Metamath Proof Explorer


Theorem mblfinlem1

Description: Lemma for ismblfin , ordering the sets of dyadic intervals that are antichains under subset and whose unions are contained entirely in A . (Contributed by Brendan Leahy, 13-Jul-2018)

Ref Expression
Assertion mblfinlem1 AtopGenran.Aff:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c

Proof

Step Hyp Ref Expression
1 peano2re nn+1
2 ltp1 nn<n+1
3 breq2 z=n+1n<zn<n+1
4 3 rspcev n+1n<n+1zn<z
5 1 2 4 syl2anc nzn<z
6 5 rgen nzn<z
7 ltnle nzn<z¬zn
8 7 rexbidva nzn<zz¬zn
9 rexnal z¬zn¬zzn
10 8 9 bitrdi nzn<z¬zzn
11 10 ralbiia nzn<zn¬zzn
12 ralnex n¬zzn¬nzzn
13 11 12 bitri nzn<z¬nzzn
14 6 13 mpbi ¬nzzn
15 raleq A=zAznzzn
16 15 rexbidv A=nzAznnzzn
17 14 16 mtbiri A=¬nzAzn
18 ssrab2 abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cbranx,y0x2yx+12y|.bA
19 ssrab2 branx,y0x2yx+12y|.bAranx,y0x2yx+12y
20 zre xx
21 2re 2
22 reexpcl 2y02y
23 21 22 mpan y02y
24 nn0z y0y
25 2cn 2
26 2ne0 20
27 expne0i 220y2y0
28 25 26 27 mp3an12 y2y0
29 24 28 syl y02y0
30 23 29 jca y02y2y0
31 redivcl x2y2y0x2y
32 peano2re xx+1
33 redivcl x+12y2y0x+12y
34 32 33 syl3an1 x2y2y0x+12y
35 opelxpi x2yx+12yx2yx+12y2
36 31 34 35 syl2anc x2y2y0x2yx+12y2
37 36 3expb x2y2y0x2yx+12y2
38 20 30 37 syl2an xy0x2yx+12y2
39 38 rgen2 xy0x2yx+12y2
40 eqid x,y0x2yx+12y=x,y0x2yx+12y
41 40 fmpo xy0x2yx+12y2x,y0x2yx+12y:×02
42 39 41 mpbi x,y0x2yx+12y:×02
43 frn x,y0x2yx+12y:×02ranx,y0x2yx+12y2
44 42 43 ax-mp ranx,y0x2yx+12y2
45 19 44 sstri branx,y0x2yx+12y|.bA2
46 18 45 sstri abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c2
47 rnss abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c2ranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cran2
48 rnxpid ran2=
49 47 48 sseqtrdi abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c2ranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
50 46 49 ax-mp ranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
51 rnfi abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFinranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFin
52 fimaxre2 ranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFinnuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cun
53 50 51 52 sylancr abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFinnuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cun
54 53 adantl .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFinnuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cun
55 eluni2 z.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cu.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czu
56 iccf .:*×*𝒫*
57 ffn .:*×*𝒫*.Fn*×*
58 56 57 ax-mp .Fn*×*
59 rexpssxrxp 2*×*
60 46 59 sstri abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c*×*
61 eleq2 u=.vzuz.v
62 61 rexima .Fn*×*abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c*×*u.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czuvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz.v
63 58 60 62 mp2an u.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czuvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz.v
64 55 63 bitri z.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz.v
65 46 sseli vabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cv2
66 1st2nd2 v2v=1stv2ndv
67 66 fveq2d v2.v=.1stv2ndv
68 df-ov 1stv2ndv=.1stv2ndv
69 67 68 eqtr4di v2.v=1stv2ndv
70 69 eleq2d v2z.vz1stv2ndv
71 65 70 syl vabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz.vz1stv2ndv
72 71 biimpd vabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz.vz1stv2ndv
73 72 imdistani vabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz.vvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1stv2ndv
74 eliccxr z1stv2ndvz*
75 74 ad2antll .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1stv2ndvz*
76 xp2nd v22ndv
77 76 rexrd v22ndv*
78 65 77 syl vabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c2ndv*
79 78 ad2antrl .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1stv2ndv2ndv*
80 simpllr .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1stv2ndvn
81 80 rexrd .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1stv2ndvn*
82 xp1st v21stv
83 82 rexrd v21stv*
84 83 77 jca v21stv*2ndv*
85 65 84 syl vabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c1stv*2ndv*
86 iccleub 1stv*2ndv*z1stv2ndvz2ndv
87 86 3expa 1stv*2ndv*z1stv2ndvz2ndv
88 85 87 sylan vabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1stv2ndvz2ndv
89 88 adantl .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1stv2ndvz2ndv
90 xpss 2V×V
91 46 90 sstri abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cV×V
92 df-rel Relabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cV×V
93 91 92 mpbir Relabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
94 2ndrn Relabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c2ndvranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
95 93 94 mpan vabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c2ndvranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
96 breq1 u=2ndvun2ndvn
97 96 rspccva uranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cun2ndvranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c2ndvn
98 95 97 sylan2 uranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c2ndvn
99 98 ad2ant2lr .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1stv2ndv2ndvn
100 75 79 81 89 99 xrletrd .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1stv2ndvzn
101 73 100 sylan2 .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz.vzn
102 101 rexlimdvaa .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunvabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz.vzn
103 64 102 biimtrid .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunz.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czn
104 103 ralrimiv .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunz.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czn
105 raleq .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Az.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cznzAzn
106 105 ad2antrr .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunz.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cznzAzn
107 104 106 mpbid .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunzAzn
108 107 ex .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunzAzn
109 108 reximdva .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Anuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunnzAzn
