Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
mbfimaopnlem
Next ⟩
mbfimaopn
Metamath Proof Explorer
Ascii
Unicode
Theorem
mbfimaopnlem
Description:
Lemma for
mbfimaopn
.
(Contributed by
Mario Carneiro
, 25-Aug-2014)
Ref
Expression
Hypotheses
mbfimaopn.1
⊢
J
=
TopOpen
ℂ
fld
mbfimaopn.2
⊢
G
=
x
∈
ℝ
,
y
∈
ℝ
⟼
x
+
i
y
mbfimaopn.3
⊢
B
=
.
ℚ
×
ℚ
mbfimaopn.4
⊢
K
=
ran
x
∈
B
,
y
∈
B
⟼
x
×
y
Assertion
mbfimaopnlem
⊢
F
∈
MblFn
∧
A
∈
J
→
F
-1
A
∈
dom
vol
Proof
Step
Hyp
Ref
Expression
1
mbfimaopn.1
⊢
J
=
TopOpen
ℂ
fld
2
mbfimaopn.2
⊢
G
=
x
∈
ℝ
,
y
∈
ℝ
⟼
x
+
i
y
3
mbfimaopn.3
⊢
B
=
.
ℚ
×
ℚ
4
mbfimaopn.4
⊢
K
=
ran
x
∈
B
,
y
∈
B
⟼
x
×
y
5
eqid
⊢
topGen
ran
.
=
topGen
ran
.
6
2
5
1
cnrehmeo
⊢
G
∈
topGen
ran
.
×
t
topGen
ran
.
Homeo
J
7
hmeocn
⊢
G
∈
topGen
ran
.
×
t
topGen
ran
.
Homeo
J
→
G
∈
topGen
ran
.
×
t
topGen
ran
.
Cn
J
8
6
7
ax-mp
⊢
G
∈
topGen
ran
.
×
t
topGen
ran
.
Cn
J
9
cnima
⊢
G
∈
topGen
ran
.
×
t
topGen
ran
.
Cn
J
∧
A
∈
J
→
G
-1
A
∈
topGen
ran
.
×
t
topGen
ran
.
10
8
9
mpan
⊢
A
∈
J
→
G
-1
A
∈
topGen
ran
.
×
t
topGen
ran
.
11
3
fveq2i
⊢
topGen
B
=
topGen
.
ℚ
×
ℚ
12
11
tgqioo
⊢
topGen
ran
.
=
topGen
B
13
12
12
oveq12i
⊢
topGen
ran
.
×
t
topGen
ran
.
=
topGen
B
×
t
topGen
B
14
qtopbas
⊢
.
ℚ
×
ℚ
∈
TopBases
15
3
14
eqeltri
⊢
B
∈
TopBases
16
txbasval
⊢
B
∈
TopBases
∧
B
∈
TopBases
→
topGen
B
×
t
topGen
B
=
B
×
t
B
17
15
15
16
mp2an
⊢
topGen
B
×
t
topGen
B
=
B
×
t
B
18
4
txval
⊢
B
∈
TopBases
∧
B
∈
TopBases
→
B
×
t
B
=
topGen
K
19
15
15
18
mp2an
⊢
B
×
t
B
=
topGen
K
20
13
17
19
3eqtri
⊢
topGen
ran
.
×
t
topGen
ran
.
