| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfimaopn.1 |
|
| 2 |
|
mbfimaopn.2 |
|
| 3 |
|
mbfimaopn.3 |
|
| 4 |
|
mbfimaopn.4 |
|
| 5 |
|
eqid |
|
| 6 |
2 5 1
|
cnrehmeo |
|
| 7 |
|
hmeocn |
|
| 8 |
6 7
|
ax-mp |
|
| 9 |
|
cnima |
|
| 10 |
8 9
|
mpan |
|
| 11 |
3
|
fveq2i |
|
| 12 |
11
|
tgqioo |
|
| 13 |
12 12
|
oveq12i |
|
| 14 |
|
qtopbas |
|
| 15 |
3 14
|
eqeltri |
|
| 16 |
|
txbasval |
|
| 17 |
15 15 16
|
mp2an |
|
| 18 |
4
|
txval |
|
| 19 |
15 15 18
|
mp2an |
|
| 20 |
13 17 19
|
3eqtri |
|
| 21 |
10 20
|
eleqtrdi |
|
| 22 |
4
|
txbas |
|
| 23 |
15 15 22
|
mp2an |
|
| 24 |
|
eltg3 |
|
| 25 |
23 24
|
ax-mp |
|
| 26 |
21 25
|
sylib |
|
| 27 |
26
|
adantl |
|
| 28 |
2
|
cnref1o |
|
| 29 |
|
f1ofo |
|
| 30 |
28 29
|
ax-mp |
|
| 31 |
|
elssuni |
|
| 32 |
1
|
cnfldtopon |
|
| 33 |
32
|
toponunii |
|
| 34 |
31 33
|
sseqtrrdi |
|
| 35 |
34
|
ad2antlr |
|
| 36 |
|
foimacnv |
|
| 37 |
30 35 36
|
sylancr |
|
| 38 |
|
simprr |
|
| 39 |
38
|
imaeq2d |
|
| 40 |
|
imauni |
|
| 41 |
39 40
|
eqtrdi |
|
| 42 |
37 41
|
eqtr3d |
|
| 43 |
42
|
imaeq2d |
|
| 44 |
|
imaiun |
|
| 45 |
43 44
|
eqtrdi |
|
| 46 |
|
ssdomg |
|
| 47 |
23 46
|
ax-mp |
|
| 48 |
|
omelon |
|
| 49 |
|
nnenom |
|
| 50 |
49
|
ensymi |
|
| 51 |
|
isnumi |
|
| 52 |
48 50 51
|
mp2an |
|
| 53 |
|
qnnen |
|
| 54 |
|
xpen |
|
| 55 |
53 53 54
|
mp2an |
|
| 56 |
|
xpnnen |
|
| 57 |
55 56
|
entri |
|
| 58 |
57 49
|
entr2i |
|
| 59 |
|
isnumi |
|
| 60 |
48 58 59
|
mp2an |
|
| 61 |
|
ioof |
|
| 62 |
|
ffun |
|
| 63 |
61 62
|
ax-mp |
|
| 64 |
|
qssre |
|
| 65 |
|
ressxr |
|
| 66 |
64 65
|
sstri |
|
| 67 |
|
xpss12 |
|
| 68 |
66 66 67
|
mp2an |
|
| 69 |
61
|
fdmi |
|
| 70 |
68 69
|
sseqtrri |
|
| 71 |
|
fores |
|
| 72 |
63 70 71
|
mp2an |
|
| 73 |
|
fodomnum |
|
| 74 |
60 72 73
|
mp2 |
|
| 75 |
3 74
|
eqbrtri |
|
| 76 |
|
domentr |
|
| 77 |
75 57 76
|
mp2an |
|
| 78 |
15
|
elexi |
|
| 79 |
78
|
xpdom1 |
|
| 80 |
77 79
|
ax-mp |
|
| 81 |
|
nnex |
|
| 82 |
81
|
xpdom2 |
|
| 83 |
77 82
|
ax-mp |
|
| 84 |
|
domtr |
|
| 85 |
80 83 84
|
mp2an |
|
| 86 |
|
domentr |
|
| 87 |
85 56 86
|
mp2an |
|
| 88 |
|
numdom |
|
| 89 |
52 87 88
|
mp2an |
|
| 90 |
|
eqid |
|
| 91 |
|
vex |
|
| 92 |
|
vex |
|
| 93 |
91 92
|
xpex |
|
| 94 |
90 93
|
fnmpoi |
|
| 95 |
|
dffn4 |
|
| 96 |
94 95
|
mpbi |
|
| 97 |
|
fodomnum |
|
| 98 |
89 96 97
|
mp2 |
|
| 99 |
|
domtr |
|
| 100 |
98 87 99
|
mp2an |
|
| 101 |
4 100
|
eqbrtri |
|
| 102 |
|
domtr |
|
| 103 |
47 101 102
|
sylancl |
|
| 104 |
103
|
ad2antrl |
|
| 105 |
4
|
eleq2i |
