| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2cn.1 |
|
| 2 |
|
itg2cn.2 |
|
| 3 |
|
itg2cn.3 |
|
| 4 |
|
fvex |
|
| 5 |
|
c0ex |
|
| 6 |
4 5
|
ifex |
|
| 7 |
|
eqid |
|
| 8 |
7
|
fvmpt2 |
|
| 9 |
6 8
|
mpan2 |
|
| 10 |
9
|
mpteq2dv |
|
| 11 |
10
|
rneqd |
|
| 12 |
11
|
supeq1d |
|
| 13 |
12
|
mpteq2ia |
|
| 14 |
|
nfcv |
|
| 15 |
|
nfcv |
|
| 16 |
|
nfmpt1 |
|
| 17 |
15 16
|
nfmpt |
|
| 18 |
|
nfcv |
|
| 19 |
17 18
|
nffv |
|
| 20 |
|
nfcv |
|
| 21 |
19 20
|
nffv |
|
| 22 |
15 21
|
nfmpt |
|
| 23 |
22
|
nfrn |
|
| 24 |
|
nfcv |
|
| 25 |
|
nfcv |
|
| 26 |
23 24 25
|
nfsup |
|
| 27 |
|
fveq2 |
|
| 28 |
27
|
mpteq2dv |
|
| 29 |
|
breq2 |
|
| 30 |
29
|
ifbid |
|
| 31 |
30
|
mpteq2dv |
|
| 32 |
31
|
fveq1d |
|
| 33 |
32
|
cbvmptv |
|
| 34 |
|
eqid |
|
| 35 |
|
reex |
|
| 36 |
35
|
mptex |
|
| 37 |
31 34 36
|
fvmpt |
|
| 38 |
37
|
fveq1d |
|
| 39 |
38
|
mpteq2ia |
|
| 40 |
33 39
|
eqtr4i |
|
| 41 |
28 40
|
eqtrdi |
|
| 42 |
41
|
rneqd |
|
| 43 |
42
|
supeq1d |
|
| 44 |
14 26 43
|
cbvmpt |
|
| 45 |
13 44
|
eqtr3i |
|
| 46 |
|
fveq2 |
|
| 47 |
46
|
breq1d |
|
| 48 |
47 46
|
ifbieq1d |
|
| 49 |
48
|
cbvmptv |
|
| 50 |
37
|
adantl |
|
| 51 |
|
nnre |
|
| 52 |
51
|
ad2antlr |
|
| 53 |
52
|
rexrd |
|
| 54 |
|
elioopnf |
|
| 55 |
53 54
|
syl |
|
| 56 |
|
simpr |
|
| 57 |
1
|
ffnd |
|
| 58 |
57
|
ad2antrr |
|
| 59 |
|
elpreima |
|
| 60 |
58 59
|
syl |
|
| 61 |
56 60
|
mpbirand |
|
| 62 |
|
rge0ssre |
|
| 63 |
|
fss |
|
| 64 |
1 62 63
|
sylancl |
|
| 65 |
64
|
adantr |
|
| 66 |
65
|
ffvelcdmda |
|
| 67 |
66
|
biantrurd |
|
| 68 |
55 61 67
|
3bitr4d |
|
| 69 |
68
|
notbid |
|
| 70 |
|
eldif |
|
| 71 |
70
|
baib |
|
| 72 |
71
|
adantl |
|
| 73 |
66 52
|
lenltd |
|
| 74 |
69 72 73
|
3bitr4d |
|
| 75 |
74
|
ifbid |
|
| 76 |
75
|
mpteq2dva |
|
| 77 |
49 50 76
|
3eqtr4a |
|
| 78 |
|
difss |
|
| 79 |
78
|
a1i |
|
| 80 |
|
rembl |
|
| 81 |
80
|
a1i |
|
| 82 |
|
fvex |
|
| 83 |
82 5
|
ifex |
|
| 84 |
83
|
a1i |
|
| 85 |
|
eldifn |
|
| 86 |
85
|
adantl |
|
| 87 |
86
|
iffalsed |
|
| 88 |
|
iftrue |
|
| 89 |
88
|
mpteq2ia |
|
| 90 |
|
resmpt |
|
| 91 |
