Metamath Proof Explorer


Theorem nnfoctbdjlem

Description: There exists a mapping from NN onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses nnfoctbdjlem.a φA
nnfoctbdjlem.g φG:A1-1 ontoX
nnfoctbdjlem.dj φDisjyXy
nnfoctbdjlem.f F=nifn=1¬n1AGn1
Assertion nnfoctbdjlem φff:ontoXDisjnfn

Proof

Step Hyp Ref Expression
1 nnfoctbdjlem.a φA
2 nnfoctbdjlem.g φG:A1-1 ontoX
3 nnfoctbdjlem.dj φDisjyXy
4 nnfoctbdjlem.f F=nifn=1¬n1AGn1
5 iftrue n=1¬n1Aifn=1¬n1AGn1=
6 5 adantl nn=1¬n1Aifn=1¬n1AGn1=
7 0ex V
8 7 snid
9 elun2 X
10 8 9 ax-mp X
11 6 10 eqeltrdi nn=1¬n1Aifn=1¬n1AGn1X
12 11 adantll φnn=1¬n1Aifn=1¬n1AGn1X
13 iffalse ¬n=1¬n1Aifn=1¬n1AGn1=Gn1
14 13 adantl φn¬n=1¬n1Aifn=1¬n1AGn1=Gn1
15 f1of G:A1-1 ontoXG:AX
16 2 15 syl φG:AX
17 16 adantr φ¬n=1¬n1AG:AX
18 pm2.46 ¬n=1¬n1A¬¬n1A
19 18 notnotrd ¬n=1¬n1An1A
20 19 adantl φ¬n=1¬n1An1A
21 17 20 ffvelcdmd φ¬n=1¬n1AGn1X
22 21 adantlr φn¬n=1¬n1AGn1X
23 elun1 Gn1XGn1X
24 22 23 syl φn¬n=1¬n1AGn1X
25 14 24 eqeltrd φn¬n=1¬n1Aifn=1¬n1AGn1X
26 12 25 pm2.61dan φnifn=1¬n1AGn1X
27 26 4 fmptd φF:X
28 simpr φyXyX
29 f1ofo G:A1-1 ontoXG:AontoX
30 forn G:AontoXranG=X
31 2 29 30 3syl φranG=X
32 31 eqcomd φX=ranG
33 32 adantr φyXX=ranG
34 28 33 eleqtrd φyXyranG
35 16 ffnd φGFnA
36 fvelrnb GFnAyranGkAGk=y
37 35 36 syl φyranGkAGk=y
38 37 adantr φyXyranGkAGk=y
39 34 38 mpbid φyXkAGk=y
40 1 sselda φkAk
41 40 peano2nnd φkAk+1
42 41 3adant3 φkAGk=yk+1
43 4 a1i φkAF=nifn=1¬n1AGn1
44 1red φkAn=k+11
45 1red φkA1
46 40 nnrpd φkAk+
47 45 46 ltaddrp2d φkA1<k+1
48 47 adantr φkAn=k+11<k+1
49 id n=k+1n=k+1
50 49 eqcomd n=k+1k+1=n
51 50 adantl φkAn=k+1k+1=n
52 48 51 breqtrd φkAn=k+11<n
53 44 52 gtned φkAn=k+1n1
54 53 neneqd φkAn=k+1¬n=1
55 oveq1 n=k+1n1=k+1-1
56 40 nncnd φkAk
57 1cnd φkA1
58 56 57 pncand φkAk+1-1=k
59 55 58 sylan9eqr φkAn=k+1n1=k
60 simplr φkAn=k+1kA
61 59 60 eqeltrd φkAn=k+1n1A
62 61 notnotd φkAn=k+1¬¬n1A
63 ioran ¬n=1¬n1A¬n=1¬¬n1A
64 54 62 63 sylanbrc φkAn=k+1¬n=1¬n1A
65 64 iffalsed φkAn=k+1ifn=1¬n1AGn1=Gn1
66 59 fveq2d φkAn=k+1Gn1=Gk
67 65 66 eqtrd φkAn=k+1ifn=1¬n1AGn1=Gk
68 16 ffvelcdmda φkAGkX
69 43 67 41 68 fvmptd φkAFk+1=Gk
70 69 3adant3 φkAGk=yFk+1=Gk
71 simp3 φkAGk=yGk=y
72 70 71 eqtrd φkAGk=yFk+1=y
73 fveq2 m=k+1Fm=Fk+1
74 73 eqeq1d m=k+1Fm=yFk+1=y
75 74 rspcev k+1Fk+1=ymFm=y
76 42 72 75 syl2anc φkAGk=ymFm=y
77 76 3exp φkAGk=ymFm=y
78 77 adantr φyXkAGk=ymFm=y
