Metamath Proof Explorer


Theorem mbfimaopnlem

Description: Lemma for mbfimaopn . (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses mbfimaopn.1 J=TopOpenfld
mbfimaopn.2 G=x,yx+iy
mbfimaopn.3 B=.×
mbfimaopn.4 K=ranxB,yBx×y
Assertion mbfimaopnlem FMblFnAJF-1Adomvol

Proof

Step Hyp Ref Expression
1 mbfimaopn.1 J=TopOpenfld
2 mbfimaopn.2 G=x,yx+iy
3 mbfimaopn.3 B=.×
4 mbfimaopn.4 K=ranxB,yBx×y
5 eqid topGenran.=topGenran.
6 2 5 1 cnrehmeo GtopGenran.×ttopGenran.HomeoJ
7 hmeocn GtopGenran.×ttopGenran.HomeoJGtopGenran.×ttopGenran.CnJ
8 6 7 ax-mp GtopGenran.×ttopGenran.CnJ
9 cnima GtopGenran.×ttopGenran.CnJAJG-1AtopGenran.×ttopGenran.
10 8 9 mpan AJG-1AtopGenran.×ttopGenran.
11 3 fveq2i topGenB=topGen.×
12 11 tgqioo topGenran.=topGenB
13 12 12 oveq12i topGenran.×ttopGenran.=topGenB×ttopGenB
14 qtopbas .×TopBases
15 3 14 eqeltri BTopBases
16 txbasval BTopBasesBTopBasestopGenB×ttopGenB=B×tB
17 15 15 16 mp2an topGenB×ttopGenB=B×tB
18 4 txval BTopBasesBTopBasesB×tB=topGenK
19 15 15 18 mp2an B×tB=topGenK
20 13 17 19 3eqtri topGenran.×ttopGenran.=topGenK
21 10 20 eleqtrdi AJG-1AtopGenK
22 4 txbas BTopBasesBTopBasesKTopBases
23 15 15 22 mp2an KTopBases
24 eltg3 KTopBasesG-1AtopGenKttKG-1A=t
25 23 24 ax-mp G-1AtopGenKttKG-1A=t
26 21 25 sylib AJttKG-1A=t
27 26 adantl FMblFnAJttKG-1A=t
28 2 cnref1o G:21-1 onto
29 f1ofo G:21-1 ontoG:2onto
30 28 29 ax-mp G:2onto
31 elssuni AJAJ
32 1 cnfldtopon JTopOn
33 32 toponunii =J
34 31 33 sseqtrrdi AJA
35 34 ad2antlr FMblFnAJtKG-1A=tA
36 foimacnv G:2ontoAGG-1A=A
37 30 35 36 sylancr FMblFnAJtKG-1A=tGG-1A=A
38 simprr FMblFnAJtKG-1A=tG-1A=t
39 38 imaeq2d FMblFnAJtKG-1A=tGG-1A=Gt
40 imauni Gt=wtGw
41 39 40 eqtrdi FMblFnAJtKG-1A=tGG-1A=wtGw
42 37 41 eqtr3d FMblFnAJtKG-1A=tA=wtGw
43 42 imaeq2d FMblFnAJtKG-1A=tF-1A=F-1wtGw
44 imaiun F-1wtGw=wtF-1Gw
45 43 44 eqtrdi FMblFnAJtKG-1A=tF-1A=wtF-1Gw
46 ssdomg KTopBasestKtK
47 23 46 ax-mp tKtK
48 omelon ωOn
49 nnenom ω
50 49 ensymi ω
51 isnumi ωOnωdomcard
52 48 50 51 mp2an domcard
53 qnnen
54 xpen ××
55 53 53 54 mp2an ××
56 xpnnen ×
57 55 56 entri ×
58 57 49 entr2i ω×
59 isnumi ωOnω××domcard
60 48 58 59 mp2an ×domcard
61 ioof .:*×*𝒫
62 ffun .:*×*𝒫Fun.
63 61 62 ax-mp Fun.
64 qssre
65 ressxr *
66 64 65 sstri *
67 xpss12 **×*×*
68 66 66 67 mp2an ×*×*
69 61 fdmi dom.=*×*
70 68 69 sseqtrri ×dom.
