Metamath Proof Explorer


Theorem sqwvfourb

Description: Fourier series B coefficients for the square wave function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses sqwvfourb.t T=2π
sqwvfourb.f F=xifxmodT<π11
sqwvfourb.n φN
Assertion sqwvfourb φππFxsinNxdxπ=if2N04Nπ

Proof

Step Hyp Ref Expression
1 sqwvfourb.t T=2π
2 sqwvfourb.f F=xifxmodT<π11
3 sqwvfourb.n φN
4 pire π
5 4 renegcli π
6 5 a1i φπ
7 4 a1i φπ
8 0re 0
9 negpilt0 π<0
10 5 8 9 ltleii π0
11 pipos 0<π
12 8 4 11 ltleii 0π
13 5 4 elicc2i 0ππ0π00π
14 8 10 12 13 mpbir3an 0ππ
15 14 a1i φ0ππ
16 elioore xππx
17 16 adantl φxππx
18 1re 1
19 18 renegcli 1
20 18 19 ifcli ifxmodT<π11
21 2 fvmpt2 xifxmodT<π11Fx=ifxmodT<π11
22 17 20 21 sylancl φxππFx=ifxmodT<π11
23 20 a1i φxππifxmodT<π11
24 23 recnd φxππifxmodT<π11
25 22 24 eqeltrd φxππFx
26 3 nncnd φN
27 26 adantr φxππN
28 17 recnd φxππx
29 27 28 mulcld φxππNx
30 29 sincld φxππsinNx
31 25 30 mulcld φxππFxsinNx
32 elioore xπ0x
33 32 20 21 sylancl xπ0Fx=ifxmodT<π11
34 4 a1i xπ0π
35 2rp 2+
36 pirp π+
37 rpmulcl 2+π+2π+
38 35 36 37 mp2an 2π+
39 1 38 eqeltri T+
40 39 a1i xπ0T+
41 32 40 modcld xπ0xmodT
42 picn π
43 42 2timesi 2π=π+π
44 1 43 eqtri T=π+π
45 44 oveq2i -π+T=π+π+π
46 5 recni π
47 46 42 42 addassi π+π+π=π+π+π
48 42 negidi π+π=0
49 42 46 48 addcomli -π+π=0
50 49 oveq1i π+π+π=0+π
51 42 addlidi 0+π=π
52 50 51 eqtri π+π+π=π
53 45 47 52 3eqtr2ri π=-π+T
54 53 a1i xπ0π=-π+T
55 5 a1i xπ0π
56 2re 2
57 56 4 remulcli 2π
58 1 57 eqeltri T
59 58 a1i xπ0T
60 5 rexri π*
61 0xr 0*
62 ioogtlb π*0*xπ0π<x
63 60 61 62 mp3an12 xπ0π<x
64 55 32 59 63 ltadd1dd xπ0-π+T<x+T
65 54 64 eqbrtrd xπ0π<x+T
66 58 recni T
67 66 mullidi 1T=T
68 67 eqcomi T=1T
69 68 oveq2i x+T=x+1T
70 69 oveq1i x+TmodT=x+1TmodT
71 32 59 readdcld xπ0x+T
72 0red xπ00
73 11 a1i xπ00<π
74 72 34 71 73 65 lttrd xπ00<x+T
75 72 71 74 ltled xπ00x+T
76 iooltub π*0*xπ0x<0
77 60 61 76 mp3an12 xπ0x<0
78 32 72 59 77 ltadd1dd xπ0x+T<0+T
79 59 recnd xπ0T
80 79 addlidd xπ00+T=T
81 78 80 breqtrd xπ0x+T<T
82 modid x+TT+0x+Tx+T<Tx+TmodT=x+T
83 71 40 75 81 82 syl22anc xπ0x+TmodT=x+T
84 1zzd xπ01
85 modcyc xT+1x+1TmodT=xmodT
86 32 40 84 85 syl3anc xπ0x+1TmodT=xmodT
87 70 83 86 3eqtr3a xπ0x+T=xmodT
88 65 87 breqtrd xπ0π<xmodT
