Metamath Proof Explorer


Theorem subfacp1lem6

Description: Lemma for subfacp1 . By induction, we cut up the set of all derangements on N + 1 according to the N possible values of ( f1 ) (since ( f1 ) =/= 1 ), and for each set for fixed M = ( f1 ) , the subset of derangements with ( fM ) = 1 has size S ( N - 1 ) (by subfacp1lem3 ), while the subset with ( fM ) =/= 1 has size S ( N ) (by subfacp1lem5 ). Adding it all up yields the desired equation N ( S ( N ) + S ( N - 1 ) ) for the number of derangements on N + 1 . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses derang.d D=xFinf|f:x1-1 ontoxyxfyy
subfac.n S=n0D1n
subfacp1lem.a A=f|f:1N+11-1 onto1N+1y1N+1fyy
Assertion subfacp1lem6 NSN+1=NSN+SN1

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 subfac.n S=n0D1n
3 subfacp1lem.a A=f|f:1N+11-1 onto1N+1y1N+1fyy
4 peano2nn NN+1
5 4 nnnn0d NN+10
6 1 2 subfacval N+10SN+1=D1N+1
7 5 6 syl NSN+1=D1N+1
8 fzfid N1N+1Fin
9 1 derangval 1N+1FinD1N+1=f|f:1N+11-1 onto1N+1y1N+1fyy
10 8 9 syl ND1N+1=f|f:1N+11-1 onto1N+1y1N+1fyy
11 3 fveq2i A=f|f:1N+11-1 onto1N+1y1N+1fyy
12 10 11 eqtr4di ND1N+1=A
13 nnuz =1
14 4 13 eleqtrdi NN+11
15 eluzfz1 N+1111N+1
16 14 15 syl N11N+1
17 f1of f:1N+11-1 onto1N+1f:1N+11N+1
18 17 adantr f:1N+11-1 onto1N+1y1N+1fyyf:1N+11N+1
19 ffvelcdm f:1N+11N+111N+1f11N+1
20 19 expcom 11N+1f:1N+11N+1f11N+1
21 16 18 20 syl2im Nf:1N+11-1 onto1N+1y1N+1fyyf11N+1
22 21 ss2abdv Nf|f:1N+11-1 onto1N+1y1N+1fyyf|f11N+1
23 fveq1 g=fg1=f1
24 23 eleq1d g=fg11N+1f11N+1
25 24 cbvabv g|g11N+1=f|f11N+1
26 22 3 25 3sstr4g NAg|g11N+1
27 ssabral Ag|g11N+1gAg11N+1
28 26 27 sylib NgAg11N+1
29 rabid2 A=gA|g11N+1gAg11N+1
30 28 29 sylibr NA=gA|g11N+1
31 30 fveq2d NA=gA|g11N+1
32 7 12 31 3eqtrd NSN+1=gA|g11N+1
33 elfz1end N+1N+11N+1
34 4 33 sylib NN+11N+1
35 eleq1 x=1x1N+111N+1
36 oveq2 x=11x=11
37 1z 1
38 fzsn 111=1
39 37 38 ax-mp 11=1
40 36 39 eqtrdi x=11x=1
41 40 eleq2d x=1g11xg11
42 fvex g1V
43 42 elsn g11g1=1
44 41 43 bitrdi x=1g11xg1=1
45 44 rabbidv x=1gA|g11x=gA|g1=1
46 45 fveq2d x=1gA|g11x=gA|g1=1
47 oveq1 x=1x1=11
48 1m1e0 11=0
49 47 48 eqtrdi x=1x1=0
