Metamath Proof Explorer


Theorem pf1ind

Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pf1ind.cb B=BaseR
pf1ind.cp +˙=+R
pf1ind.ct ·˙=R
pf1ind.cq Q=raneval1R
pf1ind.ad φfQτgQηζ
pf1ind.mu φfQτgQησ
pf1ind.wa x=B×fψχ
pf1ind.wb x=IBψθ
pf1ind.wc x=fψτ
pf1ind.wd x=gψη
pf1ind.we x=f+˙fgψζ
pf1ind.wf x=f·˙fgψσ
pf1ind.wg x=Aψρ
pf1ind.co φfBχ
pf1ind.pr φθ
pf1ind.a φAQ
Assertion pf1ind φρ

Proof

Step Hyp Ref Expression
1 pf1ind.cb B=BaseR
2 pf1ind.cp +˙=+R
3 pf1ind.ct ·˙=R
4 pf1ind.cq Q=raneval1R
5 pf1ind.ad φfQτgQηζ
6 pf1ind.mu φfQτgQησ
7 pf1ind.wa x=B×fψχ
8 pf1ind.wb x=IBψθ
9 pf1ind.wc x=fψτ
10 pf1ind.wd x=gψη
11 pf1ind.we x=f+˙fgψζ
12 pf1ind.wf x=f·˙fgψσ
13 pf1ind.wg x=Aψρ
14 pf1ind.co φfBχ
15 pf1ind.pr φθ
16 pf1ind.a φAQ
17 coass AbB1𝑜bwB1𝑜×w=AbB1𝑜bwB1𝑜×w
18 df1o2 1𝑜=
19 1 fvexi BV
20 0ex V
21 eqid bB1𝑜b=bB1𝑜b
22 18 19 20 21 mapsncnv bB1𝑜b-1=wB1𝑜×w
23 22 coeq2i bB1𝑜bbB1𝑜b-1=bB1𝑜bwB1𝑜×w
24 18 19 20 21 mapsnf1o2 bB1𝑜b:B1𝑜1-1 ontoB
25 f1ococnv2 bB1𝑜b:B1𝑜1-1 ontoBbB1𝑜bbB1𝑜b-1=IB
26 24 25 mp1i φbB1𝑜bbB1𝑜b-1=IB
27 23 26 eqtr3id φbB1𝑜bwB1𝑜×w=IB
28 27 coeq2d φAbB1𝑜bwB1𝑜×w=AIB
29 17 28 eqtrid φAbB1𝑜bwB1𝑜×w=AIB
30 4 1 pf1f AQA:BB
31 fcoi1 A:BBAIB=A
32 16 30 31 3syl φAIB=A
33 29 32 eqtrd φAbB1𝑜bwB1𝑜×w=A
34 eqid 1𝑜evalR=1𝑜evalR
35 34 1 evlval 1𝑜evalR=1𝑜evalSubRB
36 35 rneqi ran1𝑜evalR=ran1𝑜evalSubRB
37 an4 aran1𝑜evalRawB1𝑜×wx|ψbran1𝑜evalRbwB1𝑜×wx|ψaran1𝑜evalRbran1𝑜evalRawB1𝑜×wx|ψbwB1𝑜×wx|ψ
38 eqid ran1𝑜evalR=ran1𝑜evalR
39 4 1 38 mpfpf1 aran1𝑜evalRawB1𝑜×wQ
40 4 1 38 mpfpf1 bran1𝑜evalRbwB1𝑜×wQ
41 vex fV
42 41 9 elab fx|ψτ
43 eleq1 f=awB1𝑜×wfx|ψawB1𝑜×wx|ψ
44 42 43 bitr3id f=awB1𝑜×wτawB1𝑜×wx|ψ
45 44 anbi1d f=awB1𝑜×wτηawB1𝑜×wx|ψη
