Metamath Proof Explorer


Theorem yonedainv

Description: The Yoneda Lemma with explicit inverse. (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yoneda.y Y=YonC
yoneda.b B=BaseC
yoneda.1 1˙=IdC
yoneda.o O=oppCatC
yoneda.s S=SetCatU
yoneda.t T=SetCatV
yoneda.q Q=OFuncCatS
yoneda.h H=HomFQ
yoneda.r R=Q×cOFuncCatT
yoneda.e E=OevalFS
yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
yoneda.c φCCat
yoneda.w φVW
yoneda.u φranHom𝑓CU
yoneda.v φranHom𝑓QUV
yoneda.m M=fOFuncS,xBa1stYxONatSfax1˙x
yonedainv.i I=InvR
yonedainv.n N=fOFuncS,xBu1stfxyBgyHomCxx2ndfygu
Assertion yonedainv φMZIEN

Proof

Step Hyp Ref Expression
1 yoneda.y Y=YonC
2 yoneda.b B=BaseC
3 yoneda.1 1˙=IdC
4 yoneda.o O=oppCatC
5 yoneda.s S=SetCatU
6 yoneda.t T=SetCatV
7 yoneda.q Q=OFuncCatS
8 yoneda.h H=HomFQ
9 yoneda.r R=Q×cOFuncCatT
10 yoneda.e E=OevalFS
11 yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
12 yoneda.c φCCat
13 yoneda.w φVW
14 yoneda.u φranHom𝑓CU
15 yoneda.v φranHom𝑓QUV
16 yoneda.m M=fOFuncS,xBa1stYxONatSfax1˙x
17 yonedainv.i I=InvR
18 yonedainv.n N=fOFuncS,xBu1stfxyBgyHomCxx2ndfygu
19 eqid Q×cO=Q×cO
20 7 fucbas OFuncS=BaseQ
21 4 2 oppcbas B=BaseO
22 19 20 21 xpcbas OFuncS×B=BaseQ×cO
23 eqid Q×cONatT=Q×cONatT
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 yonedalem1 φZQ×cOFuncTEQ×cOFuncT
25 24 simpld φZQ×cOFuncT
26 24 simprd φEQ×cOFuncT
27 eqid InvT=InvT
28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 yonedalem3 φMZQ×cONatTE
29 12 adantr φhOFuncSwBCCat
30 13 adantr φhOFuncSwBVW
31 14 adantr φhOFuncSwBranHom𝑓CU
32 15 adantr φhOFuncSwBranHom𝑓QUV
33 simprl φhOFuncSwBhOFuncS
34 simprr φhOFuncSwBwB
35 1 2 3 4 5 6 7 8 9 10 11 29 30 31 32 33 34 16 yonedalem3a φhOFuncSwBhMw=a1stYwONatShaw1˙whMw:h1stZwh1stEw
36 35 simprd φhOFuncSwBhMw:h1stZwh1stEw
37 29 adantr φhOFuncSwBb1sthwCCat
38 30 adantr φhOFuncSwBb1sthwVW
39 31 adantr φhOFuncSwBb1sthwranHom𝑓CU
40 32 adantr φhOFuncSwBb1sthwranHom𝑓QUV
41 simplrl φhOFuncSwBb1sthwhOFuncS
42 simplrr φhOFuncSwBb1sthwwB
43 simpr φhOFuncSwBb1sthwb1sthw
44 1 2 3 4 5 6 7 8 9 10 11 37 38 39 40 41 42 18 43 yonedalem4c φhOFuncSwBb1sthwhNwb1stYwONatSh
45 44 fmpttd φhOFuncSwBb1sthwhNwb:1sthw1stYwONatSh
46 2 fvexi BV
47 46 mptex yBgyHomCww2ndhyguV
48 eqid u1sthwyBgyHomCww2ndhygu=u1sthwyBgyHomCww2ndhygu