78 90
|
ax-mp |
|
| 92 |
89 91
|
eqtr4i |
|
| 93 |
1
|
feqmptd |
|
| 94 |
93 2
|
eqeltrrd |
|
| 95 |
|
mbfima |
|
| 96 |
2 64 95
|
syl2anc |
|
| 97 |
|
cmmbl |
|
| 98 |
96 97
|
syl |
|
| 99 |
|
mbfres |
|
| 100 |
94 98 99
|
syl2anc |
|
| 101 |
92 100
|
eqeltrid |
|
| 102 |
101
|
adantr |
|
| 103 |
79 81 84 87 102
|
mbfss |
|
| 104 |
77 103
|
eqeltrd |
|
| 105 |
1
|
ffvelcdmda |
|
| 106 |
|
0e0icopnf |
|
| 107 |
|
ifcl |
|
| 108 |
105 106 107
|
sylancl |
|
| 109 |
108
|
adantlr |
|
| 110 |
50 109
|
fmpt3d |
|
| 111 |
|
elrege0 |
|
| 112 |
105 111
|
sylib |
|
| 113 |
112
|
simpld |
|
| 114 |
113
|
adantlr |
|
| 115 |
114
|
adantr |
|
| 116 |
115
|
leidd |
|
| 117 |
|
iftrue |
|
| 118 |
117
|
adantl |
|
| 119 |
51
|
ad3antlr |
|
| 120 |
|
peano2re |
|
| 121 |
119 120
|
syl |
|
| 122 |
|
simpr |
|
| 123 |
119
|
lep1d |
|
| 124 |
115 119 121 122 123
|
letrd |
|
| 125 |
124
|
iftrued |
|
| 126 |
116 118 125
|
3brtr4d |
|
| 127 |
|
iffalse |
|
| 128 |
127
|
adantl |
|
| 129 |
112
|
simprd |
|
| 130 |
|
0le0 |
|
| 131 |
|
breq2 |
|
| 132 |
|
breq2 |
|
| 133 |
131 132
|
ifboth |
|
| 134 |
129 130 133
|
sylancl |
|
| 135 |
134
|
adantlr |
|
| 136 |
135
|
adantr |
|
| 137 |
128 136
|
eqbrtrd |
|
| 138 |
126 137
|
pm2.61dan |
|
| 139 |
138
|
ralrimiva |
|
| 140 |
4 5
|
ifex |
|
| 141 |
140
|
a1i |
|
| 142 |
|
eqidd |
|
| 143 |
|
eqidd |
|
| 144 |
81 109 141 142 143
|
ofrfval2 |
|
| 145 |
139 144
|
mpbird |
|
| 146 |
|
peano2nn |
|
| 147 |
146
|
adantl |
|
| 148 |
|
breq2 |
|
| 149 |
148
|
ifbid |
|
| 150 |
149
|
mpteq2dv |
|
| 151 |
35
|
mptex |
|
| 152 |
150 34 151
|
fvmpt |
|
| 153 |
147 152
|
syl |
|
| 154 |
145 50 153
|
3brtr4d |
|
| 155 |
64
|
ffvelcdmda |
|
| 156 |
37
|
adantl |
|
| 157 |
156
|
fveq1d |
|
| 158 |
113
|
leidd |
|
| 159 |
|
breq1 |
|
| 160 |
|
breq1 |
|
| 161 |
159 160
|
ifboth |
|
| 162 |
158 129 161
|
syl2anc |
|
| 163 |
162
|
adantlr |
|
| 164 |
163
|
ralrimiva |
|
| 165 |
35
|
a1i |
|
| 166 |
4 5
|
ifex |
|
| 167 |
166
|
a1i |
|
| 168 |
1
|
feqmptd |
|
| 169 |
168
|
adantr |
|
| 170 |
165 167 114 142 169
|
ofrfval2 |
|