46 45 anbi1d f=awB1𝑜×wτηφawB1𝑜×wx|ψηφ
47 ovex f+˙fgV
48 47 11 elab f+˙fgx|ψζ
49 oveq1 f=awB1𝑜×wf+˙fg=awB1𝑜×w+˙fg
50 49 eleq1d f=awB1𝑜×wf+˙fgx|ψawB1𝑜×w+˙fgx|ψ
51 48 50 bitr3id f=awB1𝑜×wζawB1𝑜×w+˙fgx|ψ
52 46 51 imbi12d f=awB1𝑜×wτηφζawB1𝑜×wx|ψηφawB1𝑜×w+˙fgx|ψ
53 vex gV
54 53 10 elab gx|ψη
55 eleq1 g=bwB1𝑜×wgx|ψbwB1𝑜×wx|ψ
56 54 55 bitr3id g=bwB1𝑜×wηbwB1𝑜×wx|ψ
57 56 anbi2d g=bwB1𝑜×wawB1𝑜×wx|ψηawB1𝑜×wx|ψbwB1𝑜×wx|ψ
58 57 anbi1d g=bwB1𝑜×wawB1𝑜×wx|ψηφawB1𝑜×wx|ψbwB1𝑜×wx|ψφ
59 oveq2 g=bwB1𝑜×wawB1𝑜×w+˙fg=awB1𝑜×w+˙fbwB1𝑜×w
60 59 eleq1d g=bwB1𝑜×wawB1𝑜×w+˙fgx|ψawB1𝑜×w+˙fbwB1𝑜×wx|ψ
61 58 60 imbi12d g=bwB1𝑜×wawB1𝑜×wx|ψηφawB1𝑜×w+˙fgx|ψawB1𝑜×wx|ψbwB1𝑜×wx|ψφawB1𝑜×w+˙fbwB1𝑜×wx|ψ
62 5 expcom fQτgQηφζ
63 62 an4s fQgQτηφζ
64 63 expimpd fQgQτηφζ
65 52 61 64 vtocl2ga awB1𝑜×wQbwB1𝑜×wQawB1𝑜×wx|ψbwB1𝑜×wx|ψφawB1𝑜×w+˙fbwB1𝑜×wx|ψ
66 39 40 65 syl2an aran1𝑜evalRbran1𝑜evalRawB1𝑜×wx|ψbwB1𝑜×wx|ψφawB1𝑜×w+˙fbwB1𝑜×wx|ψ
67 66 expcomd aran1𝑜evalRbran1𝑜evalRφawB1𝑜×wx|ψbwB1𝑜×wx|ψawB1𝑜×w+˙fbwB1𝑜×wx|ψ
68 67 impcom φaran1𝑜evalRbran1𝑜evalRawB1𝑜×wx|ψbwB1𝑜×wx|ψawB1𝑜×w+˙fbwB1𝑜×wx|ψ
69 36 1 mpff aran1𝑜evalRa:B1𝑜B
70 69 ad2antrl φaran1𝑜evalRbran1𝑜evalRa:B1𝑜B
71 70 ffnd φaran1𝑜evalRbran1𝑜evalRaFnB1𝑜
72 36 1 mpff bran1𝑜evalRb:B1𝑜B
73 72 ad2antll φaran1𝑜evalRbran1𝑜evalRb:B1𝑜B
74 73 ffnd φaran1𝑜evalRbran1𝑜evalRbFnB1𝑜
75 eqid wB1𝑜×w=wB1𝑜×w
76 18 19 20 75 mapsnf1o3 wB1𝑜×w:B1-1 ontoB1𝑜
77 f1of wB1𝑜×w:B1-1 ontoB1𝑜wB1𝑜×w:BB1𝑜
78 76 77 mp1i φaran1𝑜evalRbran1𝑜evalRwB1𝑜×w:BB1𝑜
79 ovexd φaran1𝑜evalRbran1𝑜evalRB1𝑜V
80 19 a1i φaran1𝑜evalRbran1𝑜evalRBV
81 inidm B1𝑜B1𝑜=B1𝑜
82 71 74 78 79 79 80 81 ofco φaran1𝑜evalRbran1𝑜evalRa+˙fbwB1𝑜×w=awB1𝑜×w+˙fbwB1𝑜×w
83 82 eleq1d φaran1𝑜evalRbran1𝑜evalRa+˙fbwB1𝑜×wx|ψawB1𝑜×w+˙fbwB1𝑜×wx|ψ