71 fores Fun.×dom..×:×onto.×
72 63 70 71 mp2an .×:×onto.×
73 fodomnum ×domcard.×:×onto.×.××
74 60 72 73 mp2 .××
75 3 74 eqbrtri B×
76 domentr B××B
77 75 57 76 mp2an B
78 15 elexi BV
79 78 xpdom1 BB×B×B
80 77 79 ax-mp B×B×B
81 nnex V
82 81 xpdom2 B×B×
83 77 82 ax-mp ×B×
84 domtr B×B×B×B×B×B×
85 80 83 84 mp2an B×B×
86 domentr B×B××B×B
87 85 56 86 mp2an B×B
88 numdom domcardB×BB×Bdomcard
89 52 87 88 mp2an B×Bdomcard
90 eqid xB,yBx×y=xB,yBx×y
91 vex xV
92 vex yV
93 91 92 xpex x×yV
94 90 93 fnmpoi xB,yBx×yFnB×B
95 dffn4 xB,yBx×yFnB×BxB,yBx×y:B×BontoranxB,yBx×y
96 94 95 mpbi xB,yBx×y:B×BontoranxB,yBx×y
97 fodomnum B×BdomcardxB,yBx×y:B×BontoranxB,yBx×yranxB,yBx×yB×B
98 89 96 97 mp2 ranxB,yBx×yB×B
99 domtr ranxB,yBx×yB×BB×BranxB,yBx×y
100 98 87 99 mp2an ranxB,yBx×y
101 4 100 eqbrtri K
102 domtr tKKt
103 47 101 102 sylancl tKt
104 103 ad2antrl FMblFnAJtKG-1A=tt
105 4 eleq2i wKwranxB,yBx×y
106 90 93 elrnmpo wranxB,yBx×yxByBw=x×y
107 105 106 bitri wKxByBw=x×y
108 elin zF-1xF-1yzF-1xzF-1y
109 mbff FMblFnF:domF
110 109 adantr FMblFnxByBF:domF
111 fvco3 F:domFzdomFFz=Fz
112 110 111 sylan FMblFnxByBzdomFFz=Fz
113 112 eleq1d FMblFnxByBzdomFFzxFzx
114 fvco3 F:domFzdomFFz=Fz
115 110 114 sylan FMblFnxByBzdomFFz=Fz
116 115 eleq1d FMblFnxByBzdomFFzyFzy
117 113 116 anbi12d FMblFnxByBzdomFFzxFzyFzxFzy
118 110 ffvelcdmda FMblFnxByBzdomFFz
119 fveq2 w=Fzw=Fz
120 fveq2 w=Fzw=Fz
121 119 120 opeq12d w=Fzww=FzFz
122 2 cnrecnv G-1=www
123 opex FzFzV
124 121 122 123 fvmpt FzG-1Fz=FzFz
125 118 124 syl FMblFnxByBzdomFG-1Fz=FzFz
126 125 eleq1d FMblFnxByBzdomFG-1Fzx×yFzFzx×y
127 118 biantrurd FMblFnxByBzdomFG-1Fzx×yFzG-1Fzx×y
128 126 127 bitr3d FMblFnxByBzdomFFzFzx×yFzG-1Fzx×y
129 opelxp FzFzx×yFzxFzy
130 f1ocnv G:21-1 ontoG-1:1-1 onto2
131 f1ofn G-1:1-1 onto2G-1Fn
132 28 130 131 mp2b G-1Fn
133 elpreima G-1FnFzG-1-1x×yFzG-1Fzx×y
134 132 133 ax-mp FzG-1-1x×yFzG-1Fzx×y
135 imacnvcnv G-1-1x×y=Gx×y
136 135 eleq2i FzG-1-1x×yFzGx×y
137 134 136 bitr3i FzG-1Fzx×yFzGx×y
138 128 129 137 3bitr3g FMblFnxByBzdomFFzxFzyFzGx×y
139 117 138 bitrd FMblFnxByBzdomFFzxFzyFzGx×y
140 139 pm5.32da FMblFnxByBzdomFFzxFzyzdomFFzGx×y
141 ref :
142 fco :F:domFF:domF
143 141 109 142 sylancr FMblFnF:domF
144 ffn F:domFFFndomF
145 elpreima FFndomFzF-1xzdomFFzx
