Metamath Proof Explorer


Theorem evlsvvval

Description: Give a formula for the evaluation of a polynomial given assignments from variables to values. This is the sum of the evaluations for each term (corresponding to a bag of variables), that is, the coefficient times the product of each variable raised to the corresponding power. (Contributed by SN, 5-Mar-2025)

Ref Expression
Hypotheses evlsvvval.q Q=IevalSubSR
evlsvvval.p P=ImPolyU
evlsvvval.b B=BaseP
evlsvvval.u U=S𝑠R
evlsvvval.d D=h0I|h-1Fin
evlsvvval.k K=BaseS
evlsvvval.m M=mulGrpS
evlsvvval.w ×˙=M
evlsvvval.x ·˙=S
evlsvvval.i φIV
evlsvvval.s φSCRing
evlsvvval.r φRSubRingS
evlsvvval.f φFB
evlsvvval.a φAKI
Assertion evlsvvval φQFA=SbDFb·˙MiIbi×˙Ai

Proof

Step Hyp Ref Expression
1 evlsvvval.q Q=IevalSubSR
2 evlsvvval.p P=ImPolyU
3 evlsvvval.b B=BaseP
4 evlsvvval.u U=S𝑠R
5 evlsvvval.d D=h0I|h-1Fin
6 evlsvvval.k K=BaseS
7 evlsvvval.m M=mulGrpS
8 evlsvvval.w ×˙=M
9 evlsvvval.x ·˙=S
10 evlsvvval.i φIV
11 evlsvvval.s φSCRing
12 evlsvvval.r φRSubRingS
13 evlsvvval.f φFB
14 evlsvvval.a φAKI
15 fveq1 l=Ali=Ai
16 15 oveq2d l=Abi×˙li=bi×˙Ai
17 16 mpteq2dv l=AiIbi×˙li=iIbi×˙Ai
18 17 oveq2d l=AMiIbi×˙li=MiIbi×˙Ai
19 18 oveq2d l=AFb·˙MiIbi×˙li=Fb·˙MiIbi×˙Ai
20 19 mpteq2dv l=AbDFb·˙MiIbi×˙li=bDFb·˙MiIbi×˙Ai
21 20 oveq2d l=ASbDFb·˙MiIbi×˙li=SbDFb·˙MiIbi×˙Ai
22 eqid S𝑠KI=S𝑠KI
23 eqid mulGrpS𝑠KI=mulGrpS𝑠KI
24 eqid mulGrpS𝑠KI=mulGrpS𝑠KI
25 eqid S𝑠KI=S𝑠KI
26 eqid xRKI×x=xRKI×x
27 eqid xIaKIax=xIaKIax
28 1 2 3 5 6 4 22 23 24 25 26 27 10 11 12 13 evlsvval φQF=S𝑠KIbDxRKI×xFbS𝑠KImulGrpS𝑠KIbmulGrpS𝑠KIfxIaKIax
29 sneq x=Fbx=Fb
30 29 xpeq2d x=FbKI×x=KI×Fb
31 eqid BaseU=BaseU
32 2 31 3 5 13 mplelf φF:DBaseU
33 4 subrgbas RSubRingSR=BaseU
34 12 33 syl φR=BaseU
35 34 feq3d φF:DRF:DBaseU
36 32 35 mpbird φF:DR
37 36 ffvelcdmda φbDFbR
38 ovex KIV
39 snex FbV
40 38 39 xpex KI×FbV
41 40 a1i φbDKI×FbV
42 26 30 37 41 fvmptd3 φbDxRKI×xFb=KI×Fb
43 5 psrbagf bDb:I0
44 43 adantl φbDb:I0
45 44 ffnd φbDbFnI
46 38 mptex aKIaxV
47 46 27 fnmpti xIaKIaxFnI
48 47 a1i φbDxIaKIaxFnI
49 10 adantr φbDIV
50 inidm II=I
51 eqidd φbDiIbi=bi
52 fveq2 x=iax=ai