=
topGen
K
21
10
20
eleqtrdi
⊢
A
∈
J
→
G
-1
A
∈
topGen
K
22
4
txbas
⊢
B
∈
TopBases
∧
B
∈
TopBases
→
K
∈
TopBases
23
15
15
22
mp2an
⊢
K
∈
TopBases
24
eltg3
⊢
K
∈
TopBases
→
G
-1
A
∈
topGen
K
↔
∃
t
t
⊆
K
∧
G
-1
A
=
⋃
t
25
23
24
ax-mp
⊢
G
-1
A
∈
topGen
K
↔
∃
t
t
⊆
K
∧
G
-1
A
=
⋃
t
26
21
25
sylib
⊢
A
∈
J
→
∃
t
t
⊆
K
∧
G
-1
A
=
⋃
t
27
26
adantl
⊢
F
∈
MblFn
∧
A
∈
J
→
∃
t
t
⊆
K
∧
G
-1
A
=
⋃
t
28
2
cnref1o
⊢
G
:
ℝ
2
⟶
1-1 onto
ℂ
29
f1ofo
⊢
G
:
ℝ
2
⟶
1-1 onto
ℂ
→
G
:
ℝ
2
⟶
onto
ℂ
30
28
29
ax-mp
⊢
G
:
ℝ
2
⟶
onto
ℂ
31
elssuni
⊢
A
∈
J
→
A
⊆
⋃
J
32
1
cnfldtopon
⊢
J
∈
TopOn
ℂ
33
32
toponunii
⊢
ℂ
=
⋃
J
34
31
33
sseqtrrdi
⊢
A
∈
J
→
A
⊆
ℂ
35
34
ad2antlr
⊢
F
∈
MblFn
∧
A
∈
J
∧
t
⊆
K
∧
G
-1
A
=
⋃
t
→
A
⊆
ℂ
36
foimacnv
⊢
G
:
ℝ
2
⟶
onto
ℂ
∧
A
⊆
ℂ
→
G
G
-1
A
=
A
37
30
35
36
sylancr
⊢
F
∈
MblFn
∧
A
∈
J
∧
t
⊆
K
∧
G
-1
A
=
⋃
t
→
G
G
-1
A
=
A
38
simprr
⊢
F
∈
MblFn
∧
A
∈
J
∧
t
⊆
K
∧
G
-1
A
=
⋃
t
→
G
-1
A
=
⋃
t
39
38
imaeq2d
⊢
F
∈
MblFn
∧
A
∈
J
∧
t
⊆
K
∧
G
-1
A
=
⋃
t
→
G
G
-1
A
=
G
⋃
t
40
imauni
⊢
G
⋃
t
=
⋃
w
∈
t
G
w
41
39
40
eqtrdi
⊢
F
∈
MblFn
∧
A
∈
J
∧
t
⊆
K
∧
G
-1
A
=
⋃
t
→
G
G
-1
A
=
⋃
w
∈
t
G
w
42
37
41
eqtr3d
⊢
F
∈
MblFn
∧
A
∈
J
∧
t
⊆
K
∧
G
-1
A
=
⋃
t
→
A
=
⋃
w
∈
t
G
w
43
42
imaeq2d
⊢
F
∈
MblFn
∧
A
∈
J
∧
t
⊆
K
∧
G
-1
A
=
⋃
t
→
F
-1
A
=
F
-1
⋃
w
∈
t
G
w
44
imaiun
⊢
F
-1
⋃
w
∈
t
G
w
=
⋃
w
∈
t
F
-1
G
w
45
43
44
eqtrdi
⊢
F
∈
MblFn
∧
A
∈
J
∧
t
⊆
K
∧
G
-1
A
=
⋃
t
→
F
-1
A
=
⋃
w
∈
t
F
-1
G
w
46
ssdomg
⊢
K
∈
TopBases
→
t
⊆
K
→
t
≼
K
47
23
46
ax-mp
⊢
t
⊆
K
→
t
≼
K
48
omelon
ω
⊢
ω
∈
On
49
nnenom
ω
⊢
ℕ
≈
ω
50
49
ensymi
ω
⊢
ω
≈
ℕ
51
isnumi
ω
ω
⊢
ω
∈
On
∧
ω
≈
ℕ
→
ℕ
∈
dom
card
52
48
50
51
mp2an
⊢
ℕ
∈
dom
card
53
qnnen
⊢
ℚ
≈
ℕ
54
xpen
⊢
ℚ
≈
ℕ
∧
ℚ
≈
ℕ
→
ℚ
×
ℚ
≈
ℕ
×
ℕ
55
53
53
54
mp2an
⊢
ℚ
×
ℚ
≈
ℕ
×
ℕ
56
xpnnen
⊢
ℕ
×
ℕ
≈
ℕ
57
55
56
entri
⊢
ℚ
×
ℚ
≈
ℕ
58
57
49
entr2i
ω
⊢
ω
≈
ℚ
×
ℚ
59
isnumi
ω
ω
⊢
ω
∈
On
∧
ω
≈
ℚ
×
ℚ
→
ℚ
×
ℚ
∈
dom
card
60
48
58
59
mp2an
⊢
ℚ
×
ℚ
∈
dom
card
61
ioof
⊢
.
:
ℝ
*
×
ℝ
*
⟶
𝒫
ℝ
62
ffun
⊢
.