| 171 |
164 170
|
mpbird |
|
| 172 |
167
|
fmpttd |
|
| 173 |
172
|
ffnd |
|
| 174 |
57
|
adantr |
|
| 175 |
|
inidm |
|
| 176 |
|
eqidd |
|
| 177 |
|
eqidd |
|
| 178 |
173 174 165 165 175 176 177
|
ofrfval |
|
| 179 |
171 178
|
mpbid |
|
| 180 |
179
|
r19.21bi |
|
| 181 |
180
|
an32s |
|
| 182 |
157 181
|
eqbrtrd |
|
| 183 |
182
|
ralrimiva |
|
| 184 |
|
brralrspcev |
|
| 185 |
155 183 184
|
syl2anc |
|
| 186 |
31
|
fveq2d |
|
| 187 |
186
|
cbvmptv |
|
| 188 |
37
|
fveq2d |
|
| 189 |
188
|
mpteq2ia |
|
| 190 |
187 189
|
eqtr4i |
|
| 191 |
190
|
rneqi |
|
| 192 |
191
|
supeq1i |
|
| 193 |
45 104 110 154 185 192
|
itg2mono |
|
| 194 |
|
eqid |
|
| 195 |
30 194 166
|
fvmpt |
|
| 196 |
195
|
adantl |
|
| 197 |
162
|
adantr |
|
| 198 |
196 197
|
eqbrtrd |
|
| 199 |
198
|
ralrimiva |
|
| 200 |
6
|
a1i |
|
| 201 |
200
|
fmpttd |
|
| 202 |
201
|
ffnd |
|
| 203 |
|
breq1 |
|
| 204 |
203
|
ralrn |
|
| 205 |
202 204
|
syl |
|
| 206 |
199 205
|
mpbird |
|
| 207 |
113
|
adantr |
|
| 208 |
|
0re |
|
| 209 |
|
ifcl |
|
| 210 |
207 208 209
|
sylancl |
|
| 211 |
210
|
fmpttd |
|
| 212 |
211
|
frnd |
|
| 213 |
|
1nn |
|
| 214 |
194 210
|
dmmptd |
|
| 215 |
213 214
|
eleqtrrid |
|
| 216 |
|
n0i |
|
| 217 |
|
dm0rn0 |
|
| 218 |
217
|
necon3bbii |
|
| 219 |
216 218
|
sylib |
|
| 220 |
215 219
|
syl |
|
| 221 |
|
brralrspcev |
|
| 222 |
113 206 221
|
syl2anc |
|
| 223 |
|
suprleub |
|
| 224 |
212 220 222 113 223
|
syl31anc |
|
| 225 |
206 224
|
mpbird |
|
| 226 |
|
arch |
|
| 227 |
113 226
|
syl |
|
| 228 |
195
|
ad2antrl |
|
| 229 |
|
ltle |
|
| 230 |
113 51 229
|
syl2an |
|
| 231 |
230
|
impr |
|
| 232 |
231
|
iftrued |
|
| 233 |
228 232
|
eqtrd |
|
| 234 |
202
|
adantr |
|
| 235 |
|
simprl |
|
| 236 |
|
fnfvelrn |
|
| 237 |
234 235 236
|
syl2anc |
|
| 238 |
233 237
|
eqeltrrd |
|
| 239 |
227 238
|
rexlimddv |
|
| 240 |
212 220 222 239
|
suprubd |
|
| 241 |
212 220 222
|
suprcld |
|
| 242 |
241 113
|
letri3d |
|
| 243 |
225 240 242
|
mpbir2and |
|
| 244 |
243
|
mpteq2dva |
|
| 245 |
244 168
|
eqtr4d |
|
| 246 |
245
|
fveq2d |
|
| 247 |
193 246
|
eqtr3d |
|