Metamath Proof Explorer


Theorem xkococnlem

Description: Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses xkococn.1 F=fSCnT,gRCnSfg
xkococn.s φSN-Locally Comp
xkococn.k φKR
xkococn.c φR𝑡KComp
xkococn.v φVT
xkococn.a φASCnT
xkococn.b φBRCnS
xkococn.i φABKV
Assertion xkococnlem φzT^koS×tS^koRABzzF-1hRCnT|hKV

Proof

Step Hyp Ref Expression
1 xkococn.1 F=fSCnT,gRCnSfg
2 xkococn.s φSN-Locally Comp
3 xkococn.k φKR
4 xkococn.c φR𝑡KComp
5 xkococn.v φVT
6 xkococn.a φASCnT
7 xkococn.b φBRCnS
8 xkococn.i φABKV
9 imacmp BRCnSR𝑡KCompS𝑡BKComp
10 7 4 9 syl2anc φS𝑡BKComp
11 2 adantr φxBKSN-Locally Comp
12 cnima ASCnTVTA-1VS
13 6 5 12 syl2anc φA-1VS
14 13 adantr φxBKA-1VS
15 imaco ABK=ABK
16 15 8 eqsstrrid φABKV
17 eqid S=S
18 eqid T=T
19 17 18 cnf ASCnTA:ST
20 ffun A:STFunA
21 6 19 20 3syl φFunA
22 imassrn BKranB
23 eqid R=R
24 23 17 cnf BRCnSB:RS
25 frn B:RSranBS
26 7 24 25 3syl φranBS
27 22 26 sstrid φBKS
28 fdm A:STdomA=S
29 6 19 28 3syl φdomA=S
30 27 29 sseqtrrd φBKdomA
31 funimass3 FunABKdomAABKVBKA-1V
32 21 30 31 syl2anc φABKVBKA-1V
33 16 32 mpbid φBKA-1V
34 33 sselda φxBKxA-1V
35 nlly2i SN-Locally Comp A-1VS xA-1V s𝒫A-1VuSxuusS𝑡sComp
36 11 14 34 35 syl3anc φxBKs𝒫A-1VuSxuusS𝑡sComp
37 nllytop SN-Locally Comp STop
38 2 37 syl φSTop
39 38 ad3antrrr φxBKs𝒫A-1VuSxuusS𝑡sCompSTop
40 imaexg BRCnSBKV
41 7 40 syl φBKV
42 41 ad3antrrr φxBKs𝒫A-1VuSxuusS𝑡sCompBKV
43 simprl φxBKs𝒫A-1VuSxuusS𝑡sCompuS
44 elrestr STopBKVuSuBKS𝑡BK
45 39 42 43 44 syl3anc φxBKs𝒫A-1VuSxuusS𝑡sCompuBKS𝑡BK
46 simprr1 φxBKs𝒫A-1VuSxuusS𝑡sCompxu
47 simpllr φxBKs𝒫A-1VuSxuusS𝑡sCompxBK
48 46 47 elind φxBKs𝒫A-1VuSxuusS𝑡sCompxuBK
49 inss1 uBKu
50 elpwi s𝒫A-1VsA-1V
51 50 ad2antlr φxBKs𝒫A-1VuSxuusS𝑡sCompsA-1V
52 elssuni A-1VSA-1VS
53 13 52 syl φA-1VS
54 53 ad3antrrr φxBKs𝒫A-1VuSxuusS𝑡sCompA-1VS
55 51 54 sstrd φxBKs𝒫A-1VuSxuusS𝑡sCompsS
56 simprr2 φxBKs𝒫A-1VuSxuusS𝑡sCompus
57 17 ssntr STopsSuSusuintSs
58 39 55 43 56 57 syl22anc φxBKs𝒫A-1VuSxuusS𝑡sCompuintSs
59 49 58 sstrid φxBKs𝒫A-1VuSxuusS𝑡sCompuBKintSs
60 simprr3 φxBKs𝒫A-1VuSxuusS𝑡sCompS𝑡sComp
61 59 60 jca φxBKs𝒫A-1VuSxuusS𝑡sCompuBKintSsS𝑡sComp
62 eleq2 y=uBKxyxuBK
63 cleq1lem y=uBKyintSsS𝑡sCompuBKintSsS𝑡sComp
64 62 63 anbi12d y=uBKxyyintSsS𝑡sCompxuBKuBKintSsS𝑡sComp
65 64 rspcev uBKS𝑡BKxuBKuBKintSsS𝑡sCompyS𝑡BKxyyintSsS𝑡sComp
66 45 48 61 65 syl12anc φxBKs𝒫A-1VuSxuusS𝑡sCompyS𝑡BKxyyintSsS𝑡sComp
67 66 rexlimdvaa φxBKs𝒫A-1VuSxuusS𝑡sCompyS𝑡BKxyyintSsS𝑡sComp
68 67 reximdva φxBKs𝒫A-1VuSxuusS𝑡sComps𝒫A-1VyS𝑡BKxyyintSsS𝑡sComp
69 36 68 mpd φxBKs𝒫A-1VyS𝑡BKxyyintSsS𝑡sComp
70 rexcom s𝒫A-1VyS𝑡BKxyyintSsS𝑡sCompyS𝑡BKs𝒫A-1VxyyintSsS𝑡sComp
71 r19.42v s𝒫A-1VxyyintSsS𝑡sCompxys𝒫A-1VyintSsS𝑡sComp
72 71 rexbii yS𝑡BKs𝒫A-1VxyyintSsS𝑡sCompyS𝑡BKxys𝒫A-1VyintSsS𝑡sComp
