Metamath Proof Explorer


Theorem signsply0

Description: Lemma for the rule of signs, based on Bolzano's intermediate value theorem for polynomials : If the lowest and highest coefficient A and B are of opposite signs, the polynomial admits a positive root. (Contributed by Thierry Arnoux, 19-Sep-2018)

Ref Expression
Hypotheses signsply0.d D=degF
signsply0.c C=coeffF
signsply0.b B=CD
signsply0.a A=C0
signsply0.1 φFPoly
signsply0.2 φF0𝑝
signsply0.3 φAB<0
Assertion signsply0 φz+Fz=0

Proof

Step Hyp Ref Expression
1 signsply0.d D=degF
2 signsply0.c C=coeffF
3 signsply0.b B=CD
4 signsply0.a A=C0
5 signsply0.1 φFPoly
6 signsply0.2 φF0𝑝
7 signsply0.3 φAB<0
8 simplr φB+d+f+dfFffDB<Bd+
9 simpr φB+d+f+dfFffDB<Bf+dfFffDB<B
10 rpxr d+d*
11 10 xrleidd d+dd
12 11 ad2antlr φB+d+f+dfFffDB<Bdd
13 id d+d+
14 simpr d+f=df=d
15 14 breq2d d+f=ddfdd
16 14 fveq2d d+f=dFf=Fd
17 14 oveq1d d+f=dfD=dD
18 16 17 oveq12d d+f=dFffD=FddD
19 18 fvoveq1d d+f=dFffDB=FddDB
20 19 breq1d d+f=dFffDB<BFddDB<B
21 15 20 imbi12d d+f=ddfFffDB<BddFddDB<B
22 13 21 rspcdv d+f+dfFffDB<BddFddDB<B
23 8 9 12 22 syl3c φB+d+f+dfFffDB<BFddDB<B
24 5 ad2antrr φB+d+FPoly
25 simpr φB+d+d+
26 25 rpred φB+d+d
27 24 26 plyrecld φB+d+Fd
28 dgrcl FPolydegF0
29 5 28 syl φdegF0
30 1 29 eqeltrid φD0
31 30 ad2antrr φB+d+D0
32 26 31 reexpcld φB+d+dD
33 25 rpcnd φB+d+d
34 25 rpne0d φB+d+d0
35 30 nn0zd φD
36 35 ad2antrr φB+d+D
37 33 34 36 expne0d φB+d+dD0
38 27 32 37 redivcld φB+d+FddD
39 0re 0
40 2 coef2 FPoly0C:0
41 39 40 mpan2 FPolyC:0
42 41 ffvelcdmda FPolyD0CD
43 3 42 eqeltrid FPolyD0B
44 5 30 43 syl2anc φB
45 44 ad2antrr φB+d+B
46 45 renegcld φB+d+B
47 38 45 46 absdifltd φB+d+FddDB<BBB<FddDFddD<B+B
48 47 simplbda φB+d+FddDB<BFddD<B+B
49 44 recnd φB
50 49 ad2antrr φB+d+B
51 50 negidd φB+d+B+B=0
52 51 adantr φB+d+FddDB<BB+B=0
53 48 52 breqtrd φB+d+FddDB<BFddD<0
54 25 36 rpexpcld φB+d+dD+
55 27 54 ge0divd φB+d+0Fd0FddD
56 55 notbid φB+d+¬0Fd¬0FddD
57 0red φB+d+0
58 27 57 ltnled φB+d+Fd<0¬0Fd
59 38 57 ltnled φB+d+FddD<0¬0FddD
60 56 58 59 3bitr4d φB+d+Fd<0FddD<0
61 60 adantr φB+d+FddDB<BFd<0FddD<0
62 53 61 mpbird φB+d+FddDB<BFd<0
63 23 62 syldan φB+d+f+dfFffDB<BFd<0
64 0red φB+d+Fd<00
65 simplr φB+d+Fd<0d+
66 65 rpred φB+d+Fd<0d
67 65 rpgt0d φB+d+Fd<00<d
68 iccssre 0d0d
69 39 66 68 sylancr φB+d+Fd<00d
70 ax-resscn
71 69 70 sstrdi φB+d+Fd<00d
72 plycn FPolyF:cn
73 5 72 syl φF:cn
74 73 ad3antrrr φB+d+Fd<0F:cn
75 5 ad4antr φB+d+Fd<0x0dFPoly
76 69 sselda φB+d+Fd<0x0dx