49 47 48 fnmpti u1sthwyBgyHomCww2ndhyguFn1sthw
50 simpl f=hx=wf=h
51 50 fveq2d f=hx=w1stf=1sth
52 simpr f=hx=wx=w
53 51 52 fveq12d f=hx=w1stfx=1sthw
54 simplr f=hx=wyBx=w
55 54 oveq2d f=hx=wyByHomCx=yHomCw
56 simpll f=hx=wyBf=h
57 56 fveq2d f=hx=wyB2ndf=2ndh
58 eqidd f=hx=wyBy=y
59 57 54 58 oveq123d f=hx=wyBx2ndfy=w2ndhy
60 59 fveq1d f=hx=wyBx2ndfyg=w2ndhyg
61 60 fveq1d f=hx=wyBx2ndfygu=w2ndhygu
62 55 61 mpteq12dv f=hx=wyBgyHomCxx2ndfygu=gyHomCww2ndhygu
63 62 mpteq2dva f=hx=wyBgyHomCxx2ndfygu=yBgyHomCww2ndhygu
64 53 63 mpteq12dv f=hx=wu1stfxyBgyHomCxx2ndfygu=u1sthwyBgyHomCww2ndhygu
65 fvex 1sthwV
66 65 mptex u1sthwyBgyHomCww2ndhyguV
67 64 18 66 ovmpoa hOFuncSwBhNw=u1sthwyBgyHomCww2ndhygu
68 67 adantl φhOFuncSwBhNw=u1sthwyBgyHomCww2ndhygu
69 68 fneq1d φhOFuncSwBhNwFn1sthwu1sthwyBgyHomCww2ndhyguFn1sthw
70 49 69 mpbiri φhOFuncSwBhNwFn1sthw
71 dffn5 hNwFn1sthwhNw=b1sthwhNwb
72 70 71 sylib φhOFuncSwBhNw=b1sthwhNwb
73 4 oppccat CCatOCat
74 12 73 syl φOCat
75 74 adantr φhOFuncSwBOCat
76 15 unssbd φUV
77 13 76 ssexd φUV
78 5 setccat UVSCat
79 77 78 syl φSCat
80 79 adantr φhOFuncSwBSCat
81 10 75 80 21 33 34 evlf1 φhOFuncSwBh1stEw=1sthw
82 1 2 3 4 5 6 7 8 9 10 11 29 30 31 32 33 34 yonedalem21 φhOFuncSwBh1stZw=1stYwONatSh
83 72 81 82 feq123d φhOFuncSwBhNw:h1stEwh1stZwb1sthwhNwb:1sthw1stYwONatSh
84 45 83 mpbird φhOFuncSwBhNw:h1stEwh1stZw
85 fcompt hMw:h1stZwh1stEwhNw:h1stEwh1stZwhMwhNw=kh1stEwhMwhNwk
86 36 84 85 syl2anc φhOFuncSwBhMwhNw=kh1stEwhMwhNwk
87 81 eleq2d φhOFuncSwBkh1stEwk1sthw
88 87 biimpa φhOFuncSwBkh1stEwk1sthw
89 29 adantr φhOFuncSwBk1sthwCCat
90 30 adantr φhOFuncSwBk1sthwVW
91 31 adantr φhOFuncSwBk1sthwranHom𝑓CU
92 32 adantr φhOFuncSwBk1sthwranHom𝑓QUV
93 simplrl φhOFuncSwBk1sthwhOFuncS
94 simplrr φhOFuncSwBk1sthwwB
95 1 2 3 4 5 6 7 8 9 10 11 89 90 91 92 93 94 16 yonedalem3a φhOFuncSwBk1sthwhMw=a1stYwONatShaw1˙whMw:h1stZwh1stEw
96 95 simpld φhOFuncSwBk1sthwhMw=a1stYwONatShaw1˙w
97 96 fveq1d φhOFuncSwBk1sthwhMwhNwk=a1stYwONatShaw1˙whNwk
98 72 44 fmpt3d φhOFuncSwBhNw:1sthw1stYwONatSh
99 98 ffvelcdmda φhOFuncSwBk1sthwhNwk1stYwONatSh
100 fveq1 a=hNwkaw=hNwkw
101 100 fveq1d a=hNwkaw1˙w=hNwkw1˙w
102 eqid a1stYwONatShaw1˙w=a1stYwONatShaw1˙w
103 fvex hNwkw1˙wV
104 101 102 103 fvmpt hNwk1stYwONatSha1stYwONatShaw1˙whNwk=hNwkw1˙w