73 70 72 bitri s𝒫A-1VyS𝑡BKxyyintSsS𝑡sCompyS𝑡BKxys𝒫A-1VyintSsS𝑡sComp
74 69 73 sylib φxBKyS𝑡BKxys𝒫A-1VyintSsS𝑡sComp
75 74 ralrimiva φxBKyS𝑡BKxys𝒫A-1VyintSsS𝑡sComp
76 17 restuni STopBKSBK=S𝑡BK
77 38 27 76 syl2anc φBK=S𝑡BK
78 77 raleqdv φxBKyS𝑡BKxys𝒫A-1VyintSsS𝑡sCompxS𝑡BKyS𝑡BKxys𝒫A-1VyintSsS𝑡sComp
79 75 78 mpbid φxS𝑡BKyS𝑡BKxys𝒫A-1VyintSsS𝑡sComp
80 eqid S𝑡BK=S𝑡BK
81 fveq2 s=kyintSs=intSky
82 81 sseq2d s=kyyintSsyintSky
83 oveq2 s=kyS𝑡s=S𝑡ky
84 83 eleq1d s=kyS𝑡sCompS𝑡kyComp
85 82 84 anbi12d s=kyyintSsS𝑡sCompyintSkyS𝑡kyComp
86 80 85 cmpcovf S𝑡BKCompxS𝑡BKyS𝑡BKxys𝒫A-1VyintSsS𝑡sCompw𝒫S𝑡BKFinS𝑡BK=wkk:w𝒫A-1VywyintSkyS𝑡kyComp
87 10 79 86 syl2anc φw𝒫S𝑡BKFinS𝑡BK=wkk:w𝒫A-1VywyintSkyS𝑡kyComp
88 77 adantr φw𝒫S𝑡BKFinBK=S𝑡BK
89 88 eqeq1d φw𝒫S𝑡BKFinBK=wS𝑡BK=w
90 89 biimpar φw𝒫S𝑡BKFinS𝑡BK=wBK=w
91 38 ad2antrr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompSTop
92 cntop2 ASCnTTTop
93 6 92 syl φTTop
94 93 ad2antrr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompTTop
95 xkotop STopTTopT^koSTop
96 91 94 95 syl2anc φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompT^koSTop
97 cntop1 BRCnSRTop
98 7 97 syl φRTop
99 98 ad2antrr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompRTop
100 xkotop RTopSTopS^koRTop
101 99 91 100 syl2anc φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompS^koRTop
102 simprrl φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompk:w𝒫A-1V
103 102 frnd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyComprank𝒫A-1V
104 sspwuni rank𝒫A-1VrankA-1V
105 103 104 sylib φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyComprankA-1V
106 13 ad2antrr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompA-1VS
107 106 52 syl φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompA-1VS
108 105 107 sstrd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyComprankS
109 ffn k:w𝒫A-1VkFnw
110 fniunfv kFnwywky=rank
111 102 109 110 3syl φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywky=rank
112 111 oveq2d φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompS𝑡ywky=S𝑡rank
113 simplr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompw𝒫S𝑡BKFin
114 113 elin2d φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompwFin
115 simprrr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywyintSkyS𝑡kyComp
116 simpr yintSkyS𝑡kyCompS𝑡kyComp
117 116 ralimi ywyintSkyS𝑡kyCompywS𝑡kyComp
118 115 117 syl φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywS𝑡kyComp
119 17 fiuncmp STopwFinywS𝑡kyCompS𝑡ywkyComp
120 91 114 118 119 syl3anc φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompS𝑡ywkyComp
121 112 120 eqeltrrd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompS𝑡rankComp
122 5 ad2antrr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompVT
123 17 91 94 108 121 122 xkoopn φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompaSCnT|arankVT^koS
124 3 ad2antrr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompKR
125 4 ad2antrr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompR𝑡KComp
126 111 108 eqsstrd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywkyS
127 iunss ywkySywkyS
128 126 127 sylib φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywkyS
129 17 ntropn STopkySintSkyS
130 129 ex STopkySintSkyS
131 130 ralimdv STopywkySywintSkyS
132 91 128 131 sylc φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywintSkyS
133 iunopn STopywintSkySywintSkyS
134 91 132 133 syl2anc φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywintSkyS
135 23 99 91 124 125 134 xkoopn φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompbRCnS|bKywintSkyS^koR
136 txopn T^koSTopS^koRTopaSCnT|arankVT^koSbRCnS|bKywintSkyS^koRaSCnT|arankV×bRCnS|bKywintSkyT^koS×tS^koR
137 96 101 123 135 136 syl22anc φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompaSCnT|arankV×bRCnS|bKywintSkyT^koS×tS^koR
138 imaeq1 a=Aarank=Arank
139 138 sseq1d a=AarankVArankV
140 6 ad2antrr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompASCnT
141 imaiun Aywky=ywAky
142 111 imaeq2d φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompAywky=Arank
143 141 142 eqtr3id φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywAky=Arank
144 111 105 eqsstrd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywkyA-1V
145 21 ad2antrr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompFunA
146 102 109 syl φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompkFnw
147 29 ad2antrr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompdomA=S
148 108 147 sseqtrrd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyComprankdomA
149 simpl1 FunAkFnwrankdomAywFunA
150 110 3ad2ant2 FunAkFnwrankdomAywky=rank
151 simp3 FunAkFnwrankdomArankdomA
152 150 151 eqsstrd FunAkFnwrankdomAywkydomA
153 iunss ywkydomAywkydomA
154 152 153 sylib FunAkFnwrankdomAywkydomA
155 154 r19.21bi FunAkFnwrankdomAywkydomA
156 funimass3 FunAkydomAAkyVkyA-1V
157 149 155 156 syl2anc FunAkFnwrankdomAywAkyVkyA-1V
158 157 ralbidva FunAkFnwrankdomAywAkyVywkyA-1V
159 iunss ywAkyVywAkyV
160 iunss ywkyA-1VywkyA-1V
161 158 159 160 3bitr4g FunAkFnwrankdomAywAkyVywkyA-1V
162 145 146 148 161 syl3anc φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywAkyVywkyA-1V
163 144 162 mpbird φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywAkyV
164 143 163 eqsstrrd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompArankV
165 139 140 164 elrabd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompAaSCnT|arankV
166 imaeq1 b=BbK=BK