79 78 rexlimdv φyXkAGk=ymFm=y
80 39 79 mpd φyXmFm=y
81 id Fm=yFm=y
82 81 eqcomd Fm=yy=Fm
83 82 a1i φyXmFm=yy=Fm
84 83 reximdva φyXmFm=ymy=Fm
85 80 84 mpd φyXmy=Fm
86 85 adantlr φyXyXmy=Fm
87 simpll φyX¬yXφ
88 elunnel1 yX¬yXy
89 elsni yy=
90 88 89 syl yX¬yXy=
91 90 adantll φyX¬yXy=
92 1nn 1
93 92 a1i φy=1
94 5 orcs n=1ifn=1¬n1AGn1=
95 92 a1i φ1
96 7 a1i φV
97 4 94 95 96 fvmptd3 φF1=
98 97 adantr φy=F1=
99 id y=y=
100 99 eqcomd y==y
101 100 adantl φy==y
102 98 101 eqtr2d φy=y=F1
103 fveq2 m=1Fm=F1
104 103 rspceeqv 1y=F1my=Fm
105 93 102 104 syl2anc φy=my=Fm
106 87 91 105 syl2anc φyX¬yXmy=Fm
107 86 106 pm2.61dan φyXmy=Fm
108 107 ralrimiva φyXmy=Fm
109 dffo3 F:ontoXF:XyXmy=Fm
110 27 108 109 sylanbrc φF:ontoX
111 animorrl φnmn=mn=mFnFm=
112 6 7 eqeltrdi nn=1¬n1Aifn=1¬n1AGn1V
113 4 fvmpt2 nifn=1¬n1AGn1VFn=ifn=1¬n1AGn1
114 112 113 syldan nn=1¬n1AFn=ifn=1¬n1AGn1
115 114 6 eqtrd nn=1¬n1AFn=
116 115 ineq1d nn=1¬n1AFnFm=Fm
117 0in Fm=
118 116 117 eqtrdi nn=1¬n1AFnFm=
119 118 adantlr nmn=1¬n1AFnFm=
120 119 ad4ant24 φnmnmn=1¬n1AFnFm=
121 eqeq1 n=mn=1m=1
122 oveq1 n=mn1=m1
123 122 eleq1d n=mn1Am1A
124 123 notbid n=m¬n1A¬m1A
125 121 124 orbi12d n=mn=1¬n1Am=1¬m1A
126 122 fveq2d n=mGn1=Gm1
127 125 126 ifbieq2d n=mifn=1¬n1AGn1=ifm=1¬m1AGm1
128 simpl mm=1¬m1Am
129 iftrue m=1¬m1Aifm=1¬m1AGm1=
130 129 7 eqeltrdi m=1¬m1Aifm=1¬m1AGm1V
131 130 adantl mm=1¬m1Aifm=1¬m1AGm1V
132 4 127 128 131 fvmptd3 mm=1¬m1AFm=ifm=1¬m1AGm1
133 129 adantl mm=1¬m1Aifm=1¬m1AGm1=
134 132 133 eqtrd mm=1¬m1AFm=
135 134 ineq2d mm=1¬m1AFnFm=Fn
136 in0 Fn=
137 135 136 eqtrdi mm=1¬m1AFnFm=
138 137 adantll nmm=1¬m1AFnFm=
139 138 ad5ant25 φnmnm¬n=1¬n1Am=1¬m1AFnFm=
140 fvex Gn1V
141 7 140 ifex ifn=1¬n1AGn1V
142 141 113 mpan2 nFn=ifn=1¬n1AGn1
143 142 13 sylan9eq n¬n=1¬n1AFn=Gn1
144 143 adantlr nm¬n=1¬n1AFn=Gn1
145 144 3adant3 nm¬n=1¬n1A¬m=1¬m1AFn=Gn1
146 4 a1i m¬m=1¬m1AF=nifn=1¬n1AGn1
147 127 adantl m¬m=1¬m1An=mifn=1¬n1AGn1=ifm=1¬m1AGm1
148 iffalse ¬m=1¬m1Aifm=1¬m1AGm1=Gm1
149 148 ad2antlr m¬m=1¬m1An=mifm=1¬m1AGm1=Gm1
150 147 149 eqtrd m¬m=1¬m1An=mifn=1¬n1AGn1=Gm1
151 simpl m¬m=1¬m1Am
152 fvexd m¬m=1¬m1AGm1V
153 146 150 151 152 fvmptd m¬m=1¬m1AFm=Gm1
154 153 adantll nm¬m=1¬m1AFm=Gm1
155 154 3adant2 nm¬n=1¬n1A¬m=1¬m1AFm=Gm1
156 145 155 ineq12d nm¬n=1¬n1A¬m=1¬m1AFnFm=Gn1Gm1
157 156 ad5ant245 φnmnm¬n=1¬n1A¬m=1¬m1AFnFm=Gn1Gm1
158 19 ad2antlr φnmnm¬n=1¬n1A¬m=1¬m1An1A
