Metamath Proof Explorer


Theorem voliunnfl

Description: voliun is incompatible with the Feferman-Levy model; in that model, therefore, the Lebesgue measure as we've defined it isn't actually a measure. (Contributed by Brendan Leahy, 16-Dec-2017)

Ref Expression
Hypotheses voliunnfl.1 S=seq1+G
voliunnfl.2 G=nvolfn
voliunnfl.3 nfndomvolvolfnDisjnfnvolnfn=supranS*<
Assertion voliunnfl AxAxA

Proof

Step Hyp Ref Expression
1 voliunnfl.1 S=seq1+G
2 voliunnfl.2 G=nvolfn
3 voliunnfl.3 nfndomvolvolfnDisjnfnvolnfn=supranS*<
4 unieq A=A=
5 uni0 =
6 4 5 eqtrdi A=A=
7 6 fveq2d A=volA=vol
8 0mbl domvol
9 mblvol domvolvol=vol*
10 8 9 ax-mp vol=vol*
11 ovol0 vol*=0
12 10 11 eqtri vol=0
13 7 12 eqtr2di A=0=volA
14 13 a1d A=AxAxA0=volA
15 reldom Rel
16 15 brrelex1i AAV
17 0sdomg AVAA
18 16 17 syl AAA
19 18 biimparc AAA
20 fodomr AAgg:ontoA
21 19 20 sylancom AAgg:ontoA
22 unissb AxAx
23 22 anbi1i AxAxxAxxAx
24 r19.26 xAxxxAxxAx
25 23 24 bitr4i AxAxxAxx
26 ovolctb2 xxvol*x=0
27 26 ex xxvol*x=0
28 27 imdistani xxxvol*x=0
29 28 ralimi xAxxxAxvol*x=0
30 25 29 sylbi AxAxxAxvol*x=0
31 30 ancoms xAxAxAxvol*x=0
32 foima g:ontoAg=A
33 32 raleqdv g:ontoAxgxvol*x=0xAxvol*x=0
34 fofn g:ontoAgFn
35 ssid
36 sseq1 x=gmxgm
37 fveqeq2 x=gmvol*x=0vol*gm=0
38 36 37 anbi12d x=gmxvol*x=0gmvol*gm=0
39 38 ralima gFnxgxvol*x=0mgmvol*gm=0
40 34 35 39 sylancl g:ontoAxgxvol*x=0mgmvol*gm=0
41 33 40 bitr3d g:ontoAxAxvol*x=0mgmvol*gm=0
42 difss gml1..^mglgm
43 ovolssnul gml1..^mglgmgmvol*gm=0vol*gml1..^mgl=0
44 42 43 mp3an1 gmvol*gm=0vol*gml1..^mgl=0
45 ssdifss gmgml1..^mgl
46 nulmbl gml1..^mglvol*gml1..^mgl=0gml1..^mgldomvol
47 mblvol gml1..^mgldomvolvolgml1..^mgl=vol*gml1..^mgl
48 47 eqeq1d gml1..^mgldomvolvolgml1..^mgl=0vol*gml1..^mgl=0
49 48 biimpar gml1..^mgldomvolvol*gml1..^mgl=0volgml1..^mgl=0
50 0re 0
51 49 50 eqeltrdi gml1..^mgldomvolvol*gml1..^mgl=0volgml1..^mgl
52 51 expcom vol*gml1..^mgl=0gml1..^mgldomvolvolgml1..^mgl
53 52 ancld vol*gml1..^mgl=0gml1..^mgldomvolgml1..^mgldomvolvolgml1..^mgl
54 53 adantl gml1..^mglvol*gml1..^mgl=0gml1..^mgldomvolgml1..^mgldomvolvolgml1..^mgl
55 46 54 mpd gml1..^mglvol*gml1..^mgl=0gml1..^mgldomvolvolgml1..^mgl