105 99 104 syl φhOFuncSwBk1sthwa1stYwONatShaw1˙whNwk=hNwkw1˙w
106 simpr φhOFuncSwBk1sthwk1sthw
107 eqid HomC=HomC
108 2 107 3 89 94 catidcl φhOFuncSwBk1sthw1˙wwHomCw
109 1 2 3 4 5 6 7 8 9 10 11 89 90 91 92 93 94 18 106 94 108 yonedalem4b φhOFuncSwBk1sthwhNwkw1˙w=w2ndhw1˙wk
110 eqid IdO=IdO
111 eqid IdS=IdS
112 relfunc RelOFuncS
113 1st2ndbr RelOFuncShOFuncS1sthOFuncS2ndh
114 112 93 113 sylancr φhOFuncSwBk1sthw1sthOFuncS2ndh
115 21 110 111 114 94 funcid φhOFuncSwBk1sthww2ndhwIdOw=IdS1sthw
116 4 3 oppcid CCatIdO=1˙
117 89 116 syl φhOFuncSwBk1sthwIdO=1˙
118 117 fveq1d φhOFuncSwBk1sthwIdOw=1˙w
119 118 fveq2d φhOFuncSwBk1sthww2ndhwIdOw=w2ndhw1˙w
120 77 ad2antrr φhOFuncSwBk1sthwUV
121 eqid BaseS=BaseS
122 21 121 114 funcf1 φhOFuncSwBk1sthw1sth:BBaseS
123 5 120 setcbas φhOFuncSwBk1sthwU=BaseS
124 123 feq3d φhOFuncSwBk1sthw1sth:BU1sth:BBaseS
125 122 124 mpbird φhOFuncSwBk1sthw1sth:BU
126 125 94 ffvelcdmd φhOFuncSwBk1sthw1sthwU
127 5 111 120 126 setcid φhOFuncSwBk1sthwIdS1sthw=I1sthw
128 115 119 127 3eqtr3d φhOFuncSwBk1sthww2ndhw1˙w=I1sthw
129 128 fveq1d φhOFuncSwBk1sthww2ndhw1˙wk=I1sthwk
130 fvresi k1sthwI1sthwk=k
131 130 adantl φhOFuncSwBk1sthwI1sthwk=k
132 109 129 131 3eqtrd φhOFuncSwBk1sthwhNwkw1˙w=k
133 97 105 132 3eqtrd φhOFuncSwBk1sthwhMwhNwk=k
134 88 133 syldan φhOFuncSwBkh1stEwhMwhNwk=k
135 134 mpteq2dva φhOFuncSwBkh1stEwhMwhNwk=kh1stEwk
136 mptresid Ih1stEw=kh1stEwk
137 135 136 eqtr4di φhOFuncSwBkh1stEwhMwhNwk=Ih1stEw
138 86 137 eqtrd φhOFuncSwBhMwhNw=Ih1stEw
139 fcompt hNw:h1stEwh1stZwhMw:h1stZwh1stEwhNwhMw=bh1stZwhNwhMwb
140 84 36 139 syl2anc φhOFuncSwBhNwhMw=bh1stZwhNwhMwb
141 eqid ONatS=ONatS
142 29 adantr φhOFuncSwBbh1stZwCCat
143 30 adantr φhOFuncSwBbh1stZwVW
144 31 adantr φhOFuncSwBbh1stZwranHom𝑓CU
145 32 adantr φhOFuncSwBbh1stZwranHom𝑓QUV
146 simplrl φhOFuncSwBbh1stZwhOFuncS
147 simplrr φhOFuncSwBbh1stZwwB
148 81 feq3d φhOFuncSwBhMw:h1stZwh1stEwhMw:h1stZw1sthw
149 36 148 mpbid φhOFuncSwBhMw:h1stZw1sthw
150 149 ffvelcdmda φhOFuncSwBbh1stZwhMwb1sthw
151 1 2 3 4 5 6 7 8 9 10 11 142 143 144 145 146 147 18 150 yonedalem4c φhOFuncSwBbh1stZwhNwhMwb1stYwONatSh
152 141 151 nat1st2nd φhOFuncSwBbh1stZwhNwhMwb1st1stYw2nd1stYwONatS1sth2ndh
153 141 152 21 natfn φhOFuncSwBbh1stZwhNwhMwbFnB