50 49 oveq1d x=1x1SN+SN1=0SN+SN1
51 46 50 eqeq12d x=1gA|g11x=x1SN+SN1gA|g1=1=0SN+SN1
52 35 51 imbi12d x=1x1N+1gA|g11x=x1SN+SN111N+1gA|g1=1=0SN+SN1
53 52 imbi2d x=1Nx1N+1gA|g11x=x1SN+SN1N11N+1gA|g1=1=0SN+SN1
54 eleq1 x=mx1N+1m1N+1
55 oveq2 x=m1x=1m
56 55 eleq2d x=mg11xg11m
57 56 rabbidv x=mgA|g11x=gA|g11m
58 57 fveq2d x=mgA|g11x=gA|g11m
59 oveq1 x=mx1=m1
60 59 oveq1d x=mx1SN+SN1=m1SN+SN1
61 58 60 eqeq12d x=mgA|g11x=x1SN+SN1gA|g11m=m1SN+SN1
62 54 61 imbi12d x=mx1N+1gA|g11x=x1SN+SN1m1N+1gA|g11m=m1SN+SN1
63 62 imbi2d x=mNx1N+1gA|g11x=x1SN+SN1Nm1N+1gA|g11m=m1SN+SN1
64 eleq1 x=m+1x1N+1m+11N+1
65 oveq2 x=m+11x=1m+1
66 65 eleq2d x=m+1g11xg11m+1
67 66 rabbidv x=m+1gA|g11x=gA|g11m+1
68 67 fveq2d x=m+1gA|g11x=gA|g11m+1
69 oveq1 x=m+1x1=m+1-1
70 69 oveq1d x=m+1x1SN+SN1=m+1-1SN+SN1
71 68 70 eqeq12d x=m+1gA|g11x=x1SN+SN1gA|g11m+1=m+1-1SN+SN1
72 64 71 imbi12d x=m+1x1N+1gA|g11x=x1SN+SN1m+11N+1gA|g11m+1=m+1-1SN+SN1
73 72 imbi2d x=m+1Nx1N+1gA|g11x=x1SN+SN1Nm+11N+1gA|g11m+1=m+1-1SN+SN1
74 eleq1 x=N+1x1N+1N+11N+1
75 oveq2 x=N+11x=1N+1
76 75 eleq2d x=N+1g11xg11N+1
77 76 rabbidv x=N+1gA|g11x=gA|g11N+1
78 77 fveq2d x=N+1gA|g11x=gA|g11N+1
79 oveq1 x=N+1x1=N+1-1
80 79 oveq1d x=N+1x1SN+SN1=N+1-1SN+SN1
81 78 80 eqeq12d x=N+1gA|g11x=x1SN+SN1gA|g11N+1=N+1-1SN+SN1
82 74 81 imbi12d x=N+1x1N+1gA|g11x=x1SN+SN1N+11N+1gA|g11N+1=N+1-1SN+SN1
83 82 imbi2d x=N+1Nx1N+1gA|g11x=x1SN+SN1NN+11N+1gA|g11N+1=N+1-1SN+SN1
84 hash0 =0
85 fveq2 y=1fy=f1
86 id y=1y=1
87 85 86 neeq12d y=1fyyf11
88 87 rspcv 11N+1y1N+1fyyf11
89 16 88 syl Ny1N+1fyyf11
90 89 adantld Nf:1N+11-1 onto1N+1y1N+1fyyf11
91 90 ss2abdv Nf|f:1N+11-1 onto1N+1y1N+1fyyf|f11
92 df-ne g11¬g1=1
93 23 neeq1d g=fg11f11
94 92 93 bitr3id g=f¬g1=1f11
95 94 cbvabv g|¬g1=1=f|f11
96 91 3 95 3sstr4g NAg|¬g1=1
97 ssabral Ag|¬g1=1gA¬g1=1
98 96 97 sylib NgA¬g1=1
99 rabeq0 gA|g1=1=gA¬g1=1
100 98 99 sylibr NgA|g1=1=
101 100 fveq2d NgA|g1=1=
102 nnnn0 NN0
103 1 2 subfacf S:00
104 103 ffvelcdmi N0SN0
105 102 104 syl NSN0
106 nnm1nn0 NN10
107 103 ffvelcdmi N10SN10
108 106 107 syl NSN10
109 105 108 nn0addcld NSN+SN10
110 109 nn0cnd NSN+SN1
111 110 mul02d N0SN+SN1=0