56 45 55 sylan gmvol*gml1..^mgl=0gml1..^mgldomvolvolgml1..^mgl
57 44 56 syldan gmvol*gm=0gml1..^mgldomvolvolgml1..^mgl
58 57 ralimi mgmvol*gm=0mgml1..^mgldomvolvolgml1..^mgl
59 fveq2 m=ngm=gn
60 oveq2 m=n1..^m=1..^n
61 60 iuneq1d m=nl1..^mgl=l1..^ngl
62 59 61 difeq12d m=ngml1..^mgl=gnl1..^ngl
63 eqid mgml1..^mgl=mgml1..^mgl
64 fvex gnV
65 difexg gnVgnl1..^nglV
66 64 65 ax-mp gnl1..^nglV
67 62 63 66 fvmpt nmgml1..^mgln=gnl1..^ngl
68 67 eleq1d nmgml1..^mglndomvolgnl1..^ngldomvol
69 67 fveq2d nvolmgml1..^mgln=volgnl1..^ngl
70 69 eleq1d nvolmgml1..^mglnvolgnl1..^ngl
71 68 70 anbi12d nmgml1..^mglndomvolvolmgml1..^mglngnl1..^ngldomvolvolgnl1..^ngl
72 71 ralbiia nmgml1..^mglndomvolvolmgml1..^mglnngnl1..^ngldomvolvolgnl1..^ngl
73 fveq2 n=mgn=gm
74 oveq2 n=m1..^n=1..^m
75 74 iuneq1d n=ml1..^ngl=l1..^mgl
76 73 75 difeq12d n=mgnl1..^ngl=gml1..^mgl
77 76 eleq1d n=mgnl1..^ngldomvolgml1..^mgldomvol
78 76 fveq2d n=mvolgnl1..^ngl=volgml1..^mgl
79 78 eleq1d n=mvolgnl1..^nglvolgml1..^mgl
80 77 79 anbi12d n=mgnl1..^ngldomvolvolgnl1..^nglgml1..^mgldomvolvolgml1..^mgl
81 80 cbvralvw ngnl1..^ngldomvolvolgnl1..^nglmgml1..^mgldomvolvolgml1..^mgl
82 72 81 bitri nmgml1..^mglndomvolvolmgml1..^mglnmgml1..^mgldomvolvolgml1..^mgl
83 58 82 sylibr mgmvol*gm=0nmgml1..^mglndomvolvolmgml1..^mgln
84 fveq2 n=lgn=gl
85 84 iundisj2 Disjngnl1..^ngl
86 disjeq2 nmgml1..^mgln=gnl1..^nglDisjnmgml1..^mglnDisjngnl1..^ngl
87 86 67 mprg Disjnmgml1..^mglnDisjngnl1..^ngl
88 85 87 mpbir Disjnmgml1..^mgln
89 nnex V
90 89 mptex mgml1..^mglV
91 fveq1 f=mgml1..^mglfn=mgml1..^mgln
92 91 eleq1d f=mgml1..^mglfndomvolmgml1..^mglndomvol
93 91 fveq2d f=mgml1..^mglvolfn=volmgml1..^mgln
94 93 eleq1d f=mgml1..^mglvolfnvolmgml1..^mgln
95 92 94 anbi12d f=mgml1..^mglfndomvolvolfnmgml1..^mglndomvolvolmgml1..^mgln
96 95 ralbidv f=mgml1..^mglnfndomvolvolfnnmgml1..^mglndomvolvolmgml1..^mgln
97 91 adantr f=mgml1..^mglnfn=mgml1..^mgln
98 97 disjeq2dv f=mgml1..^mglDisjnfnDisjnmgml1..^mgln
99 96 98 anbi12d f=mgml1..^mglnfndomvolvolfnDisjnfnnmgml1..^mglndomvolvolmgml1..^mglnDisjnmgml1..^mgln
100 91 iuneq2d f=mgml1..^mglnfn=nmgml1..^mgln
101 100 fveq2d f=mgml1..^mglvolnfn=volnmgml1..^mgln
102 seqeq3 G=nvolfnseq1+G=seq1+nvolfn