84 68 83 sylibrd φaran1𝑜evalRbran1𝑜evalRawB1𝑜×wx|ψbwB1𝑜×wx|ψa+˙fbwB1𝑜×wx|ψ
85 84 expimpd φaran1𝑜evalRbran1𝑜evalRawB1𝑜×wx|ψbwB1𝑜×wx|ψa+˙fbwB1𝑜×wx|ψ
86 37 85 biimtrid φaran1𝑜evalRawB1𝑜×wx|ψbran1𝑜evalRbwB1𝑜×wx|ψa+˙fbwB1𝑜×wx|ψ
87 86 imp φaran1𝑜evalRawB1𝑜×wx|ψbran1𝑜evalRbwB1𝑜×wx|ψa+˙fbwB1𝑜×wx|ψ
88 ovex f·˙fgV
89 88 12 elab f·˙fgx|ψσ
90 oveq1 f=awB1𝑜×wf·˙fg=awB1𝑜×w·˙fg
91 90 eleq1d f=awB1𝑜×wf·˙fgx|ψawB1𝑜×w·˙fgx|ψ
92 89 91 bitr3id f=awB1𝑜×wσawB1𝑜×w·˙fgx|ψ
93 46 92 imbi12d f=awB1𝑜×wτηφσawB1𝑜×wx|ψηφawB1𝑜×w·˙fgx|ψ
94 oveq2 g=bwB1𝑜×wawB1𝑜×w·˙fg=awB1𝑜×w·˙fbwB1𝑜×w
95 94 eleq1d g=bwB1𝑜×wawB1𝑜×w·˙fgx|ψawB1𝑜×w·˙fbwB1𝑜×wx|ψ
96 58 95 imbi12d g=bwB1𝑜×wawB1𝑜×wx|ψηφawB1𝑜×w·˙fgx|ψawB1𝑜×wx|ψbwB1𝑜×wx|ψφawB1𝑜×w·˙fbwB1𝑜×wx|ψ
97 6 expcom fQτgQηφσ
98 97 an4s fQgQτηφσ
99 98 expimpd fQgQτηφσ
100 93 96 99 vtocl2ga awB1𝑜×wQbwB1𝑜×wQawB1𝑜×wx|ψbwB1𝑜×wx|ψφawB1𝑜×w·˙fbwB1𝑜×wx|ψ
101 39 40 100 syl2an aran1𝑜evalRbran1𝑜evalRawB1𝑜×wx|ψbwB1𝑜×wx|ψφawB1𝑜×w·˙fbwB1𝑜×wx|ψ
102 101 expcomd aran1𝑜evalRbran1𝑜evalRφawB1𝑜×wx|ψbwB1𝑜×wx|ψawB1𝑜×w·˙fbwB1𝑜×wx|ψ
103 102 impcom φaran1𝑜evalRbran1𝑜evalRawB1𝑜×wx|ψbwB1𝑜×wx|ψawB1𝑜×w·˙fbwB1𝑜×wx|ψ
104 71 74 78 79 79 80 81 ofco φaran1𝑜evalRbran1𝑜evalRa·˙fbwB1𝑜×w=awB1𝑜×w·˙fbwB1𝑜×w
105 104 eleq1d φaran1𝑜evalRbran1𝑜evalRa·˙fbwB1𝑜×wx|ψawB1𝑜×w·˙fbwB1𝑜×wx|ψ
106 103 105 sylibrd φaran1𝑜evalRbran1𝑜evalRawB1𝑜×wx|ψbwB1𝑜×wx|ψa·˙fbwB1𝑜×wx|ψ
107 106 expimpd φaran1𝑜evalRbran1𝑜evalRawB1𝑜×wx|ψbwB1𝑜×wx|ψa·˙fbwB1𝑜×wx|ψ
108 37 107 biimtrid φaran1𝑜evalRawB1𝑜×wx|ψbran1𝑜evalRbwB1𝑜×wx|ψa·˙fbwB1𝑜×wx|ψ
109 108 imp φaran1𝑜evalRawB1𝑜×wx|ψbran1𝑜evalRbwB1𝑜×wx|ψa·˙fbwB1𝑜×wx|ψ
110 coeq1 y=B1𝑜×aywB1𝑜×w=B1𝑜×awB1𝑜×w
111 110 eleq1d y=B1𝑜×aywB1𝑜×wx|ψB1𝑜×awB1𝑜×wx|ψ