:
ℝ
*
×
ℝ
*
⟶
𝒫
ℝ
→
Fun
.
63
61
62
ax-mp
⊢
Fun
.
64
qssre
⊢
ℚ
⊆
ℝ
65
ressxr
⊢
ℝ
⊆
ℝ
*
66
64
65
sstri
⊢
ℚ
⊆
ℝ
*
67
xpss12
⊢
ℚ
⊆
ℝ
*
∧
ℚ
⊆
ℝ
*
→
ℚ
×
ℚ
⊆
ℝ
*
×
ℝ
*
68
66
66
67
mp2an
⊢
ℚ
×
ℚ
⊆
ℝ
*
×
ℝ
*
69
61
fdmi
⊢
dom
.
=
ℝ
*
×
ℝ
*
70
68
69
sseqtrri
⊢
ℚ
×
ℚ
⊆
dom
.
71
fores
⊢
Fun
.
∧
ℚ
×
ℚ
⊆
dom
.
→
.
↾
ℚ
×
ℚ
:
ℚ
×
ℚ
⟶
onto
.
ℚ
×
ℚ
72
63
70
71
mp2an
⊢
.
↾
ℚ
×
ℚ
:
ℚ
×
ℚ
⟶
onto
.
ℚ
×
ℚ
73
fodomnum
⊢
ℚ
×
ℚ
∈
dom
card
→
.
↾
ℚ
×
ℚ
:
ℚ
×
ℚ
⟶
onto
.
ℚ
×
ℚ
→
.
ℚ
×
ℚ
≼
ℚ
×
ℚ
74
60
72
73
mp2
⊢
.
ℚ
×
ℚ
≼
ℚ
×
ℚ
75
3
74
eqbrtri
⊢
B
≼
ℚ
×
ℚ
76
domentr
⊢
B
≼
ℚ
×
ℚ
∧
ℚ
×
ℚ
≈
ℕ
→
B
≼
ℕ
77
75
57
76
mp2an
⊢
B
≼
ℕ
78
15
elexi
⊢
B
∈
V
79
78
xpdom1
⊢
B
≼
ℕ
→
B
×
B
≼
ℕ
×
B
80
77
79
ax-mp
⊢
B
×
B
≼
ℕ
×
B
81
nnex
⊢
ℕ
∈
V
82
81
xpdom2
⊢
B
≼
ℕ
→
ℕ
×
B
≼
ℕ
×
ℕ
83
77
82
ax-mp
⊢
ℕ
×
B
≼
ℕ
×
ℕ
84
domtr
⊢
B
×
B
≼
ℕ
×
B
∧
ℕ
×
B
≼
ℕ
×
ℕ
→
B
×
B
≼
ℕ
×
ℕ
85
80
83
84
mp2an
⊢
B
×
B
≼
ℕ
×
ℕ
86
domentr
⊢
B
×
B
≼
ℕ
×
ℕ
∧
ℕ
×
ℕ
≈
ℕ
→
B
×
B
≼
ℕ
87
85
56
86
mp2an
⊢
B
×
B
≼
ℕ
88
numdom
⊢
ℕ
∈
dom
card
∧
B
×
B
≼
ℕ
→
B
×
B
∈
dom
card
89
52
87
88
mp2an
⊢
B
×
B
∈
dom
card
90
eqid
⊢
x
∈
B
,
y
∈
B
⟼
x
×
y
=
x
∈
B
,
y
∈
B
⟼
x
×
y
91
vex
⊢
x
∈
V
92
vex
⊢
y
∈
V
93
91
92
xpex
⊢
x
×
y
∈
V
94
90
93
fnmpoi
⊢
x
∈
B
,
y
∈
B
⟼
x
×
y
Fn
B
×
B
95
dffn4
⊢
x
∈
B
,
y
∈
B
⟼
x
×
y
Fn
B
×
B
↔
x
∈
B
,
y
∈
B
⟼
x
×
y
:
B
×
B
⟶
onto
ran
x
∈
B
,
y
∈
B
⟼
x
×
y
96
94
95
mpbi
⊢
x
∈
B
,
y
∈
B
⟼
x
×
y
:
B
×
B
⟶
onto
ran
x
∈
B
,
y
∈
B
⟼
x
×
y
97
fodomnum
⊢
B
×
B
∈
dom
card
→
x
∈
B
,
y
∈
B
⟼
x
×
y
:
B
×
B
⟶
onto
ran
x
∈
B
,
y
∈
B
⟼
x
×
y
→
ran
x
∈
B
,
y
∈
B
⟼
x
×
y
≼
B
×
B
98
89
96
97
mp2
⊢
ran
x
∈
B
,
y
∈
B
⟼
x
×
y
≼
B
×
B
99
domtr
⊢
ran
x
∈
B
,
y
∈
B
⟼
x
×
y
≼
B
×
B
∧
B
×
B
≼
ℕ
→
ran
x
∈
B
,
y
∈
B
⟼
x
×
y
≼
ℕ
100
98
87
99
mp2an
⊢
ran
x
∈
B
,
y
∈
B
⟼
x
×
y
≼
ℕ
101
4
100
eqbrtri
⊢
K
≼
ℕ
102
domtr
⊢
t
≼
K
∧
K
≼
ℕ
→
t
≼
ℕ
103
47
101
102
sylancl
⊢
t
⊆
K
→
t
≼
ℕ
104
103