53 52 mpteq2dv x=iaKIax=aKIai
54 simpr φbDiIiI
55 eqid BaseS𝑠KI=BaseS𝑠KI
56 11 ad2antrr φbDiISCRing
57 ovexd φbDiIKIV
58 elmapi aKIa:IK
59 58 ffvelcdmda aKIiIaiK
60 59 ancoms iIaKIaiK
61 60 adantll φbDiIaKIaiK
62 61 fmpttd φbDiIaKIai:KIK
63 22 6 55 56 57 62 pwselbasr φbDiIaKIaiBaseS𝑠KI
64 27 53 54 63 fvmptd3 φbDiIxIaKIaxi=aKIai
65 45 48 49 49 50 51 64 offval φbDbmulGrpS𝑠KIfxIaKIax=iIbimulGrpS𝑠KIaKIai
66 23 55 mgpbas BaseS𝑠KI=BasemulGrpS𝑠KI
67 11 crngringd φSRing
68 ovexd φKIV
69 22 pwsring SRingKIVS𝑠KIRing
70 67 68 69 syl2anc φS𝑠KIRing
71 23 ringmgp S𝑠KIRingmulGrpS𝑠KIMnd
72 70 71 syl φmulGrpS𝑠KIMnd
73 72 ad2antrr φbDiImulGrpS𝑠KIMnd
74 44 ffvelcdmda φbDiIbi0
75 66 24 73 74 63 mulgnn0cld φbDiIbimulGrpS𝑠KIaKIaiBaseS𝑠KI
76 22 6 55 56 57 75 pwselbas φbDiIbimulGrpS𝑠KIaKIai:KIK
77 76 ffnd φbDiIbimulGrpS𝑠KIaKIaiFnKI
78 ovex bi×˙miV
79 eqid mKIbi×˙mi=mKIbi×˙mi
80 78 79 fnmpti mKIbi×˙miFnKI
81 80 a1i φbDiImKIbi×˙miFnKI
82 eqid aKIai=aKIai
83 fveq1 a=pai=pi
84 simpr φbDiIpKIpKI
85 fvexd φbDiIpKIpiV
86 82 83 84 85 fvmptd3 φbDiIpKIaKIaip=pi
87 86 oveq2d φbDiIpKIbi×˙aKIaip=bi×˙pi
88 67 ad3antrrr φbDiIpKISRing
89 ovexd φbDiIpKIKIV
90 74 adantr φbDiIpKIbi0
91 63 adantr φbDiIpKIaKIaiBaseS𝑠KI
92 22 55 23 7 24 8 88 89 90 91 84 pwsexpg φbDiIpKIbimulGrpS𝑠KIaKIaip=bi×˙aKIaip
93 fveq1 m=pmi=pi
94 93 oveq2d m=pbi×˙mi=bi×˙pi
95 ovexd φbDiIpKIbi×˙piV
96 79 94 84 95 fvmptd3 φbDiIpKImKIbi×˙mip=bi×˙pi
97 87 92 96 3eqtr4d φbDiIpKIbimulGrpS𝑠KIaKIaip=mKIbi×˙mip
98 77 81 97 eqfnfvd φbDiIbimulGrpS𝑠KIaKIai=mKIbi×˙mi
99 98 mpteq2dva φbDiIbimulGrpS𝑠KIaKIai=iImKIbi×˙mi
100 65 99 eqtrd φbDbmulGrpS𝑠KIfxIaKIax=iImKIbi×˙mi
101 100 oveq2d φbDmulGrpS𝑠KIbmulGrpS𝑠KIfxIaKIax=mulGrpS𝑠KIiImKIbi×˙mi
102 eqid 1S𝑠KI=1S𝑠KI
103 ovexd φbDKIV
104 11 adantr φbDSCRing
105 7 6 mgpbas K=BaseM
106 7 ringmgp SRingMMnd
107 67 106 syl φMMnd
108 107 ad2antrr φbDmKIiIMMnd
109 74 adantrl φbDmKIiIbi0
110 elmapi mKIm:IK
111 110 ffvelcdmda mKIiImiK
112 111 adantl φbDmKIiImiK
113 105 8 108 109 112 mulgnn0cld φbDmKIiIbi×˙miK
114 49 mptexd φbDiImKIbi×˙miV
115 fvexd φbD1S𝑠KIV
116 funmpt FuniImKIbi×˙mi
117 116 a1i φbDFuniImKIbi×˙mi
118 5 psrbagfsupp bDfinSupp0b