112 84 101 111 3eqtr4a NgA|g1=1=0SN+SN1
113 112 a1d N11N+1gA|g1=1=0SN+SN1
114 simplr Nmm+11N+1m
115 114 13 eleqtrdi Nmm+11N+1m1
116 peano2fzr m1m+11N+1m1N+1
117 115 116 sylancom Nmm+11N+1m1N+1
118 117 ex Nmm+11N+1m1N+1
119 118 imim1d Nmm1N+1gA|g11m=m1SN+SN1m+11N+1gA|g11m=m1SN+SN1
120 oveq1 gA|g11m=m1SN+SN1gA|g11m+gA|g1=m+1=m1SN+SN1+gA|g1=m+1
121 elfzp1 m1g11m+1g11mg1=m+1
122 115 121 syl Nmm+11N+1g11m+1g11mg1=m+1
123 122 rabbidv Nmm+11N+1gA|g11m+1=gA|g11mg1=m+1
124 unrab gA|g11mgA|g1=m+1=gA|g11mg1=m+1
125 123 124 eqtr4di Nmm+11N+1gA|g11m+1=gA|g11mgA|g1=m+1
126 125 fveq2d Nmm+11N+1gA|g11m+1=gA|g11mgA|g1=m+1
127 fzfi 1N+1Fin
128 deranglem 1N+1Finf|f:1N+11-1 onto1N+1y1N+1fyyFin
129 127 128 ax-mp f|f:1N+11-1 onto1N+1y1N+1fyyFin
130 3 129 eqeltri AFin
131 ssrab2 gA|g11mA
132 ssfi AFingA|g11mAgA|g11mFin
133 130 131 132 mp2an gA|g11mFin
134 ssrab2 gA|g1=m+1A
135 ssfi AFingA|g1=m+1AgA|g1=m+1Fin
136 130 134 135 mp2an gA|g1=m+1Fin
137 inrab gA|g11mgA|g1=m+1=gA|g11mg1=m+1
138 fzp1disj 1mm+1=
139 42 elsn g1m+1g1=m+1
140 inelcm g11mg1m+11mm+1
141 139 140 sylan2br g11mg1=m+11mm+1
142 141 necon2bi 1mm+1=¬g11mg1=m+1
143 138 142 ax-mp ¬g11mg1=m+1
144 143 rgenw gA¬g11mg1=m+1
145 rabeq0 gA|g11mg1=m+1=gA¬g11mg1=m+1
146 144 145 mpbir gA|g11mg1=m+1=
147 137 146 eqtri gA|g11mgA|g1=m+1=
148 hashun gA|g11mFingA|g1=m+1FingA|g11mgA|g1=m+1=gA|g11mgA|g1=m+1=gA|g11m+gA|g1=m+1
149 133 136 147 148 mp3an gA|g11mgA|g1=m+1=gA|g11m+gA|g1=m+1
150 126 149 eqtrdi Nmm+11N+1gA|g11m+1=gA|g11m+gA|g1=m+1
151 nncn mm
152 151 ad2antlr Nmm+11N+1m
153 ax-1cn 1
154 153 a1i Nmm+11N+11
155 152 154 154 addsubd Nmm+11N+1m+1-1=m-1+1
156 155 oveq1d Nmm+11N+1m+1-1SN+SN1=m-1+1SN+SN1
157 subcl m1m1
158 152 153 157 sylancl Nmm+11N+1m1
159 109 ad2antrr Nmm+11N+1SN+SN10
160 159 nn0cnd Nmm+11N+1SN+SN1
161 158 154 160 adddird Nmm+11N+1m-1+1SN+SN1=m1SN+SN1+1SN+SN1
162 160 mullidd Nmm+11N+11SN+SN1=SN+SN1
163 exmidne gm+1=1gm+11
164 orcom gm+1=1gm+11gm+11gm+1=1
165 163 164 mpbi gm+11gm+1=1
166 165 biantru g1=m+1g1=m+1gm+11gm+1=1
167 andi g1=m+1gm+11gm+1=1g1=m+1gm+11g1=m+1gm+1=1
168 166 167 bitri g1=m+1g1=m+1gm+11g1=m+1gm+1=1
