Metamath Proof Explorer


Theorem tpr2rico

Description: For any point of an open set of the usual topology on ( RR X. RR ) there is an open square which contains that point and is entirely in the open set. This is square is actually a ball by the ( l ^ +oo ) norm X . (Contributed by Thierry Arnoux, 21-Sep-2017)

Ref Expression
Hypotheses tpr2rico.0 J=topGenran.
tpr2rico.1 G=u,vu+iv
tpr2rico.2 B=ranxran.,yran.x×y
Assertion tpr2rico AJ×tJXArBXrrA

Proof

Step Hyp Ref Expression
1 tpr2rico.0 J=topGenran.
2 tpr2rico.1 G=u,vu+iv
3 tpr2rico.2 B=ranxran.,yran.x×y
4 df-ioo .=x*,y*z*|x<zz<y
5 4 ixxf .:*×*𝒫*
6 ffn .:*×*𝒫*.Fn*×*
7 5 6 mp1i AJ×tJXAd+.Fn*×*
8 elssuni AJ×tJAJ×tJ
9 retop topGenran.Top
10 1 9 eqeltri JTop
11 uniretop =topGenran.
12 1 unieqi J=topGenran.
13 11 12 eqtr4i =J
14 10 10 13 13 txunii 2=J×tJ
15 8 14 sseqtrrdi AJ×tJA2
16 15 ad2antrr AJ×tJXAd+A2
17 simplr AJ×tJXAd+XA
18 16 17 sseldd AJ×tJXAd+X2
19 xp1st X21stX
20 18 19 syl AJ×tJXAd+1stX
21 simpr AJ×tJXAd+d+
22 21 rpred AJ×tJXAd+d
23 22 rehalfcld AJ×tJXAd+d2
24 20 23 resubcld AJ×tJXAd+1stXd2
25 24 rexrd AJ×tJXAd+1stXd2*
26 20 23 readdcld AJ×tJXAd+1stX+d2
27 26 rexrd AJ×tJXAd+1stX+d2*
28 fnovrn .Fn*×*1stXd2*1stX+d2*1stXd21stX+d2ran.
29 7 25 27 28 syl3anc AJ×tJXAd+1stXd21stX+d2ran.
30 xp2nd X22ndX
31 18 30 syl AJ×tJXAd+2ndX
32 31 23 resubcld AJ×tJXAd+2ndXd2
33 32 rexrd AJ×tJXAd+2ndXd2*
34 31 23 readdcld AJ×tJXAd+2ndX+d2
35 34 rexrd AJ×tJXAd+2ndX+d2*
36 fnovrn .Fn*×*2ndXd2*2ndX+d2*2ndXd22ndX+d2ran.
37 7 33 35 36 syl3anc AJ×tJXAd+2ndXd22ndX+d2ran.
