
109 8 a1i φxMNxMNzMNGzGxAB
110 simprl φxMNxMNzMNGzGxxMN
111 88 31 sstrid φMNAB
112 111 ad2antrr φxMNxMNzMNGzGxMNAB
113 92 adantr φxMNxMNzMNGzGxxAB
114 73 ad2antrr φxMNxMNzMNGzGxdomG=AB
115 113 114 eleqtrrd φxMNxMNzMNGzGxxdomG
116 simprr φxMNxMNzMNGzGxzMNGzGx
117 fveq2 z=wGz=Gw
118 117 breq1d z=wGzGxGwGx
119 118 cbvralvw zMNGzGxwMNGwGx
120 116 119 sylib φxMNxMNzMNGzGxwMNGwGx
121 108 109 110 112 115 120 dvferm φxMNxMNzMNGzGxGx=0
122 107 121 eqtr3d φxMNxMNzMNGzGxFxC=0
123 96 97 122 subeq0d φxMNxMNzMNGzGxFx=C
124 123 exp32 φxMNxMNzMNGzGxFx=C
125 vex xV
126 125 elpr xMNx=Mx=N
127 106 adantr φxMNx=MzMNGzGxGx=FxC
128 29 ad2antrr φxMNx=MzMNGzGxG:AB
129 8 a1i φxMNx=MzMNGzGxAB
130 simprl φxMNx=MzMNGzGxx=M
131 eliooord MABA<MM<B
132 1 131 syl φA<MM<B
133 132 simpld φA<M
134 ne0i MABAB
135 ndmioo ¬A*B*AB=
136 135 necon1ai ABA*B*
137 1 134 136 3syl φA*B*
138 137 simpld φA*
139 10 rexrd φN*
140 elioo2 A*N*MANMA<MM<N
141 138 139 140 syl2anc φMANMA<MM<N
142 9 133 5 141 mpbir3and φMAN
143 142 ad2antrr φxMNx=MzMNGzGxMAN
144 130 143 eqeltrd φxMNx=MzMNGzGxxAN
145 137 simprd φB*
146 eliooord NABA<NN<B
147 2 146 syl φA<NN<B
148 147 simprd φN<B
149 139 145 148 xrltled φNB
150 iooss2 B*NBANAB
151 145 149 150 syl2anc φANAB
152 151 ad2antrr φxMNx=MzMNGzGxANAB
153 92 adantr φxMNx=MzMNGzGxxAB
154 73 ad2antrr φxMNx=MzMNGzGxdomG=AB
155 153 154 eleqtrrd φxMNx=MzMNGzGxxdomG
156 simprr φxMNx=MzMNGzGxzMNGzGx
157 156 119 sylib φxMNx=MzMNGzGxwMNGwGx
158 130 oveq1d φxMNx=MzMNGzGxxN=MN
159 158 raleqdv φxMNx=MzMNGzGxwxNGwGxwMNGwGx
160 157 159 mpbird φxMNx=MzMNGzGxwxNGwGx
161 128 129 144 152 155 160 dvferm1 φxMNx=MzMNGzGxGx0
162 127 161 eqbrtrrd φxMNx=MzMNGzGxFxC0
163 94 adantr φxMNx=MzMNGzGxFx
164 23 ad2antrr φxMNx=MzMNGzGxC
165 163 164 suble0d φxMNx=MzMNGzGxFxC0FxC
166 162 165 mpbid φxMNx=MzMNGzGxFxC
167 elicc2 FNFMCFNFMCFNCCFM
168 18 20 167 syl2anc φCFNFMCFNCCFM
169 6 168 mpbid φCFNCCFM
170 169 simp3d φCFM
171 170 ad2antrr φxMNx=MzMNGzGxCFM
172 130 fveq2d φxMNx=MzMNGzGxFx=FM
173 171 172 breqtrrd φxMNx=MzMNGzGxCFx
174 163 164 letri3d φxMNx=MzMNGzGxFx=CFxCCFx
175 166 173 174 mpbir2and φxMNx=MzMNGzGxFx=C
176 175 exp32 φxMNx=MzMNGzGxFx=C
177 simprl φxMNx=NzMNGzGxx=N
178 177 fveq2d φxMNx=NzMNGzGxFx=FN
179 169 simp2d φFNC
180 179 ad2antrr φxMNx=NzMNGzGxFNC
181 178 180 eqbrtrd φxMNx=NzMNGzGxFxC
182 29 ad2antrr φxMNx=NzMNGzGxG:AB
183 8 a1i φxMNx=NzMNGzGxAB
184 9 rexrd φM*
185 elioo2 M*B*NMBNM<NN<B
186 184 145 185 syl2anc φNMBNM<NN<B
187 10 5 148 186 mpbir3and φNMB
188 187 ad2antrr φxMNx=NzMNGzGxNMB
189 177 188 eqeltrd φxMNx=NzMNGzGxxMB
190 138 184 133 xrltled φAM
191 iooss1 A*AMMBAB
192 138 190 191 syl2anc φMBAB
193 192 ad2antrr φxMNx=NzMNGzGxMBAB
194 92 adantr φxMNx=NzMNGzGxxAB
195 73 ad2antrr φxMNx=NzMNGzGxdomG=AB
196 194 195 eleqtrrd φxMNx=NzMNGzGxxdomG
197 simprr φxMNx=NzMNGzGxzMNGzGx
198 197 119 sylib φxMNx=NzMNGzGxwMNGwGx
199 177 oveq2d φxMNx=NzMNGzGxMx=MN
200 199 raleqdv φxMNx=NzMNGzGxwMxGwGxwMNGwGx
201 198 200 mpbird φxMNx=NzMNGzGxwMxGwGx
202 182 183 189 193 196 201 dvferm2 φxMNx=NzMNGzGx0Gx
203 106 adantr φxMNx=NzMNGzGxGx=FxC
204 202 203 breqtrd φxMNx=NzMNGzGx0FxC
205 94 adantr φxMNx=NzMNGzGxFx
206 23 ad2antrr φxMNx=NzMNGzGxC
207 205 206 subge0d φxMNx=NzMNGzGx0FxCCFx
208 204 207 mpbid φxMNx=NzMNGzGxCFx
209 205 206 letri3d φxMNx=NzMNGzGxFx=CFxCCFx
210 181 208 209 mpbir2and φxMNx=NzMNGzGxFx=C
211 210 exp32 φxMNx=NzMNGzGxFx=C
212 176 211 jaod φxMNx=Mx=NzMNGzGxFx=C
213 126 212 biimtrid φxMNxMNzMNGzGxFx=C
214 elun xMNMNxMNxMN
215 prunioo M*N*MNMNMN=MN
216 184 139 11 215 syl3anc φMNMN=MN
217 216 eleq2d φxMNMNxMN
218 214 217 bitr3id φxMNxMNxMN
219 218 biimpar φxMNxMNxMN
220 124 213 219 mpjaod φxMNzMNGzGxFx=C
221 91 220 syld φxMNzMNGMNzGMNxFx=C
222 221 reximdva φxMNzMNGMNzGMNxxMNFx=C
223 82 222 mpd φxMNFx=C