Metamath Proof Explorer


Theorem selberg4lem1

Description: Lemma for selberg4 . Equation 10.4.20 of Shapiro, p. 422. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses selberg4lem1.1 φA+
selberg4lem1.2 φy1+∞i=1yΛilogi+ψyiy2logyA
Assertion selberg4lem1 φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogxlogx𝑂1

Proof

Step Hyp Ref Expression
1 selberg4lem1.1 φA+
2 selberg4lem1.2 φy1+∞i=1yΛilogi+ψyiy2logyA
3 2cnd φx1+∞2
4 fzfid φx1+∞1xFin
5 elfznn n1xn
6 5 adantl φx1+∞n1xn
7 vmacl nΛn
8 6 7 syl φx1+∞n1xΛn
9 8 6 nndivred φx1+∞n1xΛnn
10 elioore x1+∞x
11 10 adantl φx1+∞x
12 1rp 1+
13 12 a1i φx1+∞1+
14 1red φx1+∞1
15 eliooord x1+∞1<xx<+∞
16 15 adantl φx1+∞1<xx<+∞
17 16 simpld φx1+∞1<x
18 14 11 17 ltled φx1+∞1x
19 11 13 18 rpgecld φx1+∞x+
20 19 adantr φx1+∞n1xx+
21 6 nnrpd φx1+∞n1xn+
22 20 21 rpdivcld φx1+∞n1xxn+
23 22 relogcld φx1+∞n1xlogxn
24 9 23 remulcld φx1+∞n1xΛnnlogxn
25 4 24 fsumrecl φx1+∞n=1xΛnnlogxn
26 11 17 rplogcld φx1+∞logx+
27 25 26 rerpdivcld φx1+∞n=1xΛnnlogxnlogx
28 27 recnd φx1+∞n=1xΛnnlogxnlogx
29 19 relogcld φx1+∞logx
30 29 rehalfcld φx1+∞logx2
31 30 recnd φx1+∞logx2
32 3 28 31 subdid φx1+∞2n=1xΛnnlogxnlogxlogx2=2n=1xΛnnlogxnlogx2logx2
33 29 recnd φx1+∞logx
34 2ne0 20
35 34 a1i φx1+∞20
36 33 3 35 divcan2d φx1+∞2logx2=logx
37 36 oveq2d φx1+∞2n=1xΛnnlogxnlogx2logx2=2n=1xΛnnlogxnlogxlogx
38 32 37 eqtrd φx1+∞2n=1xΛnnlogxnlogxlogx2=2n=1xΛnnlogxnlogxlogx
39 38 mpteq2dva φx1+∞2n=1xΛnnlogxnlogxlogx2=x1+∞2n=1xΛnnlogxnlogxlogx
40 2re 2
41 40 a1i φx1+∞2
42 27 30 resubcld φx1+∞n=1xΛnnlogxnlogxlogx2
43 ioossre 1+∞
44 2cn 2
45 o1const 1+∞2x1+∞2𝑂1
46 43 44 45 mp2an x1+∞2𝑂1
47 46 a1i φx1+∞2𝑂1
48 vmalogdivsum2 x1+∞n=1xΛnnlogxnlogxlogx2𝑂1
49 48 a1i φx1+∞n=1xΛnnlogxnlogxlogx2𝑂1
50 41 42 47 49 o1mul2 φx1+∞2n=1xΛnnlogxnlogxlogx2𝑂1
51 39 50 eqeltrrd φx1+∞2n=1xΛnnlogxnlogxlogx𝑂1
52 fzfid φx1+∞n1x1xnFin
53 elfznn m1xnm
54 53 adantl φx1+∞n1xm1xnm
55 vmacl mΛm
56 54 55 syl φx1+∞n1xm1xnΛm
57 54 nnrpd φx1+∞n1xm1xnm+
58 57 relogcld φx1+∞n1xm1xnlogm
59 11 adantr φx1+∞n1xx
60 59 6 nndivred φx1+∞n1xxn
61 60 adantr φx1+∞n1xm1xnxn
62 61 54 nndivred φx1+∞n1xm1xnxnm
63 chpcl xnmψxnm
64 62 63 syl φx1+∞n1xm1xnψxnm
65 58 64 readdcld φx1+∞n1xm1xnlogm+ψxnm
66 56 65 remulcld φx1+∞n1xm1xnΛmlogm+ψxnm
67 52 66 fsumrecl φx1+∞n1xm=1xnΛmlogm+ψxnm
68 8 67 remulcld φx1+∞n1xΛnm=1xnΛmlogm+ψxnm
69 4 68 fsumrecl φx1+∞n=1xΛnm=1xnΛmlogm+ψxnm
70 19 26 rpmulcld φx1+∞xlogx+
71 69 70 rerpdivcld φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogx
72 71 29 resubcld φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogxlogx
73 72 recnd φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogxlogx
74 25 recnd φx1+∞n=1xΛnnlogxn
75 26 rpne0d φx1+∞logx0
76 74 33 75 divcld φx1+∞n=1xΛnnlogxnlogx
77 3 76 mulcld φx1+∞2n=1xΛnnlogxnlogx