167 166 sseq1d b=BbKywintSkyBKywintSky
168 7 ad2antrr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompBRCnS
169 simprl φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompBK=w
170 uniiun w=ywy
171 169 170 eqtrdi φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompBK=ywy
172 simpl yintSkyS𝑡kyCompyintSky
173 172 ralimi ywyintSkyS𝑡kyCompywyintSky
174 ss2iun ywyintSkyywyywintSky
175 115 173 174 3syl φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywyywintSky
176 171 175 eqsstrd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompBKywintSky
177 167 168 176 elrabd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompBbRCnS|bKywintSky
178 165 177 opelxpd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompABaSCnT|arankV×bRCnS|bKywintSky
179 imaeq1 a=uarank=urank
180 179 sseq1d a=uarankVurankV
181 180 elrab uaSCnT|arankVuSCnTurankV
182 imaeq1 b=vbK=vK
183 182 sseq1d b=vbKywintSkyvKywintSky
184 183 elrab vbRCnS|bKywintSkyvRCnSvKywintSky
185 181 184 anbi12i uaSCnT|arankVvbRCnS|bKywintSkyuSCnTurankVvRCnSvKywintSky
186 simprll φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuSCnTurankVvRCnSvKywintSkyuSCnT
187 simprrl φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuSCnTurankVvRCnSvKywintSkyvRCnS
188 coeq1 f=ufg=ug
189 coeq2 g=vug=uv
190 vex uV
191 vex vV
192 190 191 coex uvV
193 188 189 1 192 ovmpo uSCnTvRCnSuFv=uv
194 186 187 193 syl2anc φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuSCnTurankVvRCnSvKywintSkyuFv=uv
195 imaeq1 h=uvhK=uvK
196 195 sseq1d h=uvhKVuvKV
197 cnco vRCnSuSCnTuvRCnT
198 187 186 197 syl2anc φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuSCnTurankVvRCnSvKywintSkyuvRCnT
199 imaco uvK=uvK
200 simprrr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuSCnTurankVvRCnSvKywintSkyvKywintSky
201 17 ntrss2 STopkySintSkyky
202 201 ex STopkySintSkyky
203 202 ralimdv STopywkySywintSkyky
204 91 128 203 sylc φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywintSkyky
205 ss2iun ywintSkykyywintSkyywky
206 204 205 syl φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywintSkyywky
207 206 111 sseqtrd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompywintSkyrank
208 207 adantr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuSCnTurankVvRCnSvKywintSkyywintSkyrank
209 200 208 sstrd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuSCnTurankVvRCnSvKywintSkyvKrank
210 imass2 vKrankuvKurank
211 209 210 syl φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuSCnTurankVvRCnSvKywintSkyuvKurank
212 simprlr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuSCnTurankVvRCnSvKywintSkyurankV
213 211 212 sstrd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuSCnTurankVvRCnSvKywintSkyuvKV