112 coeq1 y=bB1𝑜baywB1𝑜×w=bB1𝑜bawB1𝑜×w
113 112 eleq1d y=bB1𝑜baywB1𝑜×wx|ψbB1𝑜bawB1𝑜×wx|ψ
114 coeq1 y=aywB1𝑜×w=awB1𝑜×w
115 114 eleq1d y=aywB1𝑜×wx|ψawB1𝑜×wx|ψ
116 coeq1 y=bywB1𝑜×w=bwB1𝑜×w
117 116 eleq1d y=bywB1𝑜×wx|ψbwB1𝑜×wx|ψ
118 coeq1 y=a+˙fbywB1𝑜×w=a+˙fbwB1𝑜×w
119 118 eleq1d y=a+˙fbywB1𝑜×wx|ψa+˙fbwB1𝑜×wx|ψ
120 coeq1 y=a·˙fbywB1𝑜×w=a·˙fbwB1𝑜×w
121 120 eleq1d y=a·˙fbywB1𝑜×wx|ψa·˙fbwB1𝑜×wx|ψ
122 coeq1 y=AbB1𝑜bywB1𝑜×w=AbB1𝑜bwB1𝑜×w
123 122 eleq1d y=AbB1𝑜bywB1𝑜×wx|ψAbB1𝑜bwB1𝑜×wx|ψ
124 4 pf1rcl AQRCRing
125 16 124 syl φRCRing
126 125 adantr φaBRCRing
127 1on 1𝑜On
128 eqid 1𝑜mPolyR=1𝑜mPolyR
129 128 mplassa 1𝑜OnRCRing1𝑜mPolyRAssAlg
130 127 125 129 sylancr φ1𝑜mPolyRAssAlg
131 eqid Poly1R=Poly1R
132 eqid algScPoly1R=algScPoly1R
133 131 132 ply1ascl algScPoly1R=algSc1𝑜mPolyR
134 eqid Scalar1𝑜mPolyR=Scalar1𝑜mPolyR
135 133 134 asclrhm 1𝑜mPolyRAssAlgalgScPoly1RScalar1𝑜mPolyRRingHom1𝑜mPolyR
136 130 135 syl φalgScPoly1RScalar1𝑜mPolyRRingHom1𝑜mPolyR
137 127 a1i φ1𝑜On
138 128 137 125 mplsca φR=Scalar1𝑜mPolyR
139 138 oveq1d φRRingHom1𝑜mPolyR=Scalar1𝑜mPolyRRingHom1𝑜mPolyR
140 136 139 eleqtrrd φalgScPoly1RRRingHom1𝑜mPolyR
141 eqid Base1𝑜mPolyR=Base1𝑜mPolyR
142 1 141 rhmf algScPoly1RRRingHom1𝑜mPolyRalgScPoly1R:BBase1𝑜mPolyR
143 140 142 syl φalgScPoly1R:BBase1𝑜mPolyR
144 143 ffvelcdmda φaBalgScPoly1RaBase1𝑜mPolyR
145 eqid eval1R=eval1R
146 145 34 1 128 141 evl1val RCRingalgScPoly1RaBase1𝑜mPolyReval1RalgScPoly1Ra=1𝑜evalRalgScPoly1RawB1𝑜×w
147 126 144 146 syl2anc φaBeval1RalgScPoly1Ra=1𝑜evalRalgScPoly1RawB1𝑜×w
148 145 131 1 132 evl1sca RCRingaBeval1RalgScPoly1Ra=B×a
149 125 148 sylan φaBeval1RalgScPoly1Ra=B×a
150 1 ressid RCRingR𝑠B=R