78 77 33 subcld φx1+∞2n=1xΛnnlogxnlogxlogx
79 71 recnd φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogx
80 79 77 33 nnncan2d φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogx-logx-2n=1xΛnnlogxnlogxlogx=n=1xΛnm=1xnΛmlogm+ψxnmxlogx2n=1xΛnnlogxnlogx
81 69 recnd φx1+∞n=1xΛnm=1xnΛmlogm+ψxnm
82 11 recnd φx1+∞x
83 19 rpne0d φx1+∞x0
84 81 82 33 83 75 divdiv1d φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogx=n=1xΛnm=1xnΛmlogm+ψxnmxlogx
85 3 74 33 75 divassd φx1+∞2n=1xΛnnlogxnlogx=2n=1xΛnnlogxnlogx
86 84 85 oveq12d φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogx2n=1xΛnnlogxnlogx=n=1xΛnm=1xnΛmlogm+ψxnmxlogx2n=1xΛnnlogxnlogx
87 69 19 rerpdivcld φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx
88 87 recnd φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx
89 3 74 mulcld φx1+∞2n=1xΛnnlogxn
90 88 89 33 75 divsubdird φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2n=1xΛnnlogxnlogx=n=1xΛnm=1xnΛmlogm+ψxnmxlogx2n=1xΛnnlogxnlogx
91 83 adantr φx1+∞n1xx0
92 68 59 91 redivcld φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx
93 92 recnd φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx
94 40 a1i φx1+∞n1x2
95 94 24 remulcld φx1+∞n1x2Λnnlogxn
96 95 recnd φx1+∞n1x2Λnnlogxn
97 4 93 96 fsumsub φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2Λnnlogxn=n=1xΛnm=1xnΛmlogm+ψxnmxn=1x2Λnnlogxn
98 8 recnd φx1+∞n1xΛn
99 67 59 91 redivcld φx1+∞n1xm=1xnΛmlogm+ψxnmx
100 99 recnd φx1+∞n1xm=1xnΛmlogm+ψxnmx
101 2cnd φx1+∞n1x2
102 23 recnd φx1+∞n1xlogxn
103 6 nncnd φx1+∞n1xn
104 6 nnne0d φx1+∞n1xn0
105 102 103 104 divcld φx1+∞n1xlogxnn
106 101 105 mulcld φx1+∞n1x2logxnn
107 98 100 106 subdid φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx2logxnn=Λnm=1xnΛmlogm+ψxnmxΛn2logxnn
108 67 recnd φx1+∞n1xm=1xnΛmlogm+ψxnm
109 82 adantr φx1+∞n1xx
110 98 108 109 91 divassd φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx=Λnm=1xnΛmlogm+ψxnmx
111 98 103 102 104 div32d φx1+∞n1xΛnnlogxn=Λnlogxnn
112 111 oveq2d φx1+∞n1x2Λnnlogxn=2Λnlogxnn
113 101 98 105 mul12d φx1+∞n1x2Λnlogxnn=Λn2logxnn
114 112 113 eqtrd φx1+∞n1x2Λnnlogxn=Λn2logxnn
115 110 114 oveq12d φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx2Λnnlogxn=Λnm=1xnΛmlogm+ψxnmxΛn2logxnn
116 107 115 eqtr4d φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx2logxnn=Λnm=1xnΛmlogm+ψxnmx2Λnnlogxn
117 116 sumeq2dv φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnn=n=1xΛnm=1xnΛmlogm+ψxnmx2Λnnlogxn
118 68 recnd φx1+∞n1xΛnm=1xnΛmlogm+ψxnm
119 4 82 118 83 fsumdivc φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx=n=1xΛnm=1xnΛmlogm+ψxnmx
120 24 recnd φx1+∞n1xΛnnlogxn
121 4 3 120 fsummulc2 φx1+∞2n=1xΛnnlogxn=n=1x2Λnnlogxn
122 119 121 oveq12d φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2n=1xΛnnlogxn=n=1xΛnm=1xnΛmlogm+ψxnmxn=1x2Λnnlogxn