110 109 adantr .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFinnuranabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cunnzAzn
111 54 110 mpd .abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFinnzAzn
112 17 111 nsyl A=¬.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFin
113 112 adantl AtopGenran.AA=¬.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFin
114 uniretop =topGenran.
115 retopconn topGenran.Conn
116 115 a1i AtopGenran.A.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFintopGenran.Conn
117 simpll AtopGenran.A.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFinAtopGenran.
118 simplr AtopGenran.A.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFinA
119 simprl AtopGenran.A.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFin.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=A
120 ffun .:*×*𝒫*Fun.
121 funiunfv Fun.zabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.z=.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
122 56 120 121 mp2b zabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.z=.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
123 retop topGenran.Top
124 46 sseli zabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz2
125 1st2nd2 z2z=1stz2ndz
126 125 fveq2d z2.z=.1stz2ndz
127 df-ov 1stz2ndz=.1stz2ndz
128 126 127 eqtr4di z2.z=1stz2ndz
129 xp1st z21stz
130 xp2nd z22ndz
131 icccld 1stz2ndz1stz2ndzClsdtopGenran.
132 129 130 131 syl2anc z21stz2ndzClsdtopGenran.
133 128 132 eqeltrd z2.zClsdtopGenran.
134 124 133 syl zabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.zClsdtopGenran.
135 134 rgen zabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.zClsdtopGenran.
136 114 iuncld topGenran.Topabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFinzabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.zClsdtopGenran.zabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.zClsdtopGenran.
137 123 135 136 mp3an13 abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFinzabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.zClsdtopGenran.
138 122 137 eqeltrrid abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFin.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cClsdtopGenran.
139 138 ad2antll AtopGenran.A.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFin.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cClsdtopGenran.
140 119 139 eqeltrrd AtopGenran.A.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFinAClsdtopGenran.
141 114 116 117 118 140 connclo AtopGenran.A.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFinA=
142 141 ex AtopGenran.A.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFinA=
143 142 necon3ad AtopGenran.AA¬.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFin
144 143 imp AtopGenran.AA¬.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFin
145 113 144 pm2.61dane AtopGenran.A¬.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFin
146 oveq1 x=ux2y=u2y
147 oveq1 x=ux+1=u+1
148 147 oveq1d x=ux+12y=u+12y
149 146 148 opeq12d x=ux2yx+12y=u2yu+12y
150 oveq2 y=v2y=2v
151 150 oveq2d y=vu2y=u2v
152 150 oveq2d y=vu+12y=u+12v
153 151 152 opeq12d y=vu2yu+12y=u2vu+12v
154 149 153 cbvmpov x,y0x2yx+12y=u,v0u2vu+12v
155 fveq2 a=z.a=.z
156 155 sseq1d a=z.a.c.z.c
157 equequ1 a=za=cz=c
158 156 157 imbi12d a=z.a.ca=c.z.cz=c
159 158 ralbidv a=zcbranx,y0x2yx+12y|.bA.a.ca=ccbranx,y0x2yx+12y|.bA.z.cz=c
160 159 cbvrabv abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=zbranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.z.cz=c
161 19 a1i AtopGenran.branx,y0x2yx+12y|.bAranx,y0x2yx+12y
162 154 160 161 dyadmbllem AtopGenran..branx,y0x2yx+12y|.bA=.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
163 opnmbllem0 AtopGenran..branx,y0x2yx+12y|.bA=A
164 162 163 eqtr3d AtopGenran..abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=A
165 164 adantr AtopGenran.A.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=A
166 nnenom ω
167 sdomentr abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cωabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cω
168 166 167 mpan2 abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cω
169 isfinite abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFinabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cω
170 168 169 sylibr abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFin
171 165 170 anim12i AtopGenran.Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cFin
172 145 171 mtand AtopGenran.A¬abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
173 qex V
174 173 173 xpex ×V
175 zq xx
176 2nn 2
177 nnq 22
178 176 177 ax-mp 2
179 qexpcl 2y02y
180 178 179 mpan y02y
181 180 29 jca y02y2y0
182 qdivcl x2y2y0x2y
183 1z 1
184 zq 11
185 183 184 ax-mp 1
186 qaddcl x1x+1
187 185 186 mpan2 xx+1
188 qdivcl x+12y2y0x+12y
189 187 188 syl3an1 x2y2y0x+12y
190 opelxpi x2yx+12yx2yx+12y×
191 182 189 190 syl2anc x2y2y0x2yx+12y×
192 191 3expb x2y2y0x2yx+12y×
193 175 181 192 syl2an xy0x2yx+12y×
194 193 rgen2 xy0x2yx+12y×
195 40 fmpo xy0x2yx+12y×x,y0x2yx+12y:×0×
196 194 195 mpbi x,y0x2yx+12y:×0×
197 frn x,y0x2yx+12y:×0×ranx,y0x2yx+12y×
198 196 197 ax-mp ranx,y0x2yx+12y×
199 19 198 sstri branx,y0x2yx+12y|.bA×
200 18 199 sstri abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c×
201 ssdomg ×Vabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c×abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c×
202 174 200 201 mp2 abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c×
203 qnnen
204 xpen ××
205 203 203 204 mp2an ××
206 xpnnen ×
207 205 206 entri ×
208 domentr abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c××abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
209 202 207 208 mp2an abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
210 172 209 jctil AtopGenran.Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c¬abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
211 bren2 abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c¬abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
212 210 211 sylibr AtopGenran.Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
213 212 ensymd AtopGenran.Aabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
214 bren abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cff:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
215 213 214 sylib AtopGenran.Aff:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c