38 eqidd AJ×tJXAd+1stXd21stX+d2×2ndXd22ndX+d2=1stXd21stX+d2×2ndXd22ndX+d2
39 xpeq1 x=1stXd21stX+d2x×y=1stXd21stX+d2×y
40 39 eqeq2d x=1stXd21stX+d21stXd21stX+d2×2ndXd22ndX+d2=x×y1stXd21stX+d2×2ndXd22ndX+d2=1stXd21stX+d2×y
41 xpeq2 y=2ndXd22ndX+d21stXd21stX+d2×y=1stXd21stX+d2×2ndXd22ndX+d2
42 41 eqeq2d y=2ndXd22ndX+d21stXd21stX+d2×2ndXd22ndX+d2=1stXd21stX+d2×y1stXd21stX+d2×2ndXd22ndX+d2=1stXd21stX+d2×2ndXd22ndX+d2
43 40 42 rspc2ev 1stXd21stX+d2ran.2ndXd22ndX+d2ran.1stXd21stX+d2×2ndXd22ndX+d2=1stXd21stX+d2×2ndXd22ndX+d2xran.yran.1stXd21stX+d2×2ndXd22ndX+d2=x×y
44 29 37 38 43 syl3anc AJ×tJXAd+xran.yran.1stXd21stX+d2×2ndXd22ndX+d2=x×y
45 eqid xran.,yran.x×y=xran.,yran.x×y
46 vex xV
47 vex yV
48 46 47 xpex x×yV
49 45 48 elrnmpo 1stXd21stX+d2×2ndXd22ndX+d2ranxran.,yran.x×yxran.yran.1stXd21stX+d2×2ndXd22ndX+d2=x×y
50 44 49 sylibr AJ×tJXAd+1stXd21stX+d2×2ndXd22ndX+d2ranxran.,yran.x×y
51 50 3 eleqtrrdi AJ×tJXAd+1stXd21stX+d2×2ndXd22ndX+d2B
52 51 ralrimiva AJ×tJXAd+1stXd21stX+d2×2ndXd22ndX+d2B
53 xpss 2V×V
54 53 18 sselid AJ×tJXAd+XV×V
55 20 rexrd AJ×tJXAd+1stX*
56 21 rphalfcld AJ×tJXAd+d2+
57 20 56 ltsubrpd AJ×tJXAd+1stXd2<1stX
58 20 56 ltaddrpd AJ×tJXAd+1stX<1stX+d2
59 elioo1 1stXd2*1stX+d2*1stX1stXd21stX+d21stX*1stXd2<1stX1stX<1stX+d2
60 25 27 59 syl2anc AJ×tJXAd+1stX1stXd21stX+d21stX*1stXd2<1stX1stX<1stX+d2
61 55 57 58 60 mpbir3and AJ×tJXAd+1stX1stXd21stX+d2
62 31 rexrd AJ×tJXAd+2ndX*
63 31 56 ltsubrpd AJ×tJXAd+2ndXd2<2ndX
64 31 56 ltaddrpd AJ×tJXAd+2ndX<2ndX+d2
65 elioo1 2ndXd2*2ndX+d2*2ndX2ndXd22ndX+d22ndX*2ndXd2<2ndX2ndX<2ndX+d2
66 33 35 65 syl2anc AJ×tJXAd+2ndX2ndXd22ndX+d22ndX*2ndXd2<2ndX2ndX<2ndX+d2
67 62 63 64 66 mpbir3and AJ×tJXAd+2ndX2ndXd22ndX+d2
68 61 67 jca AJ×tJXAd+1stX1stXd21stX+d22ndX2ndXd22ndX+d2
69 elxp7 X1stXd21stX+d2×2ndXd22ndX+d2XV×V1stX1stXd21stX+d22ndX2ndXd22ndX+d2
70 54 68 69 sylanbrc AJ×tJXAd+X1stXd21stX+d2×2ndXd22ndX+d2
71 70 ralrimiva AJ×tJXAd+X1stXd21stX+d2×2ndXd22ndX+d2
72 mnfle 1stXd2*−∞1stXd2
73 25 72 syl AJ×tJXAd+−∞1stXd2
74 pnfge 1stX+d2*1stX+d2+∞
75 27 74 syl AJ×tJXAd+1stX+d2+∞
76 mnfxr −∞*
77 pnfxr +∞*