214 199 213 eqsstrid φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuSCnTurankVvRCnSvKywintSkyuvKV
215 196 198 214 elrabd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuSCnTurankVvRCnSvKywintSkyuvhRCnT|hKV
216 194 215 eqeltrd φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuSCnTurankVvRCnSvKywintSkyuFvhRCnT|hKV
217 185 216 sylan2b φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuaSCnT|arankVvbRCnS|bKywintSkyuFvhRCnT|hKV
218 217 ralrimivva φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompuaSCnT|arankVvbRCnS|bKywintSkyuFvhRCnT|hKV
219 1 mpofun FunF
220 ssrab2 aSCnT|arankVSCnT
221 ssrab2 bRCnS|bKywintSkyRCnS
222 xpss12 aSCnT|arankVSCnTbRCnS|bKywintSkyRCnSaSCnT|arankV×bRCnS|bKywintSkySCnT×RCnS
223 220 221 222 mp2an aSCnT|arankV×bRCnS|bKywintSkySCnT×RCnS
224 vex fV
225 vex gV
226 224 225 coex fgV
227 1 226 dmmpo domF=SCnT×RCnS
228 223 227 sseqtrri aSCnT|arankV×bRCnS|bKywintSkydomF
229 funimassov FunFaSCnT|arankV×bRCnS|bKywintSkydomFFaSCnT|arankV×bRCnS|bKywintSkyhRCnT|hKVuaSCnT|arankVvbRCnS|bKywintSkyuFvhRCnT|hKV
230 219 228 229 mp2an FaSCnT|arankV×bRCnS|bKywintSkyhRCnT|hKVuaSCnT|arankVvbRCnS|bKywintSkyuFvhRCnT|hKV
231 218 230 sylibr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompFaSCnT|arankV×bRCnS|bKywintSkyhRCnT|hKV
232 funimass3 FunFaSCnT|arankV×bRCnS|bKywintSkydomFFaSCnT|arankV×bRCnS|bKywintSkyhRCnT|hKVaSCnT|arankV×bRCnS|bKywintSkyF-1hRCnT|hKV
233 219 228 232 mp2an FaSCnT|arankV×bRCnS|bKywintSkyhRCnT|hKVaSCnT|arankV×bRCnS|bKywintSkyF-1hRCnT|hKV
234 231 233 sylib φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompaSCnT|arankV×bRCnS|bKywintSkyF-1hRCnT|hKV
235 eleq2 z=aSCnT|arankV×bRCnS|bKywintSkyABzABaSCnT|arankV×bRCnS|bKywintSky
236 sseq1 z=aSCnT|arankV×bRCnS|bKywintSkyzF-1hRCnT|hKVaSCnT|arankV×bRCnS|bKywintSkyF-1hRCnT|hKV
237 235 236 anbi12d z=aSCnT|arankV×bRCnS|bKywintSkyABzzF-1hRCnT|hKVABaSCnT|arankV×bRCnS|bKywintSkyaSCnT|arankV×bRCnS|bKywintSkyF-1hRCnT|hKV
238 237 rspcev aSCnT|arankV×bRCnS|bKywintSkyT^koS×tS^koRABaSCnT|arankV×bRCnS|bKywintSkyaSCnT|arankV×bRCnS|bKywintSkyF-1hRCnT|hKVzT^koS×tS^koRABzzF-1hRCnT|hKV
239 137 178 234 238 syl12anc φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompzT^koS×tS^koRABzzF-1hRCnT|hKV
240 239 expr φw𝒫S𝑡BKFinBK=wk:w𝒫A-1VywyintSkyS𝑡kyCompzT^koS×tS^koRABzzF-1hRCnT|hKV
241 240 exlimdv φw𝒫S𝑡BKFinBK=wkk:w𝒫A-1VywyintSkyS𝑡kyCompzT^koS×tS^koRABzzF-1hRCnT|hKV
242 90 241 syldan φw𝒫S𝑡BKFinS𝑡BK=wkk:w𝒫A-1VywyintSkyS𝑡kyCompzT^koS×tS^koRABzzF-1hRCnT|hKV
243 242 expimpd φw𝒫S𝑡BKFinS𝑡BK=wkk:w𝒫A-1VywyintSkyS𝑡kyCompzT^koS×tS^koRABzzF-1hRCnT|hKV
244 243 rexlimdva φw𝒫S𝑡BKFinS𝑡BK=wkk:w𝒫A-1VywyintSkyS𝑡kyCompzT^koS×tS^koRABzzF-1hRCnT|hKV
245 87 244 mpd φzT^koS×tS^koRABzzF-1hRCnT|hKV