77 75 76 plyrecld φB+d+Fd<0x0dFx
78 simpr φB+d+Fd<0Fd<0
79 simplll φB+d+Fd<0φ
80 79 44 syl φB+d+Fd<0B
81 simpr φB+B+
82 81 ad2antrr φB+d+Fd<0B+
83 negelrp BB+B<0
84 83 biimpa BB+B<0
85 80 82 84 syl2anc φB+d+Fd<0B<0
86 5 39 40 sylancl φC:0
87 0nn0 00
88 87 a1i φ00
89 86 88 ffvelcdmd φC0
90 4 89 eqeltrid φA
91 90 44 7 mul2lt0rlt0 φB<00<A
92 91 4 breqtrdi φB<00<C0
93 79 85 92 syl2anc φB+d+Fd<00<C0
94 2 coefv0 FPolyF0=C0
95 5 94 syl φF0=C0
96 95 ad3antrrr φB+d+Fd<0F0=C0
97 93 96 breqtrrd φB+d+Fd<00<F0
98 78 97 jca φB+d+Fd<0Fd<00<F0
99 64 66 64 67 71 74 77 98 ivth2 φB+d+Fd<0z0dFz=0
100 0le0 00
101 pnfge d*d+∞
102 10 101 syl d+d+∞
103 0xr 0*
104 pnfxr +∞*
105 ioossioo 0*+∞*00d+∞0d0+∞
106 103 104 105 mpanl12 00d+∞0d0+∞
107 100 102 106 sylancr d+0d0+∞
108 ioorp 0+∞=+
109 107 108 sseqtrdi d+0d+
110 ssrexv 0d+z0dFz=0z+Fz=0
111 65 109 110 3syl φB+d+Fd<0z0dFz=0z+Fz=0
112 99 111 mpd φB+d+Fd<0z+Fz=0
113 63 112 syldan φB+d+f+dfFffDB<Bz+Fz=0
114 plyf FPolyF:
115 5 114 syl φF:
116 115 ffnd φFFn
117 ovex xDV
118 117 rgenw x+xDV
119 eqid x+xD=x+xD
120 119 fnmpt x+xDVx+xDFn+
121 118 120 mp1i φx+xDFn+
122 cnex V
123 122 a1i φV
124 rpssre +
125 124 70 sstri +
126 122 125 ssexi +V
127 126 a1i φ+V
128 sseqin2 ++=+
129 125 128 mpbi +=+
130 eqidd φfFf=Ff
131 eqidd φf+x+xD=x+xD
132 simpr φf+x=fx=f
133 132 oveq1d φf+x=fxD=fD
134 simpr φf+f+
135 ovexd φf+fDV
136 131 133 134 135 fvmptd φf+x+xDf=fD
137 116 121 123 127 129 130 136 offval φF÷fx+xD=f+FffD
138 oveq1 x=fxD=fD
139 138 cbvmptv x+xD=f+fD
140 1 2 3 139 signsplypnf FPolyF÷fx+xDB
141 5 140 syl φF÷fx+xDB
142 137 141 eqbrtrrd φf+FffDB
143 115 adantr φf+F:
144 134 rpcnd φf+f
145 143 144 ffvelcdmd φf+Ff
146 30 adantr φf+D0
147 144 146 expcld φf+fD
148 134 rpne0d φf+f0
149 35 adantr φf+D
150 144 148 149 expne0d φf+fD0
151 145 147 150 divcld φf+FffD
152 151 ralrimiva φf+FffD
153 124 a1i φ+
154 1red φ1
155 152 153 49 154 rlim3 φf+FffDBe+d1+∞f+dfFffDB<e
156 142 155 mpbid φe+d1+∞f+dfFffDB<e
157 0lt1 0<1
158 pnfge +∞*+∞+∞
159 104 158 ax-mp +∞+∞
160 icossioo 0*+∞*0<1+∞+∞1+∞0+∞
161 103 104 157 159 160 mp4an 1+∞0+∞
162 161 108 sseqtri 1+∞+
163 ssrexv 1+∞+d1+∞f+dfFffDB<ed+f+dfFffDB<e
164 162 163 ax-mp d1+∞f+dfFffDB<ed+f+dfFffDB<e
165 164 ralimi e+d1+∞f+dfFffDB<ee+d+f+dfFffDB<e
166 156 165 syl φe+d+f+dfFffDB<e
167 166 adantr φB+e+d+f+dfFffDB<e
168 simpr φB+e=Be=B
169 168 breq2d φB+e=BFffDB<eFffDB<B
170 169 imbi2d φB+e=BdfFffDB<edfFffDB<B
171 170 rexralbidv φB+e=Bd+f+dfFffDB<ed+f+dfFffDB<B