78 ioossioo −∞*+∞*−∞1stXd21stX+d2+∞1stXd21stX+d2−∞+∞
79 76 77 78 mpanl12 −∞1stXd21stX+d2+∞1stXd21stX+d2−∞+∞
80 73 75 79 syl2anc AJ×tJXAd+1stXd21stX+d2−∞+∞
81 ioomax −∞+∞=
82 80 81 sseqtrdi AJ×tJXAd+1stXd21stX+d2
83 mnfle 2ndXd2*−∞2ndXd2
84 33 83 syl AJ×tJXAd+−∞2ndXd2
85 pnfge 2ndX+d2*2ndX+d2+∞
86 35 85 syl AJ×tJXAd+2ndX+d2+∞
87 ioossioo −∞*+∞*−∞2ndXd22ndX+d2+∞2ndXd22ndX+d2−∞+∞
88 76 77 87 mpanl12 −∞2ndXd22ndX+d2+∞2ndXd22ndX+d2−∞+∞
89 84 86 88 syl2anc AJ×tJXAd+2ndXd22ndX+d2−∞+∞
90 89 81 sseqtrdi AJ×tJXAd+2ndXd22ndX+d2
91 xpss12 1stXd21stX+d22ndXd22ndX+d21stXd21stX+d2×2ndXd22ndX+d22
92 82 90 91 syl2anc AJ×tJXAd+1stXd21stX+d2×2ndXd22ndX+d22
93 92 sselda AJ×tJXAd+x1stXd21stX+d2×2ndXd22ndX+d2x2
94 93 expcom x1stXd21stX+d2×2ndXd22ndX+d2AJ×tJXAd+x2
95 94 ancld x1stXd21stX+d2×2ndXd22ndX+d2AJ×tJXAd+AJ×tJXAd+x2
96 95 imdistanri AJ×tJXAd+x1stXd21stX+d2×2ndXd22ndX+d2AJ×tJXAd+x2x1stXd21stX+d2×2ndXd22ndX+d2
97 15 adantr AJ×tJXAd+x2A2
98 simpr1 AJ×tJXAd+x2XA
99 97 98 sseldd AJ×tJXAd+x2X2
100 99 3anassrs AJ×tJXAd+x2X2
101 simpr AJ×tJXAd+x2x2
102 simplr AJ×tJXAd+x2d+
103 102 rphalfcld AJ×tJXAd+x2d2+
104 2 cnre2csqima X2x2d2+x1stXd21stX+d2×2ndXd22ndX+d2GxGX<d2GxGX<d2
105 100 101 103 104 syl3anc AJ×tJXAd+x2x1stXd21stX+d2×2ndXd22ndX+d2GxGX<d2GxGX<d2
106 eqid TopOpenfld=TopOpenfld
107 2 1 106 cnrehmeo GJ×tJHomeoTopOpenfld
108 106 cnfldtopon TopOpenfldTopOn
109 108 toponunii =TopOpenfld
110 14 109 hmeof1o GJ×tJHomeoTopOpenfldG:21-1 onto
111 f1of G:21-1 ontoG:2
112 107 110 111 mp2b G:2
113 112 a1i AJ×tJXAd+x2G:2
114 113 100 ffvelcdmd AJ×tJXAd+x2GX
115 112 a1i AJ×tJXAd+G:2
116 115 ffvelcdmda AJ×tJXAd+x2Gx
117 sqsscirc2 GXGxd+GxGX<d2GxGX<d2GxGX<d
118 114 116 102 117 syl21anc AJ×tJXAd+x2GxGX<d2GxGX<d2GxGX<d
119 118 imp AJ×tJXAd+x2GxGX<d2GxGX<d2GxGX<d
120 102 rpxrd AJ×tJXAd+x2d*
121 120 adantr AJ×tJXAd+x2GxGX<dd*
122 cnxmet abs∞Met
123 121 122 jctil AJ×tJXAd+x2GxGX<dabs∞Metd*
124 114 adantr AJ×tJXAd+x2GxGX<dGX
125 116 adantr AJ×tJXAd+x2GxGX<dGx
126 124 125 jca AJ×tJXAd+x2GxGX<dGXGx
127 eqid abs=abs
128 127 cnmetdval GxGXGxabsGX=GxGX
129 125 124 128 syl2anc AJ×tJXAd+x2GxGX<dGxabsGX=GxGX