119 118 adantl φbDfinSupp0b
120 ssidd φbDbsupp0bsupp0
121 0cnd φbD0
122 44 120 49 121 suppssr φbDiIsupp0bbi=0
123 122 oveq1d φbDiIsupp0bbi×˙mi=0×˙mi
124 123 adantr φbDiIsupp0bmKIbi×˙mi=0×˙mi
125 eldifi iIsupp0biI
126 125 111 sylan2 mKIiIsupp0bmiK
127 126 ancoms iIsupp0bmKImiK
128 127 adantll φbDiIsupp0bmKImiK
129 eqid 1S=1S
130 7 129 ringidval 1S=0M
131 105 130 8 mulg0 miK0×˙mi=1S
132 128 131 syl φbDiIsupp0bmKI0×˙mi=1S
133 124 132 eqtrd φbDiIsupp0bmKIbi×˙mi=1S
134 133 mpteq2dva φbDiIsupp0bmKIbi×˙mi=mKI1S
135 fconstmpt KI×1S=mKI1S
136 22 129 pws1 SRingKIVKI×1S=1S𝑠KI
137 67 68 136 syl2anc φKI×1S=1S𝑠KI
138 137 ad2antrr φbDiIsupp0bKI×1S=1S𝑠KI
139 135 138 eqtr3id φbDiIsupp0bmKI1S=1S𝑠KI
140 134 139 eqtrd φbDiIsupp0bmKIbi×˙mi=1S𝑠KI
141 140 49 suppss2 φbDiImKIbi×˙misupp1S𝑠KIbsupp0
142 114 115 117 119 141 fsuppsssuppgd φbDfinSupp1S𝑠KIiImKIbi×˙mi
143 22 6 102 23 7 103 49 104 113 142 pwsgprod φbDmulGrpS𝑠KIiImKIbi×˙mi=mKIMiIbi×˙mi
144 101 143 eqtrd φbDmulGrpS𝑠KIbmulGrpS𝑠KIfxIaKIax=mKIMiIbi×˙mi
145 42 144 oveq12d φbDxRKI×xFbS𝑠KImulGrpS𝑠KIbmulGrpS𝑠KIfxIaKIax=KI×FbS𝑠KImKIMiIbi×˙mi
146 6 subrgss RSubRingSRK
147 33 146 eqsstrrd RSubRingSBaseUK
148 12 147 syl φBaseUK
149 32 148 fssd φF:DK
150 149 ffvelcdmda φbDFbK
151 fconst6g FbKKI×Fb:KIK
152 150 151 syl φbDKI×Fb:KIK
153 22 6 55 104 103 152 pwselbasr φbDKI×FbBaseS𝑠KI
154 10 ad2antrr φbDmKIIV
155 11 ad2antrr φbDmKISCRing
156 simpr φbDmKImKI
157 simplr φbDmKIbD
158 5 6 7 8 154 155 156 157 evlsvvvallem φbDmKIMiIbi×˙miK
159 158 fmpttd φbDmKIMiIbi×˙mi:KIK
160 22 6 55 104 103 159 pwselbasr φbDmKIMiIbi×˙miBaseS𝑠KI
161 22 55 104 103 153 160 9 25 pwsmulrval φbDKI×FbS𝑠KImKIMiIbi×˙mi=KI×Fb·˙fmKIMiIbi×˙mi
162 152 ffnd φbDKI×FbFnKI
163 ovex MiIbi×˙miV
164 eqid mKIMiIbi×˙mi=mKIMiIbi×˙mi
165 163 164 fnmpti mKIMiIbi×˙miFnKI
166 165 a1i φbDmKIMiIbi×˙miFnKI
167 inidm KIKI=KI
168 fvex FbV
169 168 fvconst2 lKIKI×Fbl=Fb
170 169 adantl φbDlKIKI×Fbl=Fb
171 fveq1 m=lmi=li
172 171 oveq2d m=lbi×˙mi=bi×˙li
173 172 mpteq2dv m=liIbi×˙mi=iIbi×˙li
174 173 oveq2d m=lMiIbi×˙mi=MiIbi×˙li
175 simpr φbDlKIlKI
176 10 ad2antrr φbDlKIIV
177 11 ad2antrr φbDlKISCRing