89 34 41 88 ltnsymd xπ0¬xmodT<π
90 89 iffalsed xπ0ifxmodT<π11=1
91 33 90 eqtrd xπ0Fx=1
92 91 adantl φxπ0Fx=1
93 92 oveq1d φxπ0FxsinNx=-1sinNx
94 93 mpteq2dva φxπ0FxsinNx=xπ0-1sinNx
95 neg1cn 1
96 95 a1i φ1
97 3 nnred φN
98 97 adantr φxπ0N
99 32 adantl φxπ0x
100 98 99 remulcld φxπ0Nx
101 100 resincld φxπ0sinNx
102 ioossicc π0π0
103 102 a1i φπ0π0
104 ioombl π0domvol
105 104 a1i φπ0domvol
106 97 adantr φxπ0N
107 iccssre π0π0
108 5 8 107 mp2an π0
109 108 sseli xπ0x
110 109 adantl φxπ0x
111 106 110 remulcld φxπ0Nx
112 111 resincld φxπ0sinNx
113 0red φ0
114 sincn sin:cn
115 114 a1i φsin:cn
116 ax-resscn
117 108 116 sstri π0
118 117 a1i φπ0
119 ssid
120 119 a1i φ
121 118 26 120 constcncfg φxπ0N:π0cn
122 118 120 idcncfg φxπ0x:π0cn
123 121 122 mulcncf φxπ0Nx:π0cn
124 115 123 cncfmpt1f φxπ0sinNx:π0cn
125 cniccibl π0xπ0sinNx:π0cnxπ0sinNx𝐿1
126 6 113 124 125 syl3anc φxπ0sinNx𝐿1
127 103 105 112 126 iblss φxπ0sinNx𝐿1
128 96 101 127 iblmulc2 φxπ0-1sinNx𝐿1
129 94 128 eqeltrd φxπ0FxsinNx𝐿1
130 60 a1i x0ππ*
131 4 rexri π*
132 131 a1i x0ππ*
133 elioore x0πx
134 5 a1i x0ππ
135 0red x0π0
136 9 a1i x0ππ<0
137 ioogtlb 0*π*x0π0<x
138 61 131 137 mp3an12 x0π0<x
139 134 135 133 136 138 lttrd x0ππ<x
140 iooltub 0*π*x0πx<π
141 61 131 140 mp3an12 x0πx<π
142 130 132 133 139 141 eliood x0πxππ
143 142 22 sylan2 φx0πFx=ifxmodT<π11
144 39 a1i x0πT+
145 135 133 138 ltled x0π0x
146 4 a1i x0ππ
147 58 a1i x0πT
148 2timesgt π+π<2π
149 36 148 ax-mp π<2π
150 149 1 breqtrri π<T
151 150 a1i x0ππ<T
152 133 146 147 141 151 lttrd x0πx<T
153 modid xT+0xx<TxmodT=x
154 133 144 145 152 153 syl22anc x0πxmodT=x
155 154 141 eqbrtrd x0πxmodT<π
156 155 iftrued x0πifxmodT<π11=1
157 156 adantl φx0πifxmodT<π11=1
158 143 157 eqtrd φx0πFx=1
159 158 oveq1d φx0πFxsinNx=1sinNx
160 142 30 sylan2 φx0πsinNx
161 160 mullidd φx0π1sinNx=sinNx
162 159 161 eqtrd φx0πFxsinNx=sinNx
163 162 mpteq2dva φx0πFxsinNx=x0πsinNx
164 ioossicc 0π0π
165 164 a1i φ0π0π
166 ioombl 0πdomvol
167 166 a1i φ0πdomvol
168 97 adantr φx0πN
169 iccssre 0π0π
170 8 4 169 mp2an 0π
171 170 sseli x0πx
172 171 adantl φx0πx
173 168 172 remulcld φx0πNx
174 173 resincld φx0πsinNx
175 170 116 sstri 0π
176 175 a1i φ0π
177 176 26 120 constcncfg φx0πN:0πcn
178 176 120 idcncfg φx0πx:0πcn