154 82 eleq2d φhOFuncSwBbh1stZwb1stYwONatSh
155 154 biimpa φhOFuncSwBbh1stZwb1stYwONatSh
156 141 155 nat1st2nd φhOFuncSwBbh1stZwb1st1stYw2nd1stYwONatS1sth2ndh
157 141 156 21 natfn φhOFuncSwBbh1stZwbFnB
158 142 adantr φhOFuncSwBbh1stZwzBCCat
159 147 adantr φhOFuncSwBbh1stZwzBwB
160 simpr φhOFuncSwBbh1stZwzBzB
161 1 2 158 159 107 160 yon11 φhOFuncSwBbh1stZwzB1st1stYwz=zHomCw
162 161 eleq2d φhOFuncSwBbh1stZwzBk1st1stYwzkzHomCw
163 162 biimpa φhOFuncSwBbh1stZwzBk1st1stYwzkzHomCw
164 158 adantr φhOFuncSwBbh1stZwzBkzHomCwCCat
165 143 ad2antrr φhOFuncSwBbh1stZwzBkzHomCwVW
166 144 ad2antrr φhOFuncSwBbh1stZwzBkzHomCwranHom𝑓CU
167 145 ad2antrr φhOFuncSwBbh1stZwzBkzHomCwranHom𝑓QUV
168 146 ad2antrr φhOFuncSwBbh1stZwzBkzHomCwhOFuncS
169 159 adantr φhOFuncSwBbh1stZwzBkzHomCwwB
170 150 ad2antrr φhOFuncSwBbh1stZwzBkzHomCwhMwb1sthw
171 simplr φhOFuncSwBbh1stZwzBkzHomCwzB
172 simpr φhOFuncSwBbh1stZwzBkzHomCwkzHomCw
173 1 2 3 4 5 6 7 8 9 10 11 164 165 166 167 168 169 18 170 171 172 yonedalem4b φhOFuncSwBbh1stZwzBkzHomCwhNwhMwbzk=w2ndhzkhMwb
174 1 2 3 4 5 6 7 8 9 10 11 164 165 166 167 168 169 16 yonedalem3a φhOFuncSwBbh1stZwzBkzHomCwhMw=a1stYwONatShaw1˙whMw:h1stZwh1stEw
175 174 simpld φhOFuncSwBbh1stZwzBkzHomCwhMw=a1stYwONatShaw1˙w
176 175 fveq1d φhOFuncSwBbh1stZwzBkzHomCwhMwb=a1stYwONatShaw1˙wb
177 155 ad2antrr φhOFuncSwBbh1stZwzBkzHomCwb1stYwONatSh
178 fveq1 a=baw=bw
179 178 fveq1d a=baw1˙w=bw1˙w
180 fvex bw1˙wV
181 179 102 180 fvmpt b1stYwONatSha1stYwONatShaw1˙wb=bw1˙w
182 177 181 syl φhOFuncSwBbh1stZwzBkzHomCwa1stYwONatShaw1˙wb=bw1˙w
183 176 182 eqtrd φhOFuncSwBbh1stZwzBkzHomCwhMwb=bw1˙w
184 183 fveq2d φhOFuncSwBbh1stZwzBkzHomCww2ndhzkhMwb=w2ndhzkbw1˙w
185 156 ad2antrr φhOFuncSwBbh1stZwzBkzHomCwb1st1stYw2nd1stYwONatS1sth2ndh
186 eqid HomO=HomO
187 eqid compS=compS
188 107 4 oppchom wHomOz=zHomCw
189 172 188 eleqtrrdi φhOFuncSwBbh1stZwzBkzHomCwkwHomOz
190 141 185 21 186 187 169 171 189 nati φhOFuncSwBbh1stZwzBkzHomCwbz1st1stYww1st1stYwzcompS1sthzw2nd1stYwzk=w2ndhzk1st1stYww1sthwcompS1sthzbw
191 77 ad2antrr φhOFuncSwBbh1stZwUV
192 191 adantr φhOFuncSwBbh1stZwzBUV
193 192 adantr φhOFuncSwBbh1stZwzBkzHomCwUV
194 relfunc RelCFuncQ
195 1 12 4 5 7 77 14 yoncl φYCFuncQ
196 1st2ndbr RelCFuncQYCFuncQ1stYCFuncQ2ndY