172 81 171 rspcdv φB+e+d+f+dfFffDB<ed+f+dfFffDB<B
173 167 172 mpd φB+d+f+dfFffDB<B
174 113 173 r19.29a φB+z+Fz=0
175 simplr φB+d+f+dfFffDB<Bd+
176 simpr φB+d+f+dfFffDB<Bf+dfFffDB<B
177 11 ad2antlr φB+d+f+dfFffDB<Bdd
178 19 breq1d d+f=dFffDB<BFddDB<B
179 15 178 imbi12d d+f=ddfFffDB<BddFddDB<B
180 13 179 rspcdv d+f+dfFffDB<BddFddDB<B
181 175 176 177 180 syl3c φB+d+f+dfFffDB<BFddDB<B
182 49 ad2antrr φB+d+B
183 182 subidd φB+d+BB=0
184 183 adantr φB+d+FddDB<BBB=0
185 5 ad2antrr φB+d+FPoly
186 124 a1i φB++
187 186 sselda φB+d+d
188 185 187 plyrecld φB+d+Fd
189 30 ad2antrr φB+d+D0
190 187 189 reexpcld φB+d+dD
191 187 recnd φB+d+d
192 simpr φB+d+d+
193 192 rpne0d φB+d+d0
194 35 ad2antrr φB+d+D
195 191 193 194 expne0d φB+d+dD0
196 188 190 195 redivcld φB+d+FddD
197 44 ad2antrr φB+d+B
198 196 197 197 absdifltd φB+d+FddDB<BBB<FddDFddD<B+B
199 198 simprbda φB+d+FddDB<BBB<FddD
200 184 199 eqbrtrrd φB+d+FddDB<B0<FddD
201 192 194 rpexpcld φB+d+dD+
202 188 201 gt0divd φB+d+0<Fd0<FddD
203 202 adantr φB+d+FddDB<B0<Fd0<FddD
204 200 203 mpbird φB+d+FddDB<B0<Fd
205 181 204 syldan φB+d+f+dfFffDB<B0<Fd
206 0red φB+d+0<Fd0
207 simplr φB+d+0<Fdd+
208 207 rpred φB+d+0<Fdd
209 207 rpgt0d φB+d+0<Fd0<d
210 39 208 68 sylancr φB+d+0<Fd0d
211 210 70 sstrdi φB+d+0<Fd0d
212 73 ad3antrrr φB+d+0<FdF:cn
213 5 ad4antr φB+d+0<Fdx0dFPoly
214 210 sselda φB+d+0<Fdx0dx
215 213 214 plyrecld φB+d+0<Fdx0dFx
216 95 ad3antrrr φB+d+0<FdF0=C0
217 simplll φB+d+0<Fdφ
218 simpr1 φB+d+0<FdB+
219 218 rpgt0d φB+d+0<Fd0<B
220 219 3anassrs φB+d+0<Fd0<B
221 90 44 7 mul2lt0rgt0 φ0<BA<0
222 217 220 221 syl2anc φB+d+0<FdA<0
223 4 222 eqbrtrrid φB+d+0<FdC0<0
224 216 223 eqbrtrd φB+d+0<FdF0<0
225 simpr φB+d+0<Fd0<Fd
226 224 225 jca φB+d+0<FdF0<00<Fd
227 206 208 206 209 211 212 215 226 ivth φB+d+0<Fdz0dFz=0
228 207 109 110 3syl φB+d+0<Fdz0dFz=0z+Fz=0
229 227 228 mpd φB+d+0<Fdz+Fz=0
230 205 229 syldan φB+d+f+dfFffDB<Bz+Fz=0
231 166 adantr φB+e+d+f+dfFffDB<e
232 simpr φB+B+
233 simpr φB+e=Be=B
234 233 breq2d φB+e=BFffDB<eFffDB<B
235 234 imbi2d φB+e=BdfFffDB<edfFffDB<B
236 235 rexralbidv φB+e=Bd+f+dfFffDB<ed+f+dfFffDB<B
237 232 236 rspcdv φB+e+d+f+dfFffDB<ed+f+dfFffDB<B
238 231 237 mpd φB+d+f+dfFffDB<B
239 230 238 r19.29a φB+z+Fz=0
240 1 2 dgreq0 FPolyF=0𝑝CD=0
241 5 240 syl φF=0𝑝CD=0
242 241 necon3bid φF0𝑝CD0
243 6 242 mpbid φCD0
244 3 neeq1i B0CD0
245 243 244 sylibr φB0
246 rpneg BB0B+¬B+
247 246 biimprd BB0¬B+B+
248 247 orrd BB0B+B+
249 44 245 248 syl2anc φB+B+
250 174 239 249 mpjaodan φz+Fz=0