179 177 178 mulcncf φx0πNx:0πcn
180 115 179 cncfmpt1f φx0πsinNx:0πcn
181 cniccibl 0πx0πsinNx:0πcnx0πsinNx𝐿1
182 113 7 180 181 syl3anc φx0πsinNx𝐿1
183 165 167 174 182 iblss φx0πsinNx𝐿1
184 163 183 eqeltrd φx0πFxsinNx𝐿1
185 6 7 15 31 129 184 itgsplitioo φππFxsinNxdx=π0FxsinNxdx+0πFxsinNxdx
186 185 oveq1d φππFxsinNxdxπ=π0FxsinNxdx+0πFxsinNxdxπ
187 91 oveq1d xπ0FxsinNx=-1sinNx
188 187 adantl φxπ0FxsinNx=-1sinNx
189 60 a1i xπ0π*
190 131 a1i xπ0π*
191 32 72 34 77 73 lttrd xπ0x<π
192 189 190 32 63 191 eliood xπ0xππ
193 192 30 sylan2 φxπ0sinNx
194 193 mulm1d φxπ0-1sinNx=sinNx
195 188 194 eqtrd φxπ0FxsinNx=sinNx
196 195 itgeq2dv φπ0FxsinNxdx=π0sinNxdx
197 101 127 itgneg φπ0sinNxdx=π0sinNxdx
198 3 nnne0d φN0
199 10 a1i φπ0
200 26 198 6 113 199 itgsincmulx φπ0sinNxdx=cosNπcos N0N
201 3 nnzd φN
202 cosknegpi NcosNπ=if2N11
203 201 202 syl φcosNπ=if2N11
204 26 mul01d φ N0=0
205 204 fveq2d φcos N0=cos0
206 cos0 cos0=1
207 205 206 eqtrdi φcos N0=1
208 203 207 oveq12d φcosNπcos N0=if2N111
209 1m1e0 11=0
210 iftrue 2Nif2N11=1
211 210 oveq1d 2Nif2N111=11
212 iftrue 2Nif2N02=0
213 209 211 212 3eqtr4a 2Nif2N111=if2N02
214 iffalse ¬2Nif2N11=1
215 214 oveq1d ¬2Nif2N111=-1-1
216 ax-1cn 1
217 negdi2 111+1=-1-1
218 216 216 217 mp2an 1+1=-1-1
219 218 eqcomi -1-1=1+1
220 219 a1i ¬2N-1-1=1+1
221 1p1e2 1+1=2
222 221 negeqi 1+1=2
223 iffalse ¬2Nif2N02=2
224 222 223 eqtr4id ¬2N1+1=if2N02
225 215 220 224 3eqtrd ¬2Nif2N111=if2N02
226 213 225 pm2.61i if2N111=if2N02
227 208 226 eqtrdi φcosNπcos N0=if2N02
228 227 oveq1d φcosNπcos N0N=if2N02N
229 200 228 eqtrd φπ0sinNxdx=if2N02N
230 229 negeqd φπ0sinNxdx=if2N02N
231 0cn 0
232 2cn 2
233 232 negcli 2
234 231 233 ifcli if2N02
235 234 a1i φif2N02
236 235 26 198 divnegd φif2N02N=if2N02N
237 neg0 0=0
238 212 negeqd 2Nif2N02=0
239 iftrue 2Nif2N02=0
240 237 238 239 3eqtr4a 2Nif2N02=if2N02
241 232 negnegi -2=2
242 223 negeqd ¬2Nif2N02=-2
243 iffalse ¬2Nif2N02=2
244 241 242 243 3eqtr4a ¬2Nif2N02=if2N02
245 240 244 pm2.61i if2N02=if2N02
246 245 oveq1i if2N02N=if2N02N
247 246 a1i φif2N02N=if2N02N
248 230 236 247 3eqtrd φπ0sinNxdx=if2N02N
249 196 197 248 3eqtr2d φπ0FxsinNxdx=if2N02N
250 133 20 21 sylancl x0πFx=ifxmodT<π11
251 250 156 eqtrd x0πFx=1
252 251 oveq1d x0πFxsinNx=1sinNx