103 2 102 ax-mp seq1+G=seq1+nvolfn
104 1 103 eqtri S=seq1+nvolfn
105 104 rneqi ranS=ranseq1+nvolfn
106 105 supeq1i supranS*<=supranseq1+nvolfn*<
107 93 mpteq2dv f=mgml1..^mglnvolfn=nvolmgml1..^mgln
108 107 seqeq3d f=mgml1..^mglseq1+nvolfn=seq1+nvolmgml1..^mgln
109 108 rneqd f=mgml1..^mglranseq1+nvolfn=ranseq1+nvolmgml1..^mgln
110 109 supeq1d f=mgml1..^mglsupranseq1+nvolfn*<=supranseq1+nvolmgml1..^mgln*<
111 106 110 eqtrid f=mgml1..^mglsupranS*<=supranseq1+nvolmgml1..^mgln*<
112 101 111 eqeq12d f=mgml1..^mglvolnfn=supranS*<volnmgml1..^mgln=supranseq1+nvolmgml1..^mgln*<
113 99 112 imbi12d f=mgml1..^mglnfndomvolvolfnDisjnfnvolnfn=supranS*<nmgml1..^mglndomvolvolmgml1..^mglnDisjnmgml1..^mglnvolnmgml1..^mgln=supranseq1+nvolmgml1..^mgln*<
114 90 113 3 vtocl nmgml1..^mglndomvolvolmgml1..^mglnDisjnmgml1..^mglnvolnmgml1..^mgln=supranseq1+nvolmgml1..^mgln*<
115 67 iuneq2i nmgml1..^mgln=ngnl1..^ngl
116 115 fveq2i volnmgml1..^mgln=volngnl1..^ngl
117 69 mpteq2ia nvolmgml1..^mgln=nvolgnl1..^ngl
118 seqeq3 nvolmgml1..^mgln=nvolgnl1..^nglseq1+nvolmgml1..^mgln=seq1+nvolgnl1..^ngl
119 117 118 ax-mp seq1+nvolmgml1..^mgln=seq1+nvolgnl1..^ngl
120 119 rneqi ranseq1+nvolmgml1..^mgln=ranseq1+nvolgnl1..^ngl
121 120 supeq1i supranseq1+nvolmgml1..^mgln*<=supranseq1+nvolgnl1..^ngl*<
122 114 116 121 3eqtr3g nmgml1..^mglndomvolvolmgml1..^mglnDisjnmgml1..^mglnvolngnl1..^ngl=supranseq1+nvolgnl1..^ngl*<
123 83 88 122 sylancl mgmvol*gm=0volngnl1..^ngl=supranseq1+nvolgnl1..^ngl*<
124 123 adantl g:ontoAmgmvol*gm=0volngnl1..^ngl=supranseq1+nvolgnl1..^ngl*<
125 84 iundisj ngn=ngnl1..^ngl
126 fofun g:ontoAFung
127 funiunfv Fungngn=g
128 126 127 syl g:ontoAngn=g
129 125 128 eqtr3id g:ontoAngnl1..^ngl=g
130 32 unieqd g:ontoAg=A
131 129 130 eqtrd g:ontoAngnl1..^ngl=A
132 131 fveq2d g:ontoAvolngnl1..^ngl=volA
133 132 adantr g:ontoAmgmvol*gm=0volngnl1..^ngl=volA
134 59 sseq1d m=ngmgn
135 59 fveqeq2d m=nvol*gm=0vol*gn=0
136 134 135 anbi12d m=ngmvol*gm=0gnvol*gn=0
137 136 rspccva mgmvol*gm=0ngnvol*gn=0
138 ssdifss gngnl1..^ngl
139 138 adantr gnvol*gn=0gnl1..^ngl
140 difss gnl1..^nglgn
141 ovolssnul gnl1..^nglgngnvol*gn=0vol*gnl1..^ngl=0
142 140 141 mp3an1 gnvol*gn=0vol*gnl1..^ngl=0
