Metamath Proof Explorer


Theorem itg2cnlem1

Description: Lemma for itgcn . (Contributed by Mario Carneiro, 30-Aug-2014)

Ref Expression
Hypotheses itg2cn.1 φF:0+∞
itg2cn.2 φFMblFn
itg2cn.3 φ2F
Assertion itg2cnlem1 φsuprann2xifFxnFx0*<=2F

Proof

Step Hyp Ref Expression
1 itg2cn.1 φF:0+∞
2 itg2cn.2 φFMblFn
3 itg2cn.3 φ2F
4 fvex FxV
5 c0ex 0V
6 4 5 ifex ifFxnFx0V
7 eqid xifFxnFx0=xifFxnFx0
8 7 fvmpt2 xifFxnFx0VxifFxnFx0x=ifFxnFx0
9 6 8 mpan2 xxifFxnFx0x=ifFxnFx0
10 9 mpteq2dv xnxifFxnFx0x=nifFxnFx0
11 10 rneqd xrannxifFxnFx0x=rannifFxnFx0
12 11 supeq1d xsuprannxifFxnFx0x<=suprannifFxnFx0<
13 12 mpteq2ia xsuprannxifFxnFx0x<=xsuprannifFxnFx0<
14 nfcv _ysuprannxifFxnFx0x<
15 nfcv _x
16 nfmpt1 _xxifFxnFx0
17 15 16 nfmpt _xnxifFxnFx0
18 nfcv _xm
19 17 18 nffv _xnxifFxnFx0m
20 nfcv _xy
21 19 20 nffv _xnxifFxnFx0my
22 15 21 nfmpt _xmnxifFxnFx0my
23 22 nfrn _xranmnxifFxnFx0my
24 nfcv _x
25 nfcv _x<
26 23 24 25 nfsup _xsupranmnxifFxnFx0my<
27 fveq2 x=yxifFxnFx0x=xifFxnFx0y
28 27 mpteq2dv x=ynxifFxnFx0x=nxifFxnFx0y
29 breq2 n=mFxnFxm
30 29 ifbid n=mifFxnFx0=ifFxmFx0
31 30 mpteq2dv n=mxifFxnFx0=xifFxmFx0
32 31 fveq1d n=mxifFxnFx0y=xifFxmFx0y
33 32 cbvmptv nxifFxnFx0y=mxifFxmFx0y
34 eqid nxifFxnFx0=nxifFxnFx0
35 reex V
36 35 mptex xifFxmFx0V
37 31 34 36 fvmpt mnxifFxnFx0m=xifFxmFx0
38 37 fveq1d mnxifFxnFx0my=xifFxmFx0y
39 38 mpteq2ia mnxifFxnFx0my=mxifFxmFx0y
40 33 39 eqtr4i nxifFxnFx0y=mnxifFxnFx0my
41 28 40 eqtrdi x=ynxifFxnFx0x=mnxifFxnFx0my
42 41 rneqd x=yrannxifFxnFx0x=ranmnxifFxnFx0my
43 42 supeq1d x=ysuprannxifFxnFx0x<=supranmnxifFxnFx0my<
44 14 26 43 cbvmpt xsuprannxifFxnFx0x<=ysupranmnxifFxnFx0my<
45 13 44 eqtr3i xsuprannifFxnFx0<=ysupranmnxifFxnFx0my<
46 fveq2 x=yFx=Fy
47 46 breq1d x=yFxmFym
48 47 46 ifbieq1d x=yifFxmFx0=ifFymFy0
49 48 cbvmptv xifFxmFx0=yifFymFy0
50 37 adantl φmnxifFxnFx0m=xifFxmFx0
51 nnre mm
52 51 ad2antlr φmym
53 52 rexrd φmym*
54 elioopnf m*Fym+∞Fym<Fy
55 53 54 syl φmyFym+∞Fym<Fy
56 simpr φmyy
57 1 ffnd φFFn
58 57 ad2antrr φmyFFn
59 elpreima FFnyF-1m+∞yFym+∞
60 58 59 syl φmyyF-1m+∞yFym+∞
61 56 60 mpbirand φmyyF-1m+∞Fym+∞
62 rge0ssre 0+∞
63 fss F:0+∞0+∞F:
64 1 62 63 sylancl φF:
65 64 adantr φmF:
66 65 ffvelcdmda φmyFy
67 66 biantrurd φmym<FyFym<Fy
68 55 61 67 3bitr4d φmyyF-1m+∞m<Fy
69 68 notbid φmy¬yF-1m+∞¬m<Fy
70 eldif yF-1m+∞y¬yF-1m+∞
71 70 baib yyF-1m+∞¬yF-1m+∞
72 71 adantl φmyyF-1m+∞¬yF-1m+∞
73 66 52 lenltd φmyFym¬m<Fy
74 69 72 73 3bitr4d φmyyF-1m+∞Fym
75 74 ifbid φmyifyF-1m+∞Fy0=ifFymFy0
76 75 mpteq2dva φmyifyF-1m+∞Fy0=yifFymFy0
77 49 50 76 3eqtr4a φmnxifFxnFx0m=yifyF-1m+∞Fy0
78 difss F-1m+∞
79 78 a1i φmF-1m+∞
80 rembl domvol
81 80 a1i φmdomvol
82 fvex FyV
83 82 5 ifex ifyF-1m+∞Fy0V
84 83 a1i φmyF-1m+∞ifyF-1m+∞Fy0V
85 eldifn yF-1m+∞¬yF-1m+∞
86 85 adantl φmyF-1m+∞¬yF-1m+∞
87 86 iffalsed φmyF-1m+∞ifyF-1m+∞Fy0=0
88 iftrue yF-1m+∞ifyF-1m+∞Fy0=Fy
89 88 mpteq2ia yF-1m+∞ifyF-1m+∞Fy0=yF-1m+∞Fy
90 resmpt F-1m+∞yFyF-1m+∞=yF-1m+∞Fy
91 78 90 ax-mp yFyF-1m+∞=yF-1m+∞Fy
92 89 91 eqtr4i yF-1m+∞ifyF-1m+∞Fy0=yFyF-1m+∞
93 1 feqmptd φF=yFy
94 93 2 eqeltrrd φyFyMblFn
95 mbfima FMblFnF:F-1m+∞domvol
96 2 64 95 syl2anc φF-1m+∞domvol
97 cmmbl F-1m+∞domvolF-1m+∞domvol
98 96 97 syl φF-1m+∞domvol
99 mbfres yFyMblFnF-1m+∞domvolyFyF-1m+∞MblFn
100 94 98 99 syl2anc φyFyF-1m+∞MblFn
101 92 100 eqeltrid φyF-1m+∞ifyF-1m+∞Fy0MblFn
102 101 adantr φmyF-1m+∞ifyF-1m+∞Fy0MblFn
103 79 81 84 87 102 mbfss φmyifyF-1m+∞Fy0MblFn
104 77 103 eqeltrd φmnxifFxnFx0mMblFn
105 1 ffvelcdmda φxFx0+∞
106 0e0icopnf 00+∞
107 ifcl Fx0+∞00+∞ifFxmFx00+∞
108 105 106 107 sylancl φxifFxmFx00+∞
109 108 adantlr φmxifFxmFx00+∞
110 50 109 fmpt3d φmnxifFxnFx0m:0+∞
111 elrege0 Fx0+∞Fx0Fx
112 105 111 sylib φxFx0Fx
113 112 simpld φxFx
114 113 adantlr φmxFx
115 114 adantr φmxFxmFx
116 115 leidd φmxFxmFxFx
117 iftrue FxmifFxmFx0=Fx
118 117 adantl φmxFxmifFxmFx0=Fx
119 51 ad3antlr φmxFxmm
120 peano2re mm+1
121 119 120 syl φmxFxmm+1
122 simpr φmxFxmFxm
123 119 lep1d φmxFxmmm+1
124 115 119 121 122 123 letrd φmxFxmFxm+1
125 124 iftrued φmxFxmifFxm+1Fx0=Fx
126 116 118 125 3brtr4d φmxFxmifFxmFx0ifFxm+1Fx0
127 iffalse ¬FxmifFxmFx0=0
128 127 adantl φmx¬FxmifFxmFx0=0
129 112 simprd φx0Fx
130 0le0 00
131 breq2 Fx=ifFxm+1Fx00Fx0ifFxm+1Fx0
132 breq2 0=ifFxm+1Fx0000ifFxm+1Fx0
133 131 132 ifboth 0Fx000ifFxm+1Fx0