146 143 144 145 3syl FMblFnzF-1xzdomFFzx
147 imf :
148 fco :F:domFF:domF
149 147 109 148 sylancr FMblFnF:domF
150 ffn F:domFFFndomF
151 elpreima FFndomFzF-1yzdomFFzy
152 149 150 151 3syl FMblFnzF-1yzdomFFzy
153 146 152 anbi12d FMblFnzF-1xzF-1yzdomFFzxzdomFFzy
154 anandi zdomFFzxFzyzdomFFzxzdomFFzy
155 153 154 bitr4di FMblFnzF-1xzF-1yzdomFFzxFzy
156 155 adantr FMblFnxByBzF-1xzF-1yzdomFFzxFzy
157 ffn F:domFFFndomF
158 elpreima FFndomFzF-1Gx×yzdomFFzGx×y
159 109 157 158 3syl FMblFnzF-1Gx×yzdomFFzGx×y
160 159 adantr FMblFnxByBzF-1Gx×yzdomFFzGx×y
161 140 156 160 3bitr4d FMblFnxByBzF-1xzF-1yzF-1Gx×y
162 108 161 bitrid FMblFnxByBzF-1xF-1yzF-1Gx×y
163 162 eqrdv FMblFnxByBF-1xF-1y=F-1Gx×y
164 ismbfcn F:domFFMblFnFMblFnFMblFn
165 109 164 syl FMblFnFMblFnFMblFnFMblFn
166 165 ibi FMblFnFMblFnFMblFn
167 166 simpld FMblFnFMblFn
168 ismbf F:domFFMblFnxran.F-1xdomvol
169 143 168 syl FMblFnFMblFnxran.F-1xdomvol
170 167 169 mpbid FMblFnxran.F-1xdomvol
171 170 adantr FMblFnxByBxran.F-1xdomvol
172 imassrn .×ran.
173 3 172 eqsstri Bran.
174 simprl FMblFnxByBxB
175 173 174 sselid FMblFnxByBxran.
176 rsp xran.F-1xdomvolxran.F-1xdomvol
177 171 175 176 sylc FMblFnxByBF-1xdomvol
178 166 simprd FMblFnFMblFn
179 ismbf F:domFFMblFnyran.F-1ydomvol
180 149 179 syl FMblFnFMblFnyran.F-1ydomvol
181 178 180 mpbid FMblFnyran.F-1ydomvol
182 181 adantr FMblFnxByByran.F-1ydomvol
183 simprr FMblFnxByByB
184 173 183 sselid FMblFnxByByran.
185 rsp yran.F-1ydomvolyran.F-1ydomvol
186 182 184 185 sylc FMblFnxByBF-1ydomvol
187 inmbl F-1xdomvolF-1ydomvolF-1xF-1ydomvol
188 177 186 187 syl2anc FMblFnxByBF-1xF-1ydomvol
189 163 188 eqeltrrd FMblFnxByBF-1Gx×ydomvol
190 imaeq2 w=x×yGw=Gx×y
191 190 imaeq2d w=x×yF-1Gw=F-1Gx×y
192 191 eleq1d w=x×yF-1GwdomvolF-1Gx×ydomvol
193 189 192 syl5ibrcom FMblFnxByBw=x×yF-1Gwdomvol
194 193 rexlimdvva FMblFnxByBw=x×yF-1Gwdomvol
195 107 194 biimtrid FMblFnwKF-1Gwdomvol
196 195 ralrimiv FMblFnwKF-1Gwdomvol
197 ssralv tKwKF-1GwdomvolwtF-1Gwdomvol
198 196 197 mpan9 FMblFntKwtF-1Gwdomvol
199 198 ad2ant2r FMblFnAJtKG-1A=twtF-1Gwdomvol
200 iunmbl2 twtF-1GwdomvolwtF-1Gwdomvol
201 104 199 200 syl2anc FMblFnAJtKG-1A=twtF-1Gwdomvol
202 45 201 eqeltrd FMblFnAJtKG-1A=tF-1Adomvol
203 27 202 exlimddv FMblFnAJF-1Adomvol