ad2antrl
⊢
F
∈
MblFn
∧
A
∈
J
∧
t
⊆
K
∧
G
-1
A
=
⋃
t
→
t
≼
ℕ
105
4
eleq2i
⊢
w
∈
K
↔
w
∈
ran
x
∈
B
,
y
∈
B
⟼
x
×
y
106
90
93
elrnmpo
⊢
w
∈
ran
x
∈
B
,
y
∈
B
⟼
x
×
y
↔
∃
x
∈
B
∃
y
∈
B
w
=
x
×
y
107
105
106
bitri
⊢
w
∈
K
↔
∃
x
∈
B
∃
y
∈
B
w
=
x
×
y
108
elin
⊢
z
∈
ℜ
∘
F
-1
x
∩
ℑ
∘
F
-1
y
↔
z
∈
ℜ
∘
F
-1
x
∧
z
∈
ℑ
∘
F
-1
y
109
mbff
⊢
F
∈
MblFn
→
F
:
dom
F
⟶
ℂ
110
109
adantr
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
F
:
dom
F
⟶
ℂ
111
fvco3
⊢
F
:
dom
F
⟶
ℂ
∧
z
∈
dom
F
→
ℜ
∘
F
z
=
ℜ
F
z
112
110
111
sylan
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
∧
z
∈
dom
F
→
ℜ
∘
F
z
=
ℜ
F
z
113
112
eleq1d
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
∧
z
∈
dom
F
→
ℜ
∘
F
z
∈
x
↔
ℜ
F
z
∈
x
114
fvco3
⊢
F
:
dom
F
⟶
ℂ
∧
z
∈
dom
F
→
ℑ
∘
F
z
=
ℑ
F
z
115
110
114
sylan
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
∧
z
∈
dom
F
→
ℑ
∘
F
z
=
ℑ
F
z
116
115
eleq1d
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
∧
z
∈
dom
F
→
ℑ
∘
F
z
∈
y
↔
ℑ
F
z
∈
y
117
113
116
anbi12d
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
∧
z
∈
dom
F
→
ℜ
∘
F
z
∈
x
∧
ℑ
∘
F
z
∈
y
↔
ℜ
F
z
∈
x
∧
ℑ
F
z
∈
y
118
110
ffvelcdmda
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
∧
z
∈
dom
F
→
F
z
∈
ℂ
119
fveq2
⊢
w
=
F
z
→
ℜ
w
=
ℜ
F
z
120
fveq2
⊢
w
=
F
z
→
ℑ
w
=
ℑ
F
z
121
119
120
opeq12d
⊢
w
=
F
z
→
ℜ
w
ℑ
w
=
ℜ
F
z
ℑ
F
z
122
2
cnrecnv
⊢
G
-1
=
w
∈
ℂ
⟼
ℜ
w
ℑ
w
123
opex
⊢
ℜ
F
z
ℑ
F
z
∈
V
124
121
122
123
fvmpt
⊢
F
z
∈
ℂ
→
G
-1
F
z
=
ℜ
F
z
ℑ
F
z
125
118
124
syl
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
∧
z
∈
dom
F
→
G
-1
F
z
=
ℜ
F
z
ℑ
F
z
126
125
eleq1d
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
∧
z
∈
dom
F
→
G
-1
F
z
∈
x
×
y
↔
ℜ
F
z
ℑ
F
z
∈
x
×
y
127
118
biantrurd
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
∧
z
∈
dom
F
→
G
-1
F
z
∈
x
×
y
↔
F
z
∈
ℂ
∧
G
-1
F
z
∈
x
×
y
128
126
127