134 129 130 133 sylancl φx0ifFxm+1Fx0
135 134 adantlr φmx0ifFxm+1Fx0
136 135 adantr φmx¬Fxm0ifFxm+1Fx0
137 128 136 eqbrtrd φmx¬FxmifFxmFx0ifFxm+1Fx0
138 126 137 pm2.61dan φmxifFxmFx0ifFxm+1Fx0
139 138 ralrimiva φmxifFxmFx0ifFxm+1Fx0
140 4 5 ifex ifFxm+1Fx0V
141 140 a1i φmxifFxm+1Fx0V
142 eqidd φmxifFxmFx0=xifFxmFx0
143 eqidd φmxifFxm+1Fx0=xifFxm+1Fx0
144 81 109 141 142 143 ofrfval2 φmxifFxmFx0fxifFxm+1Fx0xifFxmFx0ifFxm+1Fx0
145 139 144 mpbird φmxifFxmFx0fxifFxm+1Fx0
146 peano2nn mm+1
147 146 adantl φmm+1
148 breq2 n=m+1FxnFxm+1
149 148 ifbid n=m+1ifFxnFx0=ifFxm+1Fx0
150 149 mpteq2dv n=m+1xifFxnFx0=xifFxm+1Fx0
151 35 mptex xifFxm+1Fx0V
152 150 34 151 fvmpt m+1nxifFxnFx0m+1=xifFxm+1Fx0
153 147 152 syl φmnxifFxnFx0m+1=xifFxm+1Fx0
154 145 50 153 3brtr4d φmnxifFxnFx0mfnxifFxnFx0m+1
155 64 ffvelcdmda φyFy
156 37 adantl φymnxifFxnFx0m=xifFxmFx0
157 156 fveq1d φymnxifFxnFx0my=xifFxmFx0y
158 113 leidd φxFxFx
159 breq1 Fx=ifFxmFx0FxFxifFxmFx0Fx
160 breq1 0=ifFxmFx00FxifFxmFx0Fx
161 159 160 ifboth FxFx0FxifFxmFx0Fx
162 158 129 161 syl2anc φxifFxmFx0Fx
163 162 adantlr φmxifFxmFx0Fx
164 163 ralrimiva φmxifFxmFx0Fx
165 35 a1i φmV
166 4 5 ifex ifFxmFx0V
167 166 a1i φmxifFxmFx0V
168 1 feqmptd φF=xFx
169 168 adantr φmF=xFx
170 165 167 114 142 169 ofrfval2 φmxifFxmFx0fFxifFxmFx0Fx
171 164 170 mpbird φmxifFxmFx0fF
172 167 fmpttd φmxifFxmFx0:V
173 172 ffnd φmxifFxmFx0Fn
174 57 adantr φmFFn
175 inidm =
176 eqidd φmyxifFxmFx0y=xifFxmFx0y
177 eqidd φmyFy=Fy
178 173 174 165 165 175 176 177 ofrfval φmxifFxmFx0fFyxifFxmFx0yFy
179 171 178 mpbid φmyxifFxmFx0yFy
180 179 r19.21bi φmyxifFxmFx0yFy
181 180 an32s φymxifFxmFx0yFy
182 157 181 eqbrtrd φymnxifFxnFx0myFy
183 182 ralrimiva φymnxifFxnFx0myFy
184 brralrspcev FymnxifFxnFx0myFyzmnxifFxnFx0myz
185 155 183 184 syl2anc φyzmnxifFxnFx0myz
186 31 fveq2d n=m2xifFxnFx0=2xifFxmFx0
187 186 cbvmptv n2xifFxnFx0=m2xifFxmFx0
188 37 fveq2d m2nxifFxnFx0m=2xifFxmFx0
189 188 mpteq2ia m2nxifFxnFx0m=m2xifFxmFx0
190 187 189 eqtr4i n2xifFxnFx0=m2nxifFxnFx0m
191 190 rneqi rann2xifFxnFx0=ranm2nxifFxnFx0m
192 191 supeq1i suprann2xifFxnFx0*<=supranm2nxifFxnFx0m*<