253 252 adantl φx0πFxsinNx=1sinNx
254 253 161 eqtrd φx0πFxsinNx=sinNx
255 254 itgeq2dv φ0πFxsinNxdx=0πsinNxdx
256 12 a1i φ0π
257 26 198 113 7 256 itgsincmulx φ0πsinNxdx=cos N0cosNπN
258 coskpi2 NcosNπ=if2N11
259 201 258 syl φcosNπ=if2N11
260 207 259 oveq12d φcos N0cosNπ=1if2N11
261 210 oveq2d 2N1if2N11=11
262 209 261 239 3eqtr4a 2N1if2N11=if2N02
263 214 oveq2d ¬2N1if2N11=1-1
264 216 216 subnegi 1-1=1+1
265 264 a1i ¬2N1-1=1+1
266 221 243 eqtr4id ¬2N1+1=if2N02
267 263 265 266 3eqtrd ¬2N1if2N11=if2N02
268 262 267 pm2.61i 1if2N11=if2N02
269 260 268 eqtrdi φcos N0cosNπ=if2N02
270 269 oveq1d φcos N0cosNπN=if2N02N
271 255 257 270 3eqtrd φ0πFxsinNxdx=if2N02N
272 249 271 oveq12d φπ0FxsinNxdx+0πFxsinNxdx=if2N02N+if2N02N
273 231 232 ifcli if2N02
274 273 a1i φif2N02
275 274 274 26 198 divdird φif2N02+if2N02N=if2N02N+if2N02N
276 239 239 oveq12d 2Nif2N02+if2N02=0+0
277 00id 0+0=0
278 276 277 eqtrdi 2Nif2N02+if2N02=0
279 278 oveq1d 2Nif2N02+if2N02N=0N
280 279 adantl φ2Nif2N02+if2N02N=0N
281 26 198 div0d φ0N=0
282 281 adantr φ2N0N=0
283 iftrue 2Nif2N04N=0
284 283 eqcomd 2N0=if2N04N
285 284 adantl φ2N0=if2N04N
286 280 282 285 3eqtrd φ2Nif2N02+if2N02N=if2N04N
287 243 243 oveq12d ¬2Nif2N02+if2N02=2+2
288 2p2e4 2+2=4
289 287 288 eqtrdi ¬2Nif2N02+if2N02=4
290 289 oveq1d ¬2Nif2N02+if2N02N=4N
291 iffalse ¬2Nif2N04N=4N
292 290 291 eqtr4d ¬2Nif2N02+if2N02N=if2N04N
293 292 adantl φ¬2Nif2N02+if2N02N=if2N04N
294 286 293 pm2.61dan φif2N02+if2N02N=if2N04N
295 272 275 294 3eqtr2d φπ0FxsinNxdx+0πFxsinNxdx=if2N04N
296 295 oveq1d φπ0FxsinNxdx+0πFxsinNxdxπ=if2N04Nπ
297 283 oveq1d 2Nif2N04Nπ=0π
298 297 adantl φ2Nif2N04Nπ=0π
299 8 11 gtneii π0
300 42 299 div0i 0π=0
301 300 a1i φ2N0π=0
302 iftrue 2Nif2N04Nπ=0
303 302 eqcomd 2N0=if2N04Nπ
304 303 adantl φ2N0=if2N04Nπ
305 298 301 304 3eqtrd φ2Nif2N04Nπ=if2N04Nπ
306 291 oveq1d ¬2Nif2N04Nπ=4Nπ
307 306 adantl φ¬2Nif2N04Nπ=4Nπ
308 4cn 4
309 308 a1i φ4
310 42 a1i φπ
311 299 a1i φπ0
312 309 26 310 198 311 divdiv1d φ4Nπ=4Nπ
313 312 adantr φ¬2N4Nπ=4Nπ
314 iffalse ¬2Nif2N04Nπ=4Nπ
315 314 eqcomd ¬2N4Nπ=if2N04Nπ
316 315 adantl φ¬2N4Nπ=if2N04Nπ
317 307 313 316 3eqtrd φ¬2Nif2N04Nπ=if2N04Nπ
318 305 317 pm2.61dan φif2N04Nπ=if2N04Nπ
319 186 296 318 3eqtrd φππFxsinNxdxπ=if2N04Nπ