169 168 rabbii gA|g1=m+1=gA|g1=m+1gm+11g1=m+1gm+1=1
170 unrab gA|g1=m+1gm+11gA|g1=m+1gm+1=1=gA|g1=m+1gm+11g1=m+1gm+1=1
171 169 170 eqtr4i gA|g1=m+1=gA|g1=m+1gm+11gA|g1=m+1gm+1=1
172 171 fveq2i gA|g1=m+1=gA|g1=m+1gm+11gA|g1=m+1gm+1=1
173 ssrab2 gA|g1=m+1gm+11A
174 ssfi AFingA|g1=m+1gm+11AgA|g1=m+1gm+11Fin
175 130 173 174 mp2an gA|g1=m+1gm+11Fin
176 ssrab2 gA|g1=m+1gm+1=1A
177 ssfi AFingA|g1=m+1gm+1=1AgA|g1=m+1gm+1=1Fin
178 130 176 177 mp2an gA|g1=m+1gm+1=1Fin
179 inrab gA|g1=m+1gm+11gA|g1=m+1gm+1=1=gA|g1=m+1gm+11g1=m+1gm+1=1
180 simpr g1=m+1gm+1=1gm+1=1
181 180 necon3ai gm+11¬g1=m+1gm+1=1
182 181 adantl g1=m+1gm+11¬g1=m+1gm+1=1
183 imnan g1=m+1gm+11¬g1=m+1gm+1=1¬g1=m+1gm+11g1=m+1gm+1=1
184 182 183 mpbi ¬g1=m+1gm+11g1=m+1gm+1=1
185 184 rgenw gA¬g1=m+1gm+11g1=m+1gm+1=1
186 rabeq0 gA|g1=m+1gm+11g1=m+1gm+1=1=gA¬g1=m+1gm+11g1=m+1gm+1=1
187 185 186 mpbir gA|g1=m+1gm+11g1=m+1gm+1=1=
188 179 187 eqtri gA|g1=m+1gm+11gA|g1=m+1gm+1=1=
189 hashun gA|g1=m+1gm+11FingA|g1=m+1gm+1=1FingA|g1=m+1gm+11gA|g1=m+1gm+1=1=gA|g1=m+1gm+11gA|g1=m+1gm+1=1=gA|g1=m+1gm+11+gA|g1=m+1gm+1=1
190 175 178 188 189 mp3an gA|g1=m+1gm+11gA|g1=m+1gm+1=1=gA|g1=m+1gm+11+gA|g1=m+1gm+1=1
191 172 190 eqtri gA|g1=m+1=gA|g1=m+1gm+11+gA|g1=m+1gm+1=1
192 simpll Nmm+11N+1N
193 nnne0 mm0
194 0p1e1 0+1=1
195 194 eqeq2i m+1=0+1m+1=1
196 0cn 0
197 addcan2 m01m+1=0+1m=0
198 196 153 197 mp3an23 mm+1=0+1m=0
199 151 198 syl mm+1=0+1m=0
200 195 199 bitr3id mm+1=1m=0
201 200 necon3bbid m¬m+1=1m0
202 193 201 mpbird m¬m+1=1
203 202 ad2antlr Nmm+11N+1¬m+1=1
204 14 adantr NmN+11
205 elfzp12 N+11m+11N+1m+1=1m+11+1N+1
206 204 205 syl Nmm+11N+1m+1=1m+11+1N+1
207 206 biimpa Nmm+11N+1m+1=1m+11+1N+1
208 207 ord Nmm+11N+1¬m+1=1m+11+1N+1
209 203 208 mpd Nmm+11N+1m+11+1N+1
210 df-2 2=1+1
211 210 oveq1i 2N+1=1+1N+1
212 209 211 eleqtrrdi Nmm+11N+1m+12N+1
213 ovex m+1V
214 eqid 2N+1m+1=2N+1m+1
215 fveq1 g=hg1=h1
216 215 eqeq1d g=hg1=m+1h1=m+1
217 fveq1 g=hgm+1=hm+1
218 217 neeq1d g=hgm+11hm+11
219 216 218 anbi12d g=hg1=m+1gm+11h1=m+1hm+11
220 219 cbvrabv gA|g1=m+1gm+11=hA|h1=m+1hm+11
221 eqid I2N+1m+11m+1m+11=I2N+1m+11m+1m+11