193 45 104 110 154 185 192 itg2mono φ2xsuprannifFxnFx0<=suprann2xifFxnFx0*<
194 eqid nifFxnFx0=nifFxnFx0
195 30 194 166 fvmpt mnifFxnFx0m=ifFxmFx0
196 195 adantl φxmnifFxnFx0m=ifFxmFx0
197 162 adantr φxmifFxmFx0Fx
198 196 197 eqbrtrd φxmnifFxnFx0mFx
199 198 ralrimiva φxmnifFxnFx0mFx
200 6 a1i φxnifFxnFx0V
201 200 fmpttd φxnifFxnFx0:V
202 201 ffnd φxnifFxnFx0Fn
203 breq1 w=nifFxnFx0mwFxnifFxnFx0mFx
204 203 ralrn nifFxnFx0FnwrannifFxnFx0wFxmnifFxnFx0mFx
205 202 204 syl φxwrannifFxnFx0wFxmnifFxnFx0mFx
206 199 205 mpbird φxwrannifFxnFx0wFx
207 113 adantr φxnFx
208 0re 0
209 ifcl Fx0ifFxnFx0
210 207 208 209 sylancl φxnifFxnFx0
211 210 fmpttd φxnifFxnFx0:
212 211 frnd φxrannifFxnFx0
213 1nn 1
214 194 210 dmmptd φxdomnifFxnFx0=
215 213 214 eleqtrrid φx1domnifFxnFx0
216 n0i 1domnifFxnFx0¬domnifFxnFx0=
217 dm0rn0 domnifFxnFx0=rannifFxnFx0=
218 217 necon3bbii ¬domnifFxnFx0=rannifFxnFx0
219 216 218 sylib 1domnifFxnFx0rannifFxnFx0
220 215 219 syl φxrannifFxnFx0
221 brralrspcev FxwrannifFxnFx0wFxzwrannifFxnFx0wz
222 113 206 221 syl2anc φxzwrannifFxnFx0wz
223 suprleub rannifFxnFx0rannifFxnFx0zwrannifFxnFx0wzFxsuprannifFxnFx0<FxwrannifFxnFx0wFx
224 212 220 222 113 223 syl31anc φxsuprannifFxnFx0<FxwrannifFxnFx0wFx
225 206 224 mpbird φxsuprannifFxnFx0<Fx
226 arch FxmFx<m
227 113 226 syl φxmFx<m
228 195 ad2antrl φxmFx<mnifFxnFx0m=ifFxmFx0
229 ltle FxmFx<mFxm
230 113 51 229 syl2an φxmFx<mFxm
231 230 impr φxmFx<mFxm
232 231 iftrued φxmFx<mifFxmFx0=Fx
233 228 232 eqtrd φxmFx<mnifFxnFx0m=Fx
234 202 adantr φxmFx<mnifFxnFx0Fn
235 simprl φxmFx<mm
236 fnfvelrn nifFxnFx0FnmnifFxnFx0mrannifFxnFx0
237 234 235 236 syl2anc φxmFx<mnifFxnFx0mrannifFxnFx0
238 233 237 eqeltrrd φxmFx<mFxrannifFxnFx0
239 227 238 rexlimddv φxFxrannifFxnFx0
240 212 220 222 239 suprubd φxFxsuprannifFxnFx0<
241 212 220 222 suprcld φxsuprannifFxnFx0<
242 241 113 letri3d φxsuprannifFxnFx0<=FxsuprannifFxnFx0<FxFxsuprannifFxnFx0<
243 225 240 242 mpbir2and φxsuprannifFxnFx0<=Fx
244 243 mpteq2dva φxsuprannifFxnFx0<=xFx
245 244 168 eqtr4d φxsuprannifFxnFx0<=F
246 245 fveq2d φ2xsuprannifFxnFx0<=2F
247 193 246 eqtr3d φsuprann2xifFxnFx0*<=2F