197 194 195 196 sylancr φ1stYCFuncQ2ndY
198 2 20 197 funcf1 φ1stY:BOFuncS
199 198 ad2antrr φhOFuncSwBbh1stZw1stY:BOFuncS
200 199 147 ffvelcdmd φhOFuncSwBbh1stZw1stYwOFuncS
201 1st2ndbr RelOFuncS1stYwOFuncS1st1stYwOFuncS2nd1stYw
202 112 200 201 sylancr φhOFuncSwBbh1stZw1st1stYwOFuncS2nd1stYw
203 21 121 202 funcf1 φhOFuncSwBbh1stZw1st1stYw:BBaseS
204 5 191 setcbas φhOFuncSwBbh1stZwU=BaseS
205 204 feq3d φhOFuncSwBbh1stZw1st1stYw:BU1st1stYw:BBaseS
206 203 205 mpbird φhOFuncSwBbh1stZw1st1stYw:BU
207 206 147 ffvelcdmd φhOFuncSwBbh1stZw1st1stYwwU
208 207 ad2antrr φhOFuncSwBbh1stZwzBkzHomCw1st1stYwwU
209 206 ffvelcdmda φhOFuncSwBbh1stZwzB1st1stYwzU
210 209 adantr φhOFuncSwBbh1stZwzBkzHomCw1st1stYwzU
211 112 146 113 sylancr φhOFuncSwBbh1stZw1sthOFuncS2ndh
212 21 121 211 funcf1 φhOFuncSwBbh1stZw1sth:BBaseS
213 204 feq3d φhOFuncSwBbh1stZw1sth:BU1sth:BBaseS
214 212 213 mpbird φhOFuncSwBbh1stZw1sth:BU
215 214 ffvelcdmda φhOFuncSwBbh1stZwzB1sthzU
216 215 adantr φhOFuncSwBbh1stZwzBkzHomCw1sthzU
217 eqid HomS=HomS
218 202 ad2antrr φhOFuncSwBbh1stZwzBkzHomCw1st1stYwOFuncS2nd1stYw
219 21 186 217 218 169 171 funcf2 φhOFuncSwBbh1stZwzBkzHomCww2nd1stYwz:wHomOz1st1stYwwHomS1st1stYwz
220 219 189 ffvelcdmd φhOFuncSwBbh1stZwzBkzHomCww2nd1stYwzk1st1stYwwHomS1st1stYwz
221 5 193 217 208 210 elsetchom φhOFuncSwBbh1stZwzBkzHomCww2nd1stYwzk1st1stYwwHomS1st1stYwzw2nd1stYwzk:1st1stYww1st1stYwz
222 220 221 mpbid φhOFuncSwBbh1stZwzBkzHomCww2nd1stYwzk:1st1stYww1st1stYwz
223 156 adantr φhOFuncSwBbh1stZwzBb1st1stYw2nd1stYwONatS1sth2ndh
224 141 223 21 217 160 natcl φhOFuncSwBbh1stZwzBbz1st1stYwzHomS1sthz
225 5 192 217 209 215 elsetchom φhOFuncSwBbh1stZwzBbz1st1stYwzHomS1sthzbz:1st1stYwz1sthz
226 224 225 mpbid φhOFuncSwBbh1stZwzBbz:1st1stYwz1sthz
227 226 adantr φhOFuncSwBbh1stZwzBkzHomCwbz:1st1stYwz1sthz
228 5 193 187 208 210 216 222 227 setcco φhOFuncSwBbh1stZwzBkzHomCwbz1st1stYww1st1stYwzcompS1sthzw2nd1stYwzk=bzw2nd1stYwzk
229 214 147 ffvelcdmd φhOFuncSwBbh1stZw1sthwU
230 229 ad2antrr φhOFuncSwBbh1stZwzBkzHomCw1sthwU
231 141 156 21 217 147 natcl φhOFuncSwBbh1stZwbw1st1stYwwHomS1sthw
232 5 191 217 207 229 elsetchom φhOFuncSwBbh1stZwbw1st1stYwwHomS1sthwbw:1st1stYww1sthw
233 231 232 mpbid φhOFuncSwBbh1stZwbw:1st1stYww1sthw
234 233 ad2antrr φhOFuncSwBbh1stZwzBkzHomCwbw:1st1stYww1sthw