123 97 117 122 3eqtr4rd φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2n=1xΛnnlogxn=n=1xΛnm=1xnΛmlogm+ψxnmx2logxnn
124 123 oveq1d φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2n=1xΛnnlogxnlogx=n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogx
125 90 124 eqtr3d φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogx2n=1xΛnnlogxnlogx=n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogx
126 80 86 125 3eqtr2d φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogx-logx-2n=1xΛnnlogxnlogxlogx=n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogx
127 126 mpteq2dva φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogx-logx-2n=1xΛnnlogxnlogxlogx=x1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogx
128 1red φ1
129 1 adantr φx1+∞A+
130 129 rpred φx1+∞A
131 4 9 fsumrecl φx1+∞n=1xΛnn
132 131 26 rerpdivcld φx1+∞n=1xΛnnlogx
133 1 rpcnd φA
134 o1const 1+∞Ax1+∞A𝑂1
135 43 133 134 sylancr φx1+∞A𝑂1
136 1cnd φ1
137 o1const 1+∞1x1+∞1𝑂1
138 43 136 137 sylancr φx1+∞1𝑂1
139 132 recnd φx1+∞n=1xΛnnlogx
140 1cnd φx1+∞1
141 131 recnd φx1+∞n=1xΛnn
142 141 33 33 75 divsubdird φx1+∞n=1xΛnnlogxlogx=n=1xΛnnlogxlogxlogx
143 141 33 subcld φx1+∞n=1xΛnnlogx
144 143 33 75 divrecd φx1+∞n=1xΛnnlogxlogx=n=1xΛnnlogx1logx
145 33 75 dividd φx1+∞logxlogx=1
146 145 oveq2d φx1+∞n=1xΛnnlogxlogxlogx=n=1xΛnnlogx1
147 142 144 146 3eqtr3d φx1+∞n=1xΛnnlogx1logx=n=1xΛnnlogx1
148 147 mpteq2dva φx1+∞n=1xΛnnlogx1logx=x1+∞n=1xΛnnlogx1
149 131 29 resubcld φx1+∞n=1xΛnnlogx
150 14 26 rerpdivcld φx1+∞1logx
151 19 ex φx1+∞x+
152 151 ssrdv φ1+∞+
153 vmadivsum x+n=1xΛnnlogx𝑂1
154 153 a1i φx+n=1xΛnnlogx𝑂1
155 152 154 o1res2 φx1+∞n=1xΛnnlogx𝑂1
156 divlogrlim x1+∞1logx0
157 rlimo1 x1+∞1logx0x1+∞1logx𝑂1
158 156 157 mp1i φx1+∞1logx𝑂1
159 149 150 155 158 o1mul2 φx1+∞n=1xΛnnlogx1logx𝑂1
160 148 159 eqeltrrd φx1+∞n=1xΛnnlogx1𝑂1
161 139 140 160 o1dif φx1+∞n=1xΛnnlogx𝑂1x1+∞1𝑂1
162 138 161 mpbird φx1+∞n=1xΛnnlogx𝑂1
163 130 132 135 162 o1mul2 φx1+∞An=1xΛnnlogx𝑂1
164 130 132 remulcld φx1+∞An=1xΛnnlogx
165 23 6 nndivred φx1+∞n1xlogxnn
166 94 165 remulcld φx1+∞n1x2logxnn
167 99 166 resubcld φx1+∞n1xm=1xnΛmlogm+ψxnmx2logxnn
168 8 167 remulcld φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx2logxnn
169 4 168 fsumrecl φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnn
170 169 26 rerpdivcld φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogx
171 170 recnd φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogx
172 169 recnd φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnn
173 172 abscld φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnn
174 130 131 remulcld φx1+∞An=1xΛnn
175 100 106 subcld φx1+∞n1xm=1xnΛmlogm+ψxnmx2logxnn
176 98 175 mulcld φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx2logxnn