bitr3d
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
∧
z
∈
dom
F
→
ℜ
F
z
ℑ
F
z
∈
x
×
y
↔
F
z
∈
ℂ
∧
G
-1
F
z
∈
x
×
y
129
opelxp
⊢
ℜ
F
z
ℑ
F
z
∈
x
×
y
↔
ℜ
F
z
∈
x
∧
ℑ
F
z
∈
y
130
f1ocnv
⊢
G
:
ℝ
2
⟶
1-1 onto
ℂ
→
G
-1
:
ℂ
⟶
1-1 onto
ℝ
2
131
f1ofn
⊢
G
-1
:
ℂ
⟶
1-1 onto
ℝ
2
→
G
-1
Fn
ℂ
132
28
130
131
mp2b
⊢
G
-1
Fn
ℂ
133
elpreima
⊢
G
-1
Fn
ℂ
→
F
z
∈
G
-1
-1
x
×
y
↔
F
z
∈
ℂ
∧
G
-1
F
z
∈
x
×
y
134
132
133
ax-mp
⊢
F
z
∈
G
-1
-1
x
×
y
↔
F
z
∈
ℂ
∧
G
-1
F
z
∈
x
×
y
135
imacnvcnv
⊢
G
-1
-1
x
×
y
=
G
x
×
y
136
135
eleq2i
⊢
F
z
∈
G
-1
-1
x
×
y
↔
F
z
∈
G
x
×
y
137
134
136
bitr3i
⊢
F
z
∈
ℂ
∧
G
-1
F
z
∈
x
×
y
↔
F
z
∈
G
x
×
y
138
128
129
137
3bitr3g
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
∧
z
∈
dom
F
→
ℜ
F
z
∈
x
∧
ℑ
F
z
∈
y
↔
F
z
∈
G
x
×
y
139
117
138
bitrd
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
∧
z
∈
dom
F
→
ℜ
∘
F
z
∈
x
∧
ℑ
∘
F
z
∈
y
↔
F
z
∈
G
x
×
y
140
139
pm5.32da
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
z
∈
dom
F
∧
ℜ
∘
F
z
∈
x
∧
ℑ
∘
F
z
∈
y
↔
z
∈
dom
F
∧
F
z
∈
G
x
×
y
141
ref
⊢
ℜ
:
ℂ
⟶
ℝ
142
fco
⊢
ℜ
:
ℂ
⟶
ℝ
∧
F
:
dom
F
⟶
ℂ
→
ℜ
∘
F
:
dom
F
⟶
ℝ
143
141
109
142
sylancr
⊢
F
∈
MblFn
→
ℜ
∘
F
:
dom
F
⟶
ℝ
144
ffn
⊢
ℜ
∘
F
:
dom
F
⟶
ℝ
→
ℜ
∘
F
Fn
dom
F
145
elpreima
⊢
ℜ
∘
F
Fn
dom
F
→
z
∈
ℜ
∘
F
-1
x
↔
z
∈
dom
F
∧
ℜ
∘
F
z
∈
x
146
143
144
145
3syl
⊢
F
∈
MblFn
→
z
∈
ℜ
∘
F
-1
x
↔
z
∈
dom
F
∧
ℜ
∘
F
z
∈
x
147
imf
⊢
ℑ
:
ℂ
⟶
ℝ
148
fco
⊢
ℑ
:
ℂ
⟶
ℝ
∧
F
:
dom
F
⟶
ℂ
→
ℑ
∘
F
:
dom
F
⟶
ℝ
149
147
109
148
sylancr
⊢
F
∈
MblFn
→
ℑ
∘
F
:
dom
F
⟶
ℝ
150
ffn
⊢
ℑ
∘
F
:
dom
F
⟶
ℝ
→
ℑ
∘
F
Fn
dom
F
151
elpreima
⊢
ℑ
∘
F
Fn
dom
F
→
z
∈
ℑ
∘
F
-1
y
↔
z
∈
dom
F
∧
ℑ
∘
F
z
∈
y
152
149
150
151
3syl
⊢
F
∈
MblFn
→
z
∈
ℑ
∘
F
-1
y
↔
z
∈
dom
F
∧
ℑ
∘
F
z
∈
y
153
146
152
anbi12d
⊢
F
∈
MblFn
→
z
∈
ℜ
∘
F
-1
x
∧
z
∈
ℑ
∘
F
-1
y
↔
z
∈
dom
F
∧
ℜ
∘
F
z
∈
x
∧
z
∈
dom
F
∧
ℑ
∘
F
z
∈
y
154
anandi
⊢
z
∈
dom
F
∧
ℜ
∘
F