222 f1oeq1 g=fg:2N+11-1 onto2N+1f:2N+11-1 onto2N+1
223 fveq2 z=ygz=gy
224 id z=yz=y
225 223 224 neeq12d z=ygzzgyy
226 225 cbvralvw z2N+1gzzy2N+1gyy
227 fveq1 g=fgy=fy
228 227 neeq1d g=fgyyfyy
229 228 ralbidv g=fy2N+1gyyy2N+1fyy
230 226 229 bitrid g=fz2N+1gzzy2N+1fyy
231 222 230 anbi12d g=fg:2N+11-1 onto2N+1z2N+1gzzf:2N+11-1 onto2N+1y2N+1fyy
232 231 cbvabv g|g:2N+11-1 onto2N+1z2N+1gzz=f|f:2N+11-1 onto2N+1y2N+1fyy
233 1 2 3 192 212 213 214 220 221 232 subfacp1lem5 Nmm+11N+1gA|g1=m+1gm+11=SN
234 217 eqeq1d g=hgm+1=1hm+1=1
235 216 234 anbi12d g=hg1=m+1gm+1=1h1=m+1hm+1=1
236 235 cbvrabv gA|g1=m+1gm+1=1=hA|h1=m+1hm+1=1
237 f1oeq1 g=fg:2N+1m+11-1 onto2N+1m+1f:2N+1m+11-1 onto2N+1m+1
238 225 cbvralvw z2N+1m+1gzzy2N+1m+1gyy
239 228 ralbidv g=fy2N+1m+1gyyy2N+1m+1fyy
240 238 239 bitrid g=fz2N+1m+1gzzy2N+1m+1fyy
241 237 240 anbi12d g=fg:2N+1m+11-1 onto2N+1m+1z2N+1m+1gzzf:2N+1m+11-1 onto2N+1m+1y2N+1m+1fyy
242 241 cbvabv g|g:2N+1m+11-1 onto2N+1m+1z2N+1m+1gzz=f|f:2N+1m+11-1 onto2N+1m+1y2N+1m+1fyy
243 1 2 3 192 212 213 214 236 242 subfacp1lem3 Nmm+11N+1gA|g1=m+1gm+1=1=SN1
244 233 243 oveq12d Nmm+11N+1gA|g1=m+1gm+11+gA|g1=m+1gm+1=1=SN+SN1
245 191 244 eqtrid Nmm+11N+1gA|g1=m+1=SN+SN1
246 162 245 eqtr4d Nmm+11N+11SN+SN1=gA|g1=m+1
247 246 oveq2d Nmm+11N+1m1SN+SN1+1SN+SN1=m1SN+SN1+gA|g1=m+1
248 156 161 247 3eqtrd Nmm+11N+1m+1-1SN+SN1=m1SN+SN1+gA|g1=m+1
249 150 248 eqeq12d Nmm+11N+1gA|g11m+1=m+1-1SN+SN1gA|g11m+gA|g1=m+1=m1SN+SN1+gA|g1=m+1
250 120 249 imbitrrid Nmm+11N+1gA|g11m=m1SN+SN1gA|g11m+1=m+1-1SN+SN1
251 250 ex Nmm+11N+1gA|g11m=m1SN+SN1gA|g11m+1=m+1-1SN+SN1
252 251 a2d Nmm+11N+1gA|g11m=m1SN+SN1m+11N+1gA|g11m+1=m+1-1SN+SN1
253 119 252 syld Nmm1N+1gA|g11m=m1SN+SN1m+11N+1gA|g11m+1=m+1-1SN+SN1
254 253 expcom mNm1N+1gA|g11m=m1SN+SN1m+11N+1gA|g11m+1=m+1-1SN+SN1
255 254 a2d mNm1N+1gA|g11m=m1SN+SN1Nm+11N+1gA|g11m+1=m+1-1SN+SN1
256 53 63 73 83 113 255 nnind N+1NN+11N+1gA|g11N+1=N+1-1SN+SN1
257 4 256 mpcom NN+11N+1gA|g11N+1=N+1-1SN+SN1
258 34 257 mpd NgA|g11N+1=N+1-1SN+SN1
259 nncn NN
260 pncan N1N+1-1=N
261 259 153 260 sylancl NN+1-1=N
262 261 oveq1d NN+1-1SN+SN1=NSN+SN1
263 32 258 262 3eqtrd NSN+1=NSN+SN1