| Step |
Hyp |
Ref |
Expression |
| 1 |
|
selberg4lem1.1 |
|
| 2 |
|
selberg4lem1.2 |
|
| 3 |
|
2cnd |
|
| 4 |
|
fzfid |
|
| 5 |
|
elfznn |
|
| 6 |
5
|
adantl |
|
| 7 |
|
vmacl |
|
| 8 |
6 7
|
syl |
|
| 9 |
8 6
|
nndivred |
|
| 10 |
|
elioore |
|
| 11 |
10
|
adantl |
|
| 12 |
|
1rp |
|
| 13 |
12
|
a1i |
|
| 14 |
|
1red |
|
| 15 |
|
eliooord |
|
| 16 |
15
|
adantl |
|
| 17 |
16
|
simpld |
|
| 18 |
14 11 17
|
ltled |
|
| 19 |
11 13 18
|
rpgecld |
|
| 20 |
19
|
adantr |
|
| 21 |
6
|
nnrpd |
|
| 22 |
20 21
|
rpdivcld |
|
| 23 |
22
|
relogcld |
|
| 24 |
9 23
|
remulcld |
|
| 25 |
4 24
|
fsumrecl |
|
| 26 |
11 17
|
rplogcld |
|
| 27 |
25 26
|
rerpdivcld |
|
| 28 |
27
|
recnd |
|
| 29 |
19
|
relogcld |
|
| 30 |
29
|
rehalfcld |
|
| 31 |
30
|
recnd |
|
| 32 |
3 28 31
|
subdid |
|
| 33 |
29
|
recnd |
|
| 34 |
|
2ne0 |
|
| 35 |
34
|
a1i |
|
| 36 |
33 3 35
|
divcan2d |
|
| 37 |
36
|
oveq2d |
|
| 38 |
32 37
|
eqtrd |
|
| 39 |
38
|
mpteq2dva |
|
| 40 |
|
2re |
|
| 41 |
40
|
a1i |
|
| 42 |
27 30
|
resubcld |
|
| 43 |
|
ioossre |
|
| 44 |
|
2cn |
|
| 45 |
|
o1const |
|
| 46 |
43 44 45
|
mp2an |
|
| 47 |
46
|
a1i |
|
| 48 |
|
vmalogdivsum2 |
|
| 49 |
48
|
a1i |
|
| 50 |
41 42 47 49
|
o1mul2 |
|
| 51 |
39 50
|
eqeltrrd |
|
| 52 |
|
fzfid |
|
| 53 |
|
elfznn |
|
| 54 |
53
|
adantl |
|
| 55 |
|
vmacl |
|
| 56 |
54 55
|
syl |
|
| 57 |
54
|
nnrpd |
|
| 58 |
57
|
relogcld |
|
| 59 |
11
|
adantr |
|
| 60 |
59 6
|
nndivred |
|
| 61 |
60
|
adantr |
|
| 62 |
61 54
|
nndivred |
|
| 63 |
|
chpcl |
|
| 64 |
62 63
|
syl |
|
| 65 |
58 64
|
readdcld |
|
| 66 |
56 65
|
remulcld |
|
| 67 |
52 66
|
fsumrecl |
|
| 68 |
8 67
|
remulcld |
|
| 69 |
4 68
|
fsumrecl |
|
| 70 |
19 26
|
rpmulcld |
|
| 71 |
69 70
|
rerpdivcld |
|
| 72 |
71 29
|
resubcld |
|
| 73 |
72
|
recnd |
|
| 74 |
25
|
recnd |
|
| 75 |
26
|
rpne0d |
|
| 76 |
74 33 75
|
divcld |
|
| 77 |
3 76
|
mulcld |
|
| 78 |
77 33
|
subcld |
|
| 79 |
71
|
recnd |
|
| 80 |
79 77 33
|
nnncan2d |
|
| 81 |
69
|
recnd |
|
| 82 |
11
|
recnd |
|
| 83 |
19
|
rpne0d |
|
| 84 |
81 82 33 83 75
|
divdiv1d |
|
| 85 |
3 74 33 75
|
divassd |
|
| 86 |
84 85
|
oveq12d |
|
| 87 |
69 19
|
rerpdivcld |
|
| 88 |
87
|
recnd |
|
| 89 |
3 74
|
mulcld |
|
| 90 |
88 89 33 75
|
divsubdird |
|
| 91 |
83
|
adantr |
|
| 92 |
68 59 91
|
redivcld |
|
| 93 |
92
|
recnd |
|
| 94 |
40
|
a1i |
|
| 95 |
94 24
|
remulcld |
|
| 96 |
95
|
recnd |
|
| 97 |
4 93 96
|
fsumsub |
|
| 98 |
8
|
recnd |
|
| 99 |
67 59 91
|
redivcld |
|
| 100 |
99
|
recnd |