177 176 abscld φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx2logxnn
178 4 177 fsumrecl φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnn
179 168 recnd φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx2logxnn
180 4 179 fsumabs φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnn=1xΛnm=1xnΛmlogm+ψxnmx2logxnn
181 130 adantr φx1+∞n1xA
182 181 9 remulcld φx1+∞n1xAΛnn
183 175 abscld φx1+∞n1xm=1xnΛmlogm+ψxnmx2logxnn
184 181 6 nndivred φx1+∞n1xAn
185 vmage0 n0Λn
186 6 185 syl φx1+∞n1x0Λn
187 108 109 103 91 104 divdiv2d φx1+∞n1xm=1xnΛmlogm+ψxnmxn=m=1xnΛmlogm+ψxnmnx
188 108 103 109 91 div23d φx1+∞n1xm=1xnΛmlogm+ψxnmnx=m=1xnΛmlogm+ψxnmxn
189 187 188 eqtrd φx1+∞n1xm=1xnΛmlogm+ψxnmxn=m=1xnΛmlogm+ψxnmxn
190 101 105 103 mulassd φx1+∞n1x2logxnnn=2logxnnn
191 102 103 104 divcan1d φx1+∞n1xlogxnnn=logxn
192 191 oveq2d φx1+∞n1x2logxnnn=2logxn
193 190 192 eqtr2d φx1+∞n1x2logxn=2logxnnn
194 189 193 oveq12d φx1+∞n1xm=1xnΛmlogm+ψxnmxn2logxn=m=1xnΛmlogm+ψxnmxn2logxnnn
195 100 106 103 subdird φx1+∞n1xm=1xnΛmlogm+ψxnmx2logxnnn=m=1xnΛmlogm+ψxnmxn2logxnnn
196 194 195 eqtr4d φx1+∞n1xm=1xnΛmlogm+ψxnmxn2logxn=m=1xnΛmlogm+ψxnmx2logxnnn
197 196 fveq2d φx1+∞n1xm=1xnΛmlogm+ψxnmxn2logxn=m=1xnΛmlogm+ψxnmx2logxnnn
198 175 103 absmuld φx1+∞n1xm=1xnΛmlogm+ψxnmx2logxnnn=m=1xnΛmlogm+ψxnmx2logxnnn
199 6 nnred φx1+∞n1xn
200 21 rpge0d φx1+∞n1x0n
201 199 200 absidd φx1+∞n1xn=n
202 201 oveq2d φx1+∞n1xm=1xnΛmlogm+ψxnmx2logxnnn=m=1xnΛmlogm+ψxnmx2logxnnn
203 197 198 202 3eqtrd φx1+∞n1xm=1xnΛmlogm+ψxnmxn2logxn=m=1xnΛmlogm+ψxnmx2logxnnn
204 fveq2 i=mΛi=Λm
205 fveq2 i=mlogi=logm
206 oveq2 i=myi=ym
207 206 fveq2d i=mψyi=ψym
208 205 207 oveq12d i=mlogi+ψyi=logm+ψym
209 204 208 oveq12d i=mΛilogi+ψyi=Λmlogm+ψym
210 209 cbvsumv i=1yΛilogi+ψyi=m=1yΛmlogm+ψym
211 fveq2 y=xny=xn
212 211 oveq2d y=xn1y=1xn
213 fvoveq1 y=xnψym=ψxnm
214 213 oveq2d y=xnlogm+ψym=logm+ψxnm
215 214 oveq2d y=xnΛmlogm+ψym=Λmlogm+ψxnm
216 215 adantr y=xnm1yΛmlogm+ψym=Λmlogm+ψxnm
217 212 216 sumeq12dv y=xnm=1yΛmlogm+ψym=m=1xnΛmlogm+ψxnm
218 210 217 eqtrid y=xni=1yΛilogi+ψyi=m=1xnΛmlogm+ψxnm
219 id y=xny=xn
220 218 219 oveq12d y=xni=1yΛilogi+ψyiy=m=1xnΛmlogm+ψxnmxn
221 fveq2 y=xnlogy=logxn
222 221 oveq2d y=xn2logy=2logxn
223 220 222 oveq12d y=xni=1yΛilogi+ψyiy2logy=m=1xnΛmlogm+ψxnmxn2logxn
224 223 fveq2d y=xni=1yΛilogi+ψyiy2logy=m=1xnΛmlogm+ψxnmxn2logxn
225 224 breq1d y=xni=1yΛilogi+ψyiy2logyAm=1xnΛmlogm+ψxnmxn2logxnA
226 2 ad2antrr φx1+∞n1xy1+∞i=1yΛilogi+ψyiy2logyA
227 103 mullidd φx1+∞n1x1n=n
228 fznnfl xn1xnnx
229 11 228 syl φx1+∞n1xnnx
230 229 simplbda φx1+∞n1xnx
231 227 230 eqbrtrd φx1+∞n1x1nx
232 1red φx1+∞n1x1
233 232 59 21 lemuldivd φx1+∞n1x1nx1xn
234 231 233 mpbid φx1+∞n1x1xn
235 1re 1
236 elicopnf 1xn1+∞xn1xn
237 235 236 ax-mp xn1+∞xn1xn