130 simpr AJ×tJXAd+x2GxGX<dGxGX<d
131 129 130 eqbrtrd AJ×tJXAd+x2GxGX<dGxabsGX<d
132 elbl3 abs∞Metd*GXGxGxGXballabsdGxabsGX<d
133 132 biimpar abs∞Metd*GXGxGxabsGX<dGxGXballabsd
134 123 126 131 133 syl21anc AJ×tJXAd+x2GxGX<dGxGXballabsd
135 119 134 syldan AJ×tJXAd+x2GxGX<d2GxGX<d2GxGXballabsd
136 135 ex AJ×tJXAd+x2GxGX<d2GxGX<d2GxGXballabsd
137 105 136 syld AJ×tJXAd+x2x1stXd21stX+d2×2ndXd22ndX+d2GxGXballabsd
138 f1ocnv G:21-1 ontoG-1:1-1 onto2
139 107 110 138 mp2b G-1:1-1 onto2
140 f1ofun G-1:1-1 onto2FunG-1
141 139 140 ax-mp FunG-1
142 f1odm G-1:1-1 onto2domG-1=
143 139 142 ax-mp domG-1=
144 116 143 eleqtrrdi AJ×tJXAd+x2GxdomG-1
145 funfvima FunG-1GxdomG-1GxGXballabsdG-1GxG-1GXballabsd
146 141 144 145 sylancr AJ×tJXAd+x2GxGXballabsdG-1GxG-1GXballabsd
147 107 110 mp1i AJ×tJXAd+x2G:21-1 onto
148 f1ocnvfv1 G:21-1 ontox2G-1Gx=x
149 147 101 148 syl2anc AJ×tJXAd+x2G-1Gx=x
150 149 eleq1d AJ×tJXAd+x2G-1GxG-1GXballabsdxG-1GXballabsd
151 150 biimpd AJ×tJXAd+x2G-1GxG-1GXballabsdxG-1GXballabsd
152 137 146 151 3syld AJ×tJXAd+x2x1stXd21stX+d2×2ndXd22ndX+d2xG-1GXballabsd
153 152 imp AJ×tJXAd+x2x1stXd21stX+d2×2ndXd22ndX+d2xG-1GXballabsd
154 96 153 syl AJ×tJXAd+x1stXd21stX+d2×2ndXd22ndX+d2xG-1GXballabsd
155 154 ex AJ×tJXAd+x1stXd21stX+d2×2ndXd22ndX+d2xG-1GXballabsd
156 155 ssrdv AJ×tJXAd+1stXd21stX+d2×2ndXd22ndX+d2G-1GXballabsd
157 156 ralrimiva AJ×tJXAd+1stXd21stX+d2×2ndXd22ndX+d2G-1GXballabsd
158 2 mpofun FunG
159 158 a1i AJ×tJXAFunG
160 15 sselda AJ×tJXAX2
161 f1odm G:21-1 ontodomG=2
162 107 110 161 mp2b domG=2
163 160 162 eleqtrrdi AJ×tJXAXdomG
164 simpr AJ×tJXAXA
165 funfvima FunGXdomGXAGXGA
166 165 imp FunGXdomGXAGXGA
167 159 163 164 166 syl21anc AJ×tJXAGXGA
168 hmeoima GJ×tJHomeoTopOpenfldAJ×tJGATopOpenfld
169 107 168 mpan AJ×tJGATopOpenfld
170 106 cnfldtopn TopOpenfld=MetOpenabs
171 170 elmopn2 abs∞MetGATopOpenfldGAmGAd+mballabsdGA
172 122 171 ax-mp GATopOpenfldGAmGAd+mballabsdGA
173 172 simprbi GATopOpenfldmGAd+mballabsdGA
174 169 173 syl AJ×tJmGAd+mballabsdGA
175 174 adantr AJ×tJXAmGAd+mballabsdGA
176 oveq1 m=GXmballabsd=GXballabsd