159 pm2.46 ¬m=1¬m1A¬¬m1A
160 159 notnotrd ¬m=1¬m1Am1A
161 160 adantl φnmnm¬n=1¬n1A¬m=1¬m1Am1A
162 f1of1 G:A1-1 ontoXG:A1-1X
163 2 162 syl φG:A1-1X
164 dff14a G:A1-1XG:AXxAyAxyGxGy
165 163 164 sylib φG:AXxAyAxyGxGy
166 165 simprd φxAyAxyGxGy
167 166 adantr φnmxAyAxyGxGy
168 167 ad3antrrr φnmnm¬n=1¬n1A¬m=1¬m1AxAyAxyGxGy
169 158 161 168 jca31 φnmnm¬n=1¬n1A¬m=1¬m1An1Am1AxAyAxyGxGy
170 nncn nn
171 170 adantr nmn
172 171 ad2antlr φnmnmn
173 nncn mm
174 173 adantl nmm
175 174 ad2antlr φnmnmm
176 1cnd φnmnm1
177 simpr φnmnmnm
178 172 175 176 177 subneintr2d φnmnmn1m1
179 178 ad2antrr φnmnm¬n=1¬n1A¬m=1¬m1An1m1
180 neeq1 x=n1xyn1y
181 fveq2 x=n1Gx=Gn1
182 181 neeq1d x=n1GxGyGn1Gy
183 180 182 imbi12d x=n1xyGxGyn1yGn1Gy
184 neeq2 y=m1n1yn1m1
185 fveq2 y=m1Gy=Gm1
186 185 neeq2d y=m1Gn1GyGn1Gm1
187 184 186 imbi12d y=m1n1yGn1Gyn1m1Gn1Gm1
188 183 187 rspc2va n1Am1AxAyAxyGxGyn1m1Gn1Gm1
189 169 179 188 sylc φnmnm¬n=1¬n1A¬m=1¬m1AGn1Gm1
190 189 neneqd φnmnm¬n=1¬n1A¬m=1¬m1A¬Gn1=Gm1
191 21 ad4ant13 φnm¬n=1¬n1A¬m=1¬m1AGn1X
192 16 ffvelcdmda φm1AGm1X
193 160 192 sylan2 φ¬m=1¬m1AGm1X
194 193 ad4ant14 φnm¬n=1¬n1A¬m=1¬m1AGm1X
195 id y=zy=z
196 195 disjor DisjyXyyXzXy=zyz=
197 3 196 sylib φyXzXy=zyz=
198 197 ad3antrrr φnm¬n=1¬n1A¬m=1¬m1AyXzXy=zyz=
199 eqeq1 y=Gn1y=zGn1=z
200 ineq1 y=Gn1yz=Gn1z
201 200 eqeq1d y=Gn1yz=Gn1z=
202 199 201 orbi12d y=Gn1y=zyz=Gn1=zGn1z=
203 eqeq2 z=Gm1Gn1=zGn1=Gm1
204 ineq2 z=Gm1Gn1z=Gn1Gm1
205 204 eqeq1d z=Gm1Gn1z=Gn1Gm1=
206 203 205 orbi12d z=Gm1Gn1=zGn1z=Gn1=Gm1Gn1Gm1=
207 202 206 rspc2va Gn1XGm1XyXzXy=zyz=Gn1=Gm1Gn1Gm1=
208 191 194 198 207 syl21anc φnm¬n=1¬n1A¬m=1¬m1AGn1=Gm1Gn1Gm1=
209 208 adantllr φnmnm¬n=1¬n1A¬m=1¬m1AGn1=Gm1Gn1Gm1=
210 orel1 ¬Gn1=Gm1Gn1=Gm1Gn1Gm1=Gn1Gm1=
211 190 209 210 sylc φnmnm¬n=1¬n1A¬m=1¬m1AGn1Gm1=
212 157 211 eqtrd φnmnm¬n=1¬n1A¬m=1¬m1AFnFm=
213 139 212 pm2.61dan φnmnm¬n=1¬n1AFnFm=
214 120 213 pm2.61dan φnmnmFnFm=
215 214 olcd φnmnmn=mFnFm=
216 111 215 pm2.61dane φnmn=mFnFm=
217 216 ralrimivva φnmn=mFnFm=
218 fveq2 n=mFn=Fm
219 218 disjor DisjnFnnmn=mFnFm=
220 217 219 sylibr φDisjnFn
221 nnex V
222 221 mptex nifn=1¬n1AGn1V
223 4 222 eqeltri FV
224 foeq1 f=Ff:ontoXF:ontoX
225 simpl f=Fnf=F
226 225 fveq1d f=Fnfn=Fn
227 226 disjeq2dv f=FDisjnfnDisjnFn
228 224 227 anbi12d f=Ff:ontoXDisjnfnF:ontoXDisjnFn
229 223 228 spcev F:ontoXDisjnFnff:ontoXDisjnfn
230 110 220 229 syl2anc φff:ontoXDisjnfn