143 139 142 jca gnvol*gn=0gnl1..^nglvol*gnl1..^ngl=0
144 nulmbl gnl1..^nglvol*gnl1..^ngl=0gnl1..^ngldomvol
145 mblvol gnl1..^ngldomvolvolgnl1..^ngl=vol*gnl1..^ngl
146 143 144 145 3syl gnvol*gn=0volgnl1..^ngl=vol*gnl1..^ngl
147 146 142 eqtrd gnvol*gn=0volgnl1..^ngl=0
148 137 147 syl mgmvol*gm=0nvolgnl1..^ngl=0
149 148 mpteq2dva mgmvol*gm=0nvolgnl1..^ngl=n0
150 149 seqeq3d mgmvol*gm=0seq1+nvolgnl1..^ngl=seq1+n0
151 150 rneqd mgmvol*gm=0ranseq1+nvolgnl1..^ngl=ranseq1+n0
152 151 supeq1d mgmvol*gm=0supranseq1+nvolgnl1..^ngl*<=supranseq1+n0*<
153 0cn 0
154 ser1const 0mseq1+×0m=m0
155 153 154 mpan mseq1+×0m=m0
156 nncn mm
157 156 mul01d mm0=0
158 155 157 eqtrd mseq1+×0m=0
159 158 mpteq2ia mseq1+×0m=m0
160 fconstmpt ×0=n0
161 seqeq3 ×0=n0seq1+×0=seq1+n0
162 160 161 ax-mp seq1+×0=seq1+n0
163 1z 1
164 seqfn 1seq1+×0Fn1
165 163 164 ax-mp seq1+×0Fn1
166 nnuz =1
167 166 fneq2i seq1+×0Fnseq1+×0Fn1
168 dffn5 seq1+×0Fnseq1+×0=mseq1+×0m
169 167 168 bitr3i seq1+×0Fn1seq1+×0=mseq1+×0m
170 165 169 mpbi seq1+×0=mseq1+×0m
171 162 170 eqtr3i seq1+n0=mseq1+×0m
172 fconstmpt ×0=m0
173 159 171 172 3eqtr4i seq1+n0=×0
174 173 rneqi ranseq1+n0=ran×0
175 1nn 1
176 ne0i 1
177 rnxp ran×0=0
178 175 176 177 mp2b ran×0=0
179 174 178 eqtri ranseq1+n0=0
180 179 supeq1i supranseq1+n0*<=sup0*<
181 xrltso <Or*
182 0xr 0*
183 supsn <Or*0*sup0*<=0
184 181 182 183 mp2an sup0*<=0
185 180 184 eqtri supranseq1+n0*<=0
186 152 185 eqtrdi mgmvol*gm=0supranseq1+nvolgnl1..^ngl*<=0
187 186 adantl g:ontoAmgmvol*gm=0supranseq1+nvolgnl1..^ngl*<=0
188 124 133 187 3eqtr3rd g:ontoAmgmvol*gm=00=volA
189 188 ex g:ontoAmgmvol*gm=00=volA
190 41 189 sylbid g:ontoAxAxvol*x=00=volA
191 31 190 syl5 g:ontoAxAxA0=volA
192 191 exlimiv gg:ontoAxAxA0=volA
193 21 192 syl AAxAxA0=volA
194 193 expimpd AAxAxA0=volA
195 14 194 pm2.61ine AxAxA0=volA
196 renepnf 00+∞
197 50 196 mp1i A=0+∞
198 fveq2 A=volA=vol
199 rembl domvol
200 mblvol domvolvol=vol*
201 199 200 ax-mp vol=vol*
202 ovolre vol*=+∞
203 201 202 eqtri vol=+∞
204 198 203 eqtrdi A=volA=+∞
205 197 204 neeqtrrd A=0volA
206 205 necon2i 0=volAA
207 195 206 syl AxAxAA
208 207 expr AxAxAA
209 eqimss A=A
210 209 necon3bi ¬AA
211 208 210 pm2.61d1 AxAxA