z
∈
x
∧
ℑ
∘
F
z
∈
y
↔
z
∈
dom
F
∧
ℜ
∘
F
z
∈
x
∧
z
∈
dom
F
∧
ℑ
∘
F
z
∈
y
155
153
154
bitr4di
⊢
F
∈
MblFn
→
z
∈
ℜ
∘
F
-1
x
∧
z
∈
ℑ
∘
F
-1
y
↔
z
∈
dom
F
∧
ℜ
∘
F
z
∈
x
∧
ℑ
∘
F
z
∈
y
156
155
adantr
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
z
∈
ℜ
∘
F
-1
x
∧
z
∈
ℑ
∘
F
-1
y
↔
z
∈
dom
F
∧
ℜ
∘
F
z
∈
x
∧
ℑ
∘
F
z
∈
y
157
ffn
⊢
F
:
dom
F
⟶
ℂ
→
F
Fn
dom
F
158
elpreima
⊢
F
Fn
dom
F
→
z
∈
F
-1
G
x
×
y
↔
z
∈
dom
F
∧
F
z
∈
G
x
×
y
159
109
157
158
3syl
⊢
F
∈
MblFn
→
z
∈
F
-1
G
x
×
y
↔
z
∈
dom
F
∧
F
z
∈
G
x
×
y
160
159
adantr
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
z
∈
F
-1
G
x
×
y
↔
z
∈
dom
F
∧
F
z
∈
G
x
×
y
161
140
156
160
3bitr4d
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
z
∈
ℜ
∘
F
-1
x
∧
z
∈
ℑ
∘
F
-1
y
↔
z
∈
F
-1
G
x
×
y
162
108
161
bitrid
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
z
∈
ℜ
∘
F
-1
x
∩
ℑ
∘
F
-1
y
↔
z
∈
F
-1
G
x
×
y
163
162
eqrdv
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
ℜ
∘
F
-1
x
∩
ℑ
∘
F
-1
y
=
F
-1
G
x
×
y
164
ismbfcn
⊢
F
:
dom
F
⟶
ℂ
→
F
∈
MblFn
↔
ℜ
∘
F
∈
MblFn
∧
ℑ
∘
F
∈
MblFn
165
109
164
syl
⊢
F
∈
MblFn
→
F
∈
MblFn
↔
ℜ
∘
F
∈
MblFn
∧
ℑ
∘
F
∈
MblFn
166
165
ibi
⊢
F
∈
MblFn
→
ℜ
∘
F
∈
MblFn
∧
ℑ
∘
F
∈
MblFn
167
166
simpld
⊢
F
∈
MblFn
→
ℜ
∘
F
∈
MblFn
168
ismbf
⊢
ℜ
∘
F
:
dom
F
⟶
ℝ
→
ℜ
∘
F
∈
MblFn
↔
∀
x
∈
ran
.
ℜ
∘
F
-1
x
∈
dom
vol
169
143
168
syl
⊢
F
∈
MblFn
→
ℜ
∘
F
∈
MblFn
↔
∀
x
∈
ran
.
ℜ
∘
F
-1
x
∈
dom
vol
170
167
169
mpbid
⊢
F
∈
MblFn
→
∀
x
∈
ran
.
ℜ
∘
F
-1
x
∈
dom
vol
171
170
adantr
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
∀
x
∈
ran
.
ℜ
∘
F
-1
x
∈
dom
vol
172
imassrn
⊢
.
ℚ
×
ℚ
⊆
ran
.
173
3
172
eqsstri
⊢
B
⊆
ran
.
174
simprl
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
x
∈
B
175
173
174
sselid
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
x
∈
ran
.
176
rsp
⊢
∀
x
∈
ran
.
ℜ
∘
F
-1
x
∈
dom
vol
→
x
∈
ran
.