178 simplr φbDlKIbD
179 5 6 7 8 176 177 175 178 evlsvvvallem φbDlKIMiIbi×˙liK
180 164 174 175 179 fvmptd3 φbDlKImKIMiIbi×˙mil=MiIbi×˙li
181 162 166 103 103 167 170 180 offval φbDKI×Fb·˙fmKIMiIbi×˙mi=lKIFb·˙MiIbi×˙li
182 145 161 181 3eqtrd φbDxRKI×xFbS𝑠KImulGrpS𝑠KIbmulGrpS𝑠KIfxIaKIax=lKIFb·˙MiIbi×˙li
183 182 mpteq2dva φbDxRKI×xFbS𝑠KImulGrpS𝑠KIbmulGrpS𝑠KIfxIaKIax=bDlKIFb·˙MiIbi×˙li
184 183 oveq2d φS𝑠KIbDxRKI×xFbS𝑠KImulGrpS𝑠KIbmulGrpS𝑠KIfxIaKIax=S𝑠KIbDlKIFb·˙MiIbi×˙li
185 eqid 0S𝑠KI=0S𝑠KI
186 ovexd φ0IV
187 5 186 rabexd φDV
188 67 ringcmnd φSCMnd
189 67 adantr φlKIbDSRing
190 150 adantrl φlKIbDFbK
191 simpl φlKIbDφ
192 simprr φlKIbDbD
193 simprl φlKIbDlKI
194 191 192 193 179 syl21anc φlKIbDMiIbi×˙liK
195 6 9 189 190 194 ringcld φlKIbDFb·˙MiIbi×˙liK
196 187 mptexd φbDlKIFb·˙MiIbi×˙liV
197 fvexd φ0S𝑠KIV
198 funmpt FunbDlKIFb·˙MiIbi×˙li
199 198 a1i φFunbDlKIFb·˙MiIbi×˙li
200 eqid 0U=0U
201 4 ovexi UV
202 201 a1i φUV
203 2 3 200 13 202 mplelsfi φfinSupp0UF
204 ssidd φFsupp0UFsupp0U
205 fvexd φ0UV
206 149 204 187 205 suppssr φbDsupp0UFFb=0U
207 eqid 0S=0S
208 4 207 subrg0 RSubRingS0S=0U
209 12 208 syl φ0S=0U
210 209 adantr φbDsupp0UF0S=0U
211 206 210 eqtr4d φbDsupp0UFFb=0S
212 211 adantr φbDsupp0UFlKIFb=0S
213 212 oveq1d φbDsupp0UFlKIFb·˙MiIbi×˙li=0S·˙MiIbi×˙li
214 67 ad2antrr φbDsupp0UFlKISRing
215 eldifi bDsupp0UFbD
216 215 179 sylanl2 φbDsupp0UFlKIMiIbi×˙liK
217 6 9 207 214 216 ringlzd φbDsupp0UFlKI0S·˙MiIbi×˙li=0S
218 213 217 eqtrd φbDsupp0UFlKIFb·˙MiIbi×˙li=0S
219 218 mpteq2dva φbDsupp0UFlKIFb·˙MiIbi×˙li=lKI0S
220 fconstmpt KI×0S=lKI0S
221 188 cmnmndd φSMnd
222 22 207 pws0g SMndKIVKI×0S=0S𝑠KI
223 221 68 222 syl2anc φKI×0S=0S𝑠KI
224 220 223 eqtr3id φlKI0S=0S𝑠KI
225 224 adantr φbDsupp0UFlKI0S=0S𝑠KI
226 219 225 eqtrd φbDsupp0UFlKIFb·˙MiIbi×˙li=0S𝑠KI
227 226 187 suppss2 φbDlKIFb·˙MiIbi×˙lisupp0S𝑠KIFsupp0U
228 196 197 199 203 227 fsuppsssuppgd φfinSupp0S𝑠KIbDlKIFb·˙MiIbi×˙li
229 22 6 185 68 187 188 195 228 pwsgsum φS𝑠KIbDlKIFb·˙MiIbi×˙li=lKISbDFb·˙MiIbi×˙li
230 28 184 229 3eqtrd φQF=lKISbDFb·˙MiIbi×˙li
231 ovexd φSbDFb·˙MiIbi×˙AiV
232 21 230 14 231 fvmptd4 φQFA=SbDFb·˙MiIbi×˙Ai