177 176 sseq1d m=GXmballabsdGAGXballabsdGA
178 177 rexbidv m=GXd+mballabsdGAd+GXballabsdGA
179 178 rspcva GXGAmGAd+mballabsdGAd+GXballabsdGA
180 167 175 179 syl2anc AJ×tJXAd+GXballabsdGA
181 imass2 GXballabsdGAG-1GXballabsdG-1GA
182 f1of1 G:21-1 ontoG:21-1
183 107 110 182 mp2b G:21-1
184 f1imacnv G:21-1A2G-1GA=A
185 183 15 184 sylancr AJ×tJG-1GA=A
186 185 sseq2d AJ×tJG-1GXballabsdG-1GAG-1GXballabsdA
187 181 186 imbitrid AJ×tJGXballabsdGAG-1GXballabsdA
188 187 reximdv AJ×tJd+GXballabsdGAd+G-1GXballabsdA
189 188 adantr AJ×tJXAd+GXballabsdGAd+G-1GXballabsdA
190 180 189 mpd AJ×tJXAd+G-1GXballabsdA
191 r19.29 d+1stXd21stX+d2×2ndXd22ndX+d2G-1GXballabsdd+G-1GXballabsdAd+1stXd21stX+d2×2ndXd22ndX+d2G-1GXballabsdG-1GXballabsdA
192 157 190 191 syl2anc AJ×tJXAd+1stXd21stX+d2×2ndXd22ndX+d2G-1GXballabsdG-1GXballabsdA
193 sstr 1stXd21stX+d2×2ndXd22ndX+d2G-1GXballabsdG-1GXballabsdA1stXd21stX+d2×2ndXd22ndX+d2A
194 193 reximi d+1stXd21stX+d2×2ndXd22ndX+d2G-1GXballabsdG-1GXballabsdAd+1stXd21stX+d2×2ndXd22ndX+d2A
195 192 194 syl AJ×tJXAd+1stXd21stX+d2×2ndXd22ndX+d2A
196 r19.29 d+X1stXd21stX+d2×2ndXd22ndX+d2d+1stXd21stX+d2×2ndXd22ndX+d2Ad+X1stXd21stX+d2×2ndXd22ndX+d21stXd21stX+d2×2ndXd22ndX+d2A
197 71 195 196 syl2anc AJ×tJXAd+X1stXd21stX+d2×2ndXd22ndX+d21stXd21stX+d2×2ndXd22ndX+d2A
198 r19.29 d+1stXd21stX+d2×2ndXd22ndX+d2Bd+X1stXd21stX+d2×2ndXd22ndX+d21stXd21stX+d2×2ndXd22ndX+d2Ad+1stXd21stX+d2×2ndXd22ndX+d2BX1stXd21stX+d2×2ndXd22ndX+d21stXd21stX+d2×2ndXd22ndX+d2A
199 52 197 198 syl2anc AJ×tJXAd+1stXd21stX+d2×2ndXd22ndX+d2BX1stXd21stX+d2×2ndXd22ndX+d21stXd21stX+d2×2ndXd22ndX+d2A
200 eleq2 r=1stXd21stX+d2×2ndXd22ndX+d2XrX1stXd21stX+d2×2ndXd22ndX+d2
201 sseq1 r=1stXd21stX+d2×2ndXd22ndX+d2rA1stXd21stX+d2×2ndXd22ndX+d2A
202 200 201 anbi12d r=1stXd21stX+d2×2ndXd22ndX+d2XrrAX1stXd21stX+d2×2ndXd22ndX+d21stXd21stX+d2×2ndXd22ndX+d2A
203 202 rspcev 1stXd21stX+d2×2ndXd22ndX+d2BX1stXd21stX+d2×2ndXd22ndX+d21stXd21stX+d2×2ndXd22ndX+d2ArBXrrA
204 203 rexlimivw d+1stXd21stX+d2×2ndXd22ndX+d2BX1stXd21stX+d2×2ndXd22ndX+d21stXd21stX+d2×2ndXd22ndX+d2ArBXrrA
205 199 204 syl AJ×tJXArBXrrA