|
| 106 |
90 93
|
elrnmpo |
|
| 107 |
105 106
|
bitri |
|
| 108 |
|
elin |
|
| 109 |
|
mbff |
|
| 110 |
109
|
adantr |
|
| 111 |
|
fvco3 |
|
| 112 |
110 111
|
sylan |
|
| 113 |
112
|
eleq1d |
|
| 114 |
|
fvco3 |
|
| 115 |
110 114
|
sylan |
|
| 116 |
115
|
eleq1d |
|
| 117 |
113 116
|
anbi12d |
|
| 118 |
110
|
ffvelcdmda |
|
| 119 |
|
fveq2 |
|
| 120 |
|
fveq2 |
|
| 121 |
119 120
|
opeq12d |
|
| 122 |
2
|
cnrecnv |
|
| 123 |
|
opex |
|
| 124 |
121 122 123
|
fvmpt |
|
| 125 |
118 124
|
syl |
|
| 126 |
125
|
eleq1d |
|
| 127 |
118
|
biantrurd |
|
| 128 |
126 127
|
bitr3d |
|
| 129 |
|
opelxp |
|
| 130 |
|
f1ocnv |
|
| 131 |
|
f1ofn |
|
| 132 |
28 130 131
|
mp2b |
|
| 133 |
|
elpreima |
|
| 134 |
132 133
|
ax-mp |
|
| 135 |
|
imacnvcnv |
|
| 136 |
135
|
eleq2i |
|
| 137 |
134 136
|
bitr3i |
|
| 138 |
128 129 137
|
3bitr3g |
|
| 139 |
117 138
|
bitrd |
|
| 140 |
139
|
pm5.32da |
|
| 141 |
|
ref |
|
| 142 |
|
fco |
|
| 143 |
141 109 142
|
sylancr |
|
| 144 |
|
ffn |
|
| 145 |
|
elpreima |
|
| 146 |
143 144 145
|
3syl |
|
| 147 |
|
imf |
|
| 148 |
|
fco |
|
| 149 |
147 109 148
|
sylancr |
|
| 150 |
|
ffn |
|
| 151 |
|
elpreima |
|
| 152 |
149 150 151
|
3syl |
|
| 153 |
146 152
|
anbi12d |
|
| 154 |
|
anandi |
|
| 155 |
153 154
|
bitr4di |
|
| 156 |
155
|
adantr |
|
| 157 |
|
ffn |
|
| 158 |
|
elpreima |
|
| 159 |
109 157 158
|
3syl |
|
| 160 |
159
|
adantr |
|
| 161 |
140 156 160
|
3bitr4d |
|
| 162 |
108 161
|
bitrid |
|
| 163 |
162
|
eqrdv |
|
| 164 |
|
ismbfcn |
|
| 165 |
109 164
|
syl |
|
| 166 |
165
|
ibi |
|
| 167 |
166
|
simpld |
|
| 168 |
|
ismbf |
|
| 169 |
143 168
|
syl |
|
| 170 |
167 169
|
mpbid |
|
| 171 |
170
|
adantr |
|
| 172 |
|
imassrn |
|
| 173 |
3 172
|
eqsstri |
|
| 174 |
|
simprl |
|
| 175 |
173 174
|
sselid |
|
| 176 |
|
rsp |
|
| 177 |
171 175 176
|
sylc |
|
| 178 |
166
|
simprd |
|
| 179 |
|
ismbf |
|
| 180 |
149 179
|
syl |
|
| 181 |
178 180
|
mpbid |
|
| 182 |
181
|
adantr |
|
| 183 |
|
simprr |
|
| 184 |
173 183
|
sselid |
|
| 185 |
|
rsp |
|
| 186 |
182 184 185
|
sylc |
|
| 187 |
|
inmbl |
|
| 188 |
177 186 187
|
syl2anc |
|
| 189 |
163 188
|
eqeltrrd |
|
| 190 |
|
imaeq2 |
|
| 191 |
190
|
imaeq2d |
|
| 192 |
191
|
eleq1d |
|
| 193 |
189 192
|
syl5ibrcom |
|
| 194 |
193
|
rexlimdvva |
|
| 195 |
107 194
|
biimtrid |
|
| 196 |
195
|
ralrimiv |
|
| 197 |
|
ssralv |
|
| 198 |
196 197
|
mpan9 |
|
| 199 |
198
|
ad2ant2r |
|
| 200 |
|
iunmbl2 |
|
| 201 |
104 199 200
|
syl2anc |
|
| 202 |
45 201
|
eqeltrd |
|
| 203 |
27 202
|
exlimddv |
|