235 112 168 113 sylancr φhOFuncSwBbh1stZwzBkzHomCw1sthOFuncS2ndh
236 21 186 217 235 169 171 funcf2 φhOFuncSwBbh1stZwzBkzHomCww2ndhz:wHomOz1sthwHomS1sthz
237 236 189 ffvelcdmd φhOFuncSwBbh1stZwzBkzHomCww2ndhzk1sthwHomS1sthz
238 5 193 217 230 216 elsetchom φhOFuncSwBbh1stZwzBkzHomCww2ndhzk1sthwHomS1sthzw2ndhzk:1sthw1sthz
239 237 238 mpbid φhOFuncSwBbh1stZwzBkzHomCww2ndhzk:1sthw1sthz
240 5 193 187 208 230 216 234 239 setcco φhOFuncSwBbh1stZwzBkzHomCww2ndhzk1st1stYww1sthwcompS1sthzbw=w2ndhzkbw
241 190 228 240 3eqtr3d φhOFuncSwBbh1stZwzBkzHomCwbzw2nd1stYwzk=w2ndhzkbw
242 241 fveq1d φhOFuncSwBbh1stZwzBkzHomCwbzw2nd1stYwzk1˙w=w2ndhzkbw1˙w
243 2 107 3 142 147 catidcl φhOFuncSwBbh1stZw1˙wwHomCw
244 1 2 142 147 107 147 yon11 φhOFuncSwBbh1stZw1st1stYww=wHomCw
245 243 244 eleqtrrd φhOFuncSwBbh1stZw1˙w1st1stYww
246 245 ad2antrr φhOFuncSwBbh1stZwzBkzHomCw1˙w1st1stYww
247 222 246 fvco3d φhOFuncSwBbh1stZwzBkzHomCwbzw2nd1stYwzk1˙w=bzw2nd1stYwzk1˙w
248 233 245 fvco3d φhOFuncSwBbh1stZww2ndhzkbw1˙w=w2ndhzkbw1˙w
249 248 ad2antrr φhOFuncSwBbh1stZwzBkzHomCww2ndhzkbw1˙w=w2ndhzkbw1˙w
250 242 247 249 3eqtr3d φhOFuncSwBbh1stZwzBkzHomCwbzw2nd1stYwzk1˙w=w2ndhzkbw1˙w
251 eqid compC=compC
252 243 ad2antrr φhOFuncSwBbh1stZwzBkzHomCw1˙wwHomCw
253 1 2 164 169 107 169 251 171 172 252 yon12 φhOFuncSwBbh1stZwzBkzHomCww2nd1stYwzk1˙w=1˙wzwcompCwk
254 2 107 3 164 171 251 169 172 catlid φhOFuncSwBbh1stZwzBkzHomCw1˙wzwcompCwk=k
255 253 254 eqtrd φhOFuncSwBbh1stZwzBkzHomCww2nd1stYwzk1˙w=k
256 255 fveq2d φhOFuncSwBbh1stZwzBkzHomCwbzw2nd1stYwzk1˙w=bzk
257 250 256 eqtr3d φhOFuncSwBbh1stZwzBkzHomCww2ndhzkbw1˙w=bzk
258 173 184 257 3eqtrd φhOFuncSwBbh1stZwzBkzHomCwhNwhMwbzk=bzk
259 163 258 syldan φhOFuncSwBbh1stZwzBk1st1stYwzhNwhMwbzk=bzk
260 259 mpteq2dva φhOFuncSwBbh1stZwzBk1st1stYwzhNwhMwbzk=k1st1stYwzbzk
261 152 adantr φhOFuncSwBbh1stZwzBhNwhMwb1st1stYw2nd1stYwONatS1sth2ndh
262 141 261 21 217 160 natcl φhOFuncSwBbh1stZwzBhNwhMwbz1st1stYwzHomS1sthz
263 5 192 217 209 215 elsetchom φhOFuncSwBbh1stZwzBhNwhMwbz1st1stYwzHomS1sthzhNwhMwbz:1st1stYwz1sthz
264 262 263 mpbid φhOFuncSwBbh1stZwzBhNwhMwbz:1st1stYwz1sthz
265 264 feqmptd φhOFuncSwBbh1stZwzBhNwhMwbz=k1st1stYwzhNwhMwbzk
266 226 feqmptd φhOFuncSwBbh1stZwzBbz=k1st1stYwzbzk