151 126 150 syl φaBR𝑠B=R
152 151 oveq2d φaB1𝑜mPolyR𝑠B=1𝑜mPolyR
153 152 fveq2d φaBalgSc1𝑜mPolyR𝑠B=algSc1𝑜mPolyR
154 153 133 eqtr4di φaBalgSc1𝑜mPolyR𝑠B=algScPoly1R
155 154 fveq1d φaBalgSc1𝑜mPolyR𝑠Ba=algScPoly1Ra
156 155 fveq2d φaB1𝑜evalRalgSc1𝑜mPolyR𝑠Ba=1𝑜evalRalgScPoly1Ra
157 eqid 1𝑜mPolyR𝑠B=1𝑜mPolyR𝑠B
158 eqid R𝑠B=R𝑠B
159 eqid algSc1𝑜mPolyR𝑠B=algSc1𝑜mPolyR𝑠B
160 127 a1i φaB1𝑜On
161 crngring RCRingRRing
162 1 subrgid RRingBSubRingR
163 125 161 162 3syl φBSubRingR
164 163 adantr φaBBSubRingR
165 simpr φaBaB
166 35 157 158 1 159 160 126 164 165 evlssca φaB1𝑜evalRalgSc1𝑜mPolyR𝑠Ba=B1𝑜×a
167 156 166 eqtr3d φaB1𝑜evalRalgScPoly1Ra=B1𝑜×a
168 167 coeq1d φaB1𝑜evalRalgScPoly1RawB1𝑜×w=B1𝑜×awB1𝑜×w
169 147 149 168 3eqtr3d φaBB×a=B1𝑜×awB1𝑜×w
170 vsnex fV
171 19 170 xpex B×fV
172 171 7 elab B×fx|ψχ
173 14 172 sylibr φfBB×fx|ψ
174 173 ralrimiva φfBB×fx|ψ
175 sneq f=af=a
176 175 xpeq2d f=aB×f=B×a
177 176 eleq1d f=aB×fx|ψB×ax|ψ
178 177 rspccva fBB×fx|ψaBB×ax|ψ
179 174 178 sylan φaBB×ax|ψ
180 169 179 eqeltrrd φaBB1𝑜×awB1𝑜×wx|ψ
181 resiexg BVIBV
182 19 181 ax-mp IBV
183 182 8 elab IBx|ψθ
184 15 183 sylibr φIBx|ψ
185 27 184 eqeltrd φbB1𝑜bwB1𝑜×wx|ψ
186 el1o a1𝑜a=
187 fveq2 a=ba=b
188 186 187 sylbi a1𝑜ba=b
189 188 mpteq2dv a1𝑜bB1𝑜ba=bB1𝑜b
190 189 coeq1d a1𝑜bB1𝑜bawB1𝑜×w=bB1𝑜bwB1𝑜×w
191 190 eleq1d a1𝑜bB1𝑜bawB1𝑜×wx|ψbB1𝑜bwB1𝑜×wx|ψ
192 185 191 syl5ibrcom φa1𝑜bB1𝑜bawB1𝑜×wx|ψ
193 192 imp φa1𝑜bB1𝑜bawB1𝑜×wx|ψ
194 4 1 38 pf1mpf AQAbB1𝑜bran1𝑜evalR
195 16 194 syl φAbB1𝑜bran1𝑜evalR
196 1 2 3 36 87 109 111 113 115 117 119 121 123 180 193 195 mpfind φAbB1𝑜bwB1𝑜×wx|ψ
197 33 196 eqeltrrd φAx|ψ
198 13 elabg AQAx|ψρ
199 16 198 syl φAx|ψρ
200 197 199 mpbid φρ