→
ℜ
∘
F
-1
x
∈
dom
vol
177
171
175
176
sylc
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
ℜ
∘
F
-1
x
∈
dom
vol
178
166
simprd
⊢
F
∈
MblFn
→
ℑ
∘
F
∈
MblFn
179
ismbf
⊢
ℑ
∘
F
:
dom
F
⟶
ℝ
→
ℑ
∘
F
∈
MblFn
↔
∀
y
∈
ran
.
ℑ
∘
F
-1
y
∈
dom
vol
180
149
179
syl
⊢
F
∈
MblFn
→
ℑ
∘
F
∈
MblFn
↔
∀
y
∈
ran
.
ℑ
∘
F
-1
y
∈
dom
vol
181
178
180
mpbid
⊢
F
∈
MblFn
→
∀
y
∈
ran
.
ℑ
∘
F
-1
y
∈
dom
vol
182
181
adantr
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
∀
y
∈
ran
.
ℑ
∘
F
-1
y
∈
dom
vol
183
simprr
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
y
∈
B
184
173
183
sselid
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
y
∈
ran
.
185
rsp
⊢
∀
y
∈
ran
.
ℑ
∘
F
-1
y
∈
dom
vol
→
y
∈
ran
.
→
ℑ
∘
F
-1
y
∈
dom
vol
186
182
184
185
sylc
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
ℑ
∘
F
-1
y
∈
dom
vol
187
inmbl
⊢
ℜ
∘
F
-1
x
∈
dom
vol
∧
ℑ
∘
F
-1
y
∈
dom
vol
→
ℜ
∘
F
-1
x
∩
ℑ
∘
F
-1
y
∈
dom
vol
188
177
186
187
syl2anc
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
ℜ
∘
F
-1
x
∩
ℑ
∘
F
-1
y
∈
dom
vol
189
163
188
eqeltrrd
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
F
-1
G
x
×
y
∈
dom
vol
190
imaeq2
⊢
w
=
x
×
y
→
G
w
=
G
x
×
y
191
190
imaeq2d
⊢
w
=
x
×
y
→
F
-1
G
w
=
F
-1
G
x
×
y
192
191
eleq1d
⊢
w
=
x
×
y
→
F
-1
G
w
∈
dom
vol
↔
F
-1
G
x
×
y
∈
dom
vol
193
189
192
syl5ibrcom
⊢
F
∈
MblFn
∧
x
∈
B
∧
y
∈
B
→
w
=
x
×
y
→
F
-1
G
w
∈
dom
vol
194
193
rexlimdvva
⊢
F
∈
MblFn
→
∃
x
∈
B
∃
y
∈
B
w
=
x
×
y
→
F
-1
G
w
∈
dom
vol
195
107
194
biimtrid
⊢
F
∈
MblFn
→
w
∈
K
→
F
-1
G
w
∈
dom
vol
196
195
ralrimiv
⊢
F
∈
MblFn
→
∀
w
∈
K
F
-1
G
w
∈
dom
vol
197
ssralv
⊢
t
⊆
K
→
∀
w
∈
K
F
-1
G
w
∈
dom
vol
→
∀
w
∈
t
F
-1
G
w
∈
dom
vol
198
196
197
mpan9
⊢
F
∈
MblFn
∧
t
⊆
K
→
∀
w
∈
t
F
-1
G
w
∈
dom
vol
199
198
ad2ant2r
⊢
F
∈
MblFn
∧
A
∈
J
∧
t
⊆
K
∧
G
-1
A
=
⋃
t
→
∀
w
∈
t
F
-1
G
w
∈
dom
vol
200
iunmbl2
⊢
t
≼
ℕ
∧
∀
w
∈
t
F
-1
G
w
∈
dom
vol
→
⋃
w
∈
t
F
-1
G
w
∈
dom
vol
201
104
199
200
syl2anc
⊢
F
∈
MblFn
∧
A
∈
J
∧
t
⊆
K
∧
G
-1
A
=
⋃
t
→
⋃
w
∈
t
F
-1
G
w
∈
dom
vol
202
45
201
eqeltrd
⊢
F
∈
MblFn
∧
A
∈
J
∧
t
⊆
K
∧
G
-1
A
=
⋃
t
→
F
-1
A
∈
dom
vol
203
27
202
exlimddv
⊢
F
∈
MblFn
∧
A
∈
J
→
F
-1
A
∈
dom
vol