238 60 234 237 sylanbrc φx1+∞n1xxn1+∞
239 225 226 238 rspcdva φx1+∞n1xm=1xnΛmlogm+ψxnmxn2logxnA
240 203 239 eqbrtrrd φx1+∞n1xm=1xnΛmlogm+ψxnmx2logxnnnA
241 183 181 21 lemuldivd φx1+∞n1xm=1xnΛmlogm+ψxnmx2logxnnnAm=1xnΛmlogm+ψxnmx2logxnnAn
242 240 241 mpbid φx1+∞n1xm=1xnΛmlogm+ψxnmx2logxnnAn
243 183 184 8 186 242 lemul2ad φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx2logxnnΛnAn
244 98 175 absmuld φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx2logxnn=Λnm=1xnΛmlogm+ψxnmx2logxnn
245 8 186 absidd φx1+∞n1xΛn=Λn
246 245 oveq1d φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx2logxnn=Λnm=1xnΛmlogm+ψxnmx2logxnn
247 244 246 eqtrd φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx2logxnn=Λnm=1xnΛmlogm+ψxnmx2logxnn
248 133 ad2antrr φx1+∞n1xA
249 248 98 103 104 div12d φx1+∞n1xAΛnn=ΛnAn
250 243 247 249 3brtr4d φx1+∞n1xΛnm=1xnΛmlogm+ψxnmx2logxnnAΛnn
251 4 177 182 250 fsumle φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnn=1xAΛnn
252 133 adantr φx1+∞A
253 9 recnd φx1+∞n1xΛnn
254 4 252 253 fsummulc2 φx1+∞An=1xΛnn=n=1xAΛnn
255 251 254 breqtrrd φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnAn=1xΛnn
256 173 178 174 180 255 letrd φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnAn=1xΛnn
257 173 174 26 256 lediv1dd φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogxAn=1xΛnnlogx
258 252 141 33 75 divassd φx1+∞An=1xΛnnlogx=An=1xΛnnlogx
259 257 258 breqtrd φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogxAn=1xΛnnlogx
260 172 33 75 absdivd φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogx=n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogx
261 26 rpge0d φx1+∞0logx
262 29 261 absidd φx1+∞logx=logx
263 262 oveq2d φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogx=n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogx
264 260 263 eqtrd φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogx=n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogx
265 129 rpge0d φx1+∞0A
266 8 21 186 divge0d φx1+∞n1x0Λnn
267 4 9 266 fsumge0 φx1+∞0n=1xΛnn
268 131 26 267 divge0d φx1+∞0n=1xΛnnlogx
269 130 132 265 268 mulge0d φx1+∞0An=1xΛnnlogx
270 164 269 absidd φx1+∞An=1xΛnnlogx=An=1xΛnnlogx
271 259 264 270 3brtr4d φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogxAn=1xΛnnlogx
272 271 adantrr φx1+∞1xn=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogxAn=1xΛnnlogx
273 128 163 164 171 272 o1le φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmx2logxnnlogx𝑂1
274 127 273 eqeltrd φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogx-logx-2n=1xΛnnlogxnlogxlogx𝑂1
275 73 78 274 o1dif φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogxlogx𝑂1x1+∞2n=1xΛnnlogxnlogxlogx𝑂1
276 51 275 mpbird φx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogxlogx𝑂1