|
| 101 |
|
2cnd |
|
| 102 |
23
|
recnd |
|
| 103 |
6
|
nncnd |
|
| 104 |
6
|
nnne0d |
|
| 105 |
102 103 104
|
divcld |
|
| 106 |
101 105
|
mulcld |
|
| 107 |
98 100 106
|
subdid |
|
| 108 |
67
|
recnd |
|
| 109 |
82
|
adantr |
|
| 110 |
98 108 109 91
|
divassd |
|
| 111 |
98 103 102 104
|
div32d |
|
| 112 |
111
|
oveq2d |
|
| 113 |
101 98 105
|
mul12d |
|
| 114 |
112 113
|
eqtrd |
|
| 115 |
110 114
|
oveq12d |
|
| 116 |
107 115
|
eqtr4d |
|
| 117 |
116
|
sumeq2dv |
|
| 118 |
68
|
recnd |
|
| 119 |
4 82 118 83
|
fsumdivc |
|
| 120 |
24
|
recnd |
|
| 121 |
4 3 120
|
fsummulc2 |
|
| 122 |
119 121
|
oveq12d |
|
| 123 |
97 117 122
|
3eqtr4rd |
|
| 124 |
123
|
oveq1d |
|
| 125 |
90 124
|
eqtr3d |
|
| 126 |
80 86 125
|
3eqtr2d |
|
| 127 |
126
|
mpteq2dva |
|
| 128 |
|
1red |
|
| 129 |
1
|
adantr |
|
| 130 |
129
|
rpred |
|
| 131 |
4 9
|
fsumrecl |
|
| 132 |
131 26
|
rerpdivcld |
|
| 133 |
1
|
rpcnd |
|
| 134 |
|
o1const |
|
| 135 |
43 133 134
|
sylancr |
|
| 136 |
|
1cnd |
|
| 137 |
|
o1const |
|
| 138 |
43 136 137
|
sylancr |
|
| 139 |
132
|
recnd |
|
| 140 |
|
1cnd |
|
| 141 |
131
|
recnd |
|
| 142 |
141 33 33 75
|
divsubdird |
|
| 143 |
141 33
|
subcld |
|
| 144 |
143 33 75
|
divrecd |
|
| 145 |
33 75
|
dividd |
|
| 146 |
145
|
oveq2d |
|
| 147 |
142 144 146
|
3eqtr3d |
|
| 148 |
147
|
mpteq2dva |
|
| 149 |
131 29
|
resubcld |
|
| 150 |
14 26
|
rerpdivcld |
|
| 151 |
19
|
ex |
|
| 152 |
151
|
ssrdv |
|
| 153 |
|
vmadivsum |
|
| 154 |
153
|
a1i |
|
| 155 |
152 154
|
o1res2 |
|
| 156 |
|
divlogrlim |
|
| 157 |
|
rlimo1 |
|
| 158 |
156 157
|
mp1i |
|
| 159 |
149 150 155 158
|
o1mul2 |
|
| 160 |
148 159
|
eqeltrrd |
|
| 161 |
139 140 160
|
o1dif |
|
| 162 |
138 161
|
mpbird |
|
| 163 |
130 132 135 162
|
o1mul2 |
|
| 164 |
130 132
|
remulcld |
|
| 165 |
23 6
|
nndivred |
|
| 166 |
94 165
|
remulcld |
|
| 167 |
99 166
|
resubcld |
|
| 168 |
8 167
|
remulcld |
|
| 169 |
4 168
|
fsumrecl |
|
| 170 |
169 26
|
rerpdivcld |
|
| 171 |
170
|
recnd |
|
| 172 |
169
|
recnd |
|
| 173 |
172
|
abscld |
|
| 174 |
130 131
|
remulcld |
|
| 175 |
100 106
|
subcld |
|
| 176 |
98 175
|
mulcld |
|
| 177 |
176
|
abscld |
|
| 178 |
4 177
|
fsumrecl |
|
| 179 |
168
|
recnd |
|
| 180 |
4 179
|
fsumabs |
|
| 181 |
130
|
adantr |
|
| 182 |
181 9
|
remulcld |
|
| 183 |
175
|
abscld |
|
| 184 |
181 6
|
nndivred |
|
| 185 |
|
vmage0 |
|
| 186 |
6 185
|
syl |
|
| 187 |
108 109 103 91 104
|
divdiv2d |
|
| 188 |
108 103 109 91
|
div23d |
|
| 189 |
187 188
|
eqtrd |