267 260 265 266 3eqtr4d φhOFuncSwBbh1stZwzBhNwhMwbz=bz
268 153 157 267 eqfnfvd φhOFuncSwBbh1stZwhNwhMwb=b
269 268 mpteq2dva φhOFuncSwBbh1stZwhNwhMwb=bh1stZwb
270 mptresid Ih1stZw=bh1stZwb
271 269 270 eqtr4di φhOFuncSwBbh1stZwhNwhMwb=Ih1stZw
272 140 271 eqtrd φhOFuncSwBhNwhMw=Ih1stZw
273 fcof1o hMw:h1stZwh1stEwhNw:h1stEwh1stZwhMwhNw=Ih1stEwhNwhMw=Ih1stZwhMw:h1stZw1-1 ontoh1stEwhMw-1=hNw
274 36 84 138 272 273 syl22anc φhOFuncSwBhMw:h1stZw1-1 ontoh1stEwhMw-1=hNw
275 eqcom hMw-1=hNwhNw=hMw-1
276 275 anbi2i hMw:h1stZw1-1 ontoh1stEwhMw-1=hNwhMw:h1stZw1-1 ontoh1stEwhNw=hMw-1
277 274 276 sylib φhOFuncSwBhMw:h1stZw1-1 ontoh1stEwhNw=hMw-1
278 eqid BaseT=BaseT
279 relfunc RelQ×cOFuncT
280 1st2ndbr RelQ×cOFuncTZQ×cOFuncT1stZQ×cOFuncT2ndZ
281 279 25 280 sylancr φ1stZQ×cOFuncT2ndZ
282 22 278 281 funcf1 φ1stZ:OFuncS×BBaseT
283 6 13 setcbas φV=BaseT
284 283 feq3d φ1stZ:OFuncS×BV1stZ:OFuncS×BBaseT
285 282 284 mpbird φ1stZ:OFuncS×BV
286 285 fovcdmda φhOFuncSwBh1stZwV
287 1st2ndbr RelQ×cOFuncTEQ×cOFuncT1stEQ×cOFuncT2ndE
288 279 26 287 sylancr φ1stEQ×cOFuncT2ndE
289 22 278 288 funcf1 φ1stE:OFuncS×BBaseT
290 283 feq3d φ1stE:OFuncS×BV1stE:OFuncS×BBaseT
291 289 290 mpbird φ1stE:OFuncS×BV
292 291 fovcdmda φhOFuncSwBh1stEwV
293 6 30 286 292 27 setcinv φhOFuncSwBhMwh1stZwInvTh1stEwhNwhMw:h1stZw1-1 ontoh1stEwhNw=hMw-1
294 277 293 mpbird φhOFuncSwBhMwh1stZwInvTh1stEwhNw
295 294 ralrimivva φhOFuncSwBhMwh1stZwInvTh1stEwhNw
296 fveq2 z=hwMz=Mhw
297 df-ov hMw=Mhw
298 296 297 eqtr4di z=hwMz=hMw
299 fveq2 z=hw1stZz=1stZhw
300 df-ov h1stZw=1stZhw
301 299 300 eqtr4di z=hw1stZz=h1stZw
302 fveq2 z=hw1stEz=1stEhw
303 df-ov h1stEw=1stEhw
304 302 303 eqtr4di z=hw1stEz=h1stEw
305 301 304 oveq12d z=hw1stZzInvT1stEz=h1stZwInvTh1stEw
306 fveq2 z=hwNz=Nhw
307 df-ov hNw=Nhw
308 306 307 eqtr4di z=hwNz=hNw
309 298 305 308 breq123d z=hwMz1stZzInvT1stEzNzhMwh1stZwInvTh1stEwhNw
310 309 ralxp zOFuncS×BMz1stZzInvT1stEzNzhOFuncSwBhMwh1stZwInvTh1stEwhNw
311 295 310 sylibr φzOFuncS×BMz1stZzInvT1stEzNz
312 311 r19.21bi φzOFuncS×BMz1stZzInvT1stEzNz
313 9 22 23 25 26 17 27 28 312 invfuc φMZIEzOFuncS×BNz
314 fvex 1stfxV
315 314 mptex u1stfxyBgyHomCxx2ndfyguV
316 18 315 fnmpoi NFnOFuncS×B
317 dffn5 NFnOFuncS×BN=zOFuncS×BNz
318 316 317 mpbi N=zOFuncS×BNz
319 313 318 breqtrrdi φMZIEN