|
| 190 |
101 105 103
|
mulassd |
|
| 191 |
102 103 104
|
divcan1d |
|
| 192 |
191
|
oveq2d |
|
| 193 |
190 192
|
eqtr2d |
|
| 194 |
189 193
|
oveq12d |
|
| 195 |
100 106 103
|
subdird |
|
| 196 |
194 195
|
eqtr4d |
|
| 197 |
196
|
fveq2d |
|
| 198 |
175 103
|
absmuld |
|
| 199 |
6
|
nnred |
|
| 200 |
21
|
rpge0d |
|
| 201 |
199 200
|
absidd |
|
| 202 |
201
|
oveq2d |
|
| 203 |
197 198 202
|
3eqtrd |
|
| 204 |
|
fveq2 |
|
| 205 |
|
fveq2 |
|
| 206 |
|
oveq2 |
|
| 207 |
206
|
fveq2d |
|
| 208 |
205 207
|
oveq12d |
|
| 209 |
204 208
|
oveq12d |
|
| 210 |
209
|
cbvsumv |
|
| 211 |
|
fveq2 |
|
| 212 |
211
|
oveq2d |
|
| 213 |
|
fvoveq1 |
|
| 214 |
213
|
oveq2d |
|
| 215 |
214
|
oveq2d |
|
| 216 |
215
|
adantr |
|
| 217 |
212 216
|
sumeq12dv |
|
| 218 |
210 217
|
eqtrid |
|
| 219 |
|
id |
|
| 220 |
218 219
|
oveq12d |
|
| 221 |
|
fveq2 |
|
| 222 |
221
|
oveq2d |
|
| 223 |
220 222
|
oveq12d |
|
| 224 |
223
|
fveq2d |
|
| 225 |
224
|
breq1d |
|
| 226 |
2
|
ad2antrr |
|
| 227 |
103
|
mullidd |
|
| 228 |
|
fznnfl |
|
| 229 |
11 228
|
syl |
|
| 230 |
229
|
simplbda |
|
| 231 |
227 230
|
eqbrtrd |
|
| 232 |
|
1red |
|
| 233 |
232 59 21
|
lemuldivd |
|
| 234 |
231 233
|
mpbid |
|
| 235 |
|
1re |
|
| 236 |
|
elicopnf |
|
| 237 |
235 236
|
ax-mp |
|
| 238 |
60 234 237
|
sylanbrc |
|
| 239 |
225 226 238
|
rspcdva |
|
| 240 |
203 239
|
eqbrtrrd |
|
| 241 |
183 181 21
|
lemuldivd |
|
| 242 |
240 241
|
mpbid |
|
| 243 |
183 184 8 186 242
|
lemul2ad |
|
| 244 |
98 175
|
absmuld |
|
| 245 |
8 186
|
absidd |
|
| 246 |
245
|
oveq1d |
|
| 247 |
244 246
|
eqtrd |
|
| 248 |
133
|
ad2antrr |
|
| 249 |
248 98 103 104
|
div12d |
|
| 250 |
243 247 249
|
3brtr4d |
|
| 251 |
4 177 182 250
|
fsumle |
|
| 252 |
133
|
adantr |
|
| 253 |
9
|
recnd |
|
| 254 |
4 252 253
|
fsummulc2 |
|
| 255 |
251 254
|
breqtrrd |
|
| 256 |
173 178 174 180 255
|
letrd |
|
| 257 |
173 174 26 256
|
lediv1dd |
|
| 258 |
252 141 33 75
|
divassd |
|
| 259 |
257 258
|
breqtrd |
|
| 260 |
172 33 75
|
absdivd |
|
| 261 |
26
|
rpge0d |
|
| 262 |
29 261
|
absidd |
|
| 263 |
262
|
oveq2d |
|
| 264 |
260 263
|
eqtrd |
|
| 265 |
129
|
rpge0d |
|
| 266 |
8 21 186
|
divge0d |
|
| 267 |
4 9 266
|
fsumge0 |
|
| 268 |
131 26 267
|
divge0d |
|
| 269 |
130 132 265 268
|
mulge0d |
|
| 270 |
164 269
|
absidd |
|
| 271 |
259 264 270
|
3brtr4d |
|
| 272 |
271
|
adantrr |
|
| 273 |
128 163 164 171 272
|
o1le |
|
| 274 |
127 273
|
eqeltrd |
|
| 275 |
73 78 274
|
o1dif |
|
| 276 |
51 275
|
mpbird |
|