| Step |
Hyp |
Ref |
Expression |
| 1 |
|
binomcxp.a |
|
| 2 |
|
binomcxp.b |
|
| 3 |
|
binomcxp.lt |
|
| 4 |
|
binomcxp.c |
|
| 5 |
|
binomcxplem.f |
|
| 6 |
|
binomcxplem.s |
|
| 7 |
|
binomcxplem.r |
|
| 8 |
|
binomcxplem.e |
|
| 9 |
|
binomcxplem.d |
|
| 10 |
|
nfcv |
|
| 11 |
|
nfcv |
|
| 12 |
|
nfcv |
|
| 13 |
|
nfcv |
|
| 14 |
|
nfmpt1 |
|
| 15 |
6 14
|
nfcxfr |
|
| 16 |
|
nfcv |
|
| 17 |
15 16
|
nffv |
|
| 18 |
11 13 17
|
nfseq |
|
| 19 |
18
|
nfel1 |
|
| 20 |
|
nfcv |
|
| 21 |
19 20
|
nfrabw |
|
| 22 |
|
nfcv |
|
| 23 |
|
nfcv |
|
| 24 |
21 22 23
|
nfsup |
|
| 25 |
7 24
|
nfcxfr |
|
| 26 |
11 12 25
|
nfov |
|
| 27 |
10 26
|
nfima |
|
| 28 |
9 27
|
nfcxfr |
|
| 29 |
|
nfcv |
|
| 30 |
|
nfcv |
|
| 31 |
|
nfcv |
|
| 32 |
|
oveq2 |
|
| 33 |
32
|
oveq1d |
|
| 34 |
28 29 30 31 33
|
cbvmptf |
|
| 35 |
34
|
oveq2i |
|
| 36 |
|
cnelprrecn |
|
| 37 |
36
|
a1i |
|
| 38 |
|
1cnd |
|
| 39 |
|
cnvimass |
|
| 40 |
9 39
|
eqsstri |
|
| 41 |
|
absf |
|
| 42 |
41
|
fdmi |
|
| 43 |
40 42
|
sseqtri |
|
| 44 |
43
|
a1i |
|
| 45 |
44
|
sselda |
|
| 46 |
38 45
|
addcld |
|
| 47 |
|
simpr |
|
| 48 |
|
1cnd |
|
| 49 |
45
|
adantr |
|
| 50 |
48 49
|
pncan2d |
|
| 51 |
|
1red |
|
| 52 |
47 51
|
resubcld |
|
| 53 |
50 52
|
eqeltrrd |
|
| 54 |
|
1pneg1e0 |
|
| 55 |
|
1red |
|
| 56 |
55
|
renegcld |
|
| 57 |
|
simpr |
|
| 58 |
|
ffn |
|
| 59 |
|
elpreima |
|
| 60 |
41 58 59
|
mp2b |
|
| 61 |
60
|
simprbi |
|
| 62 |
61 9
|
eleq2s |
|
| 63 |
|
0re |
|
| 64 |
|
ssrab2 |
|
| 65 |
|
ressxr |
|
| 66 |
64 65
|
sstri |
|
| 67 |
|
supxrcl |
|
| 68 |
66 67
|
ax-mp |
|
| 69 |
7 68
|
eqeltri |
|
| 70 |
|
elico2 |
|
| 71 |
63 69 70
|
mp2an |
|
| 72 |
62 71
|
sylib |
|
| 73 |
72
|
simp3d |
|
| 74 |
73
|
adantl |
|
| 75 |
1 2 3 4 5 6 7
|
binomcxplemradcnv |
|
| 76 |
75
|
adantr |
|
| 77 |
74 76
|
breqtrd |
|
| 78 |
77
|
adantr |
|
| 79 |
57 55
|
absltd |
|
| 80 |
78 79
|
mpbid |
|
| 81 |
80
|
simpld |
|
| 82 |
56 57 55 81
|
ltadd2dd |
|
| 83 |
54 82
|
eqbrtrrid |
|
| 84 |
53 83
|
syldan |
|
| 85 |
47 84
|
elrpd |
|
| 86 |
85
|
ex |
|
| 87 |
|
eqid |
|
| 88 |
87
|
ellogdm |
|
| 89 |
46 86 88
|
sylanbrc |
|
| 90 |
|
eldifi |
|
| 91 |
90
|
adantl |
|
| 92 |
4
|
adantr |
|
| 93 |
92
|
negcld |
|
| 94 |
93
|
adantr |
|
| 95 |
91 94
|
cxpcld |
|
| 96 |
|
ovexd |
|
| 97 |
|
1cnd |
|
| 98 |
|
simpr |
|
| 99 |
97 98
|
addcld |
|
| 100 |
|
c0ex |
|
| 101 |
100
|
a1i |
|
| 102 |
|
1cnd |
|
| 103 |
37 102
|
dvmptc |
|
| 104 |
37
|
dvmptid |
|
| 105 |
37 97 101 103 98 97 104
|
dvmptadd |
|
| 106 |
|
0p1e1 |
|
| 107 |
106
|
mpteq2i |
|
| 108 |
105 107
|
eqtrdi |
|
| 109 |
|
fvex |
|
| 110 |
|
cnfldtps |
|
| 111 |
|
cnfldbas |
|
| 112 |
|
eqid |
|
| 113 |
111 112
|
tpsuni |
|
| 114 |
110 113
|
ax-mp |
|
| 115 |
114
|
restid |
|
| 116 |
109 115
|
ax-mp |
|
| 117 |
116
|
eqcomi |
|
| 118 |
112
|
cnfldtop |
|
| 119 |
|
eqid |
|
| 120 |
119
|
cnbl0 |
|
| 121 |
69 120
|
ax-mp |
|
| 122 |
9 121
|
eqtri |
|
| 123 |
|
cnxmet |
|
| 124 |
|
0cn |
|
| 125 |
112
|
cnfldtopn |
|
| 126 |
125
|
blopn |
|
| 127 |
123 124 69 126
|
mp3an |
|
| 128 |
122 127
|
eqeltri |
|
| 129 |
|
isopn3i |
|
| 130 |
118 128 129
|
mp2an |
|
| 131 |
130
|
a1i |
|
| 132 |
37 99 97 108 44 117 112 131
|
dvmptres2 |
|
| 133 |
|
oveq2 |
|
| 134 |
133
|
cbvmptv |
|
| 135 |
134
|
oveq2i |
|
| 136 |
|
eqidd |
|
| 137 |
136
|
cbvmptv |
|
| 138 |
132 135 137
|
3eqtr3g |
|
| 139 |
87
|
dvcncxp1 |
|
| 140 |
93 139
|
syl |
|
| 141 |
|
oveq1 |
|
| 142 |
|
oveq1 |
|
| 143 |
142
|
oveq2d |
|
| 144 |
37 37 89 38 95 96 138 140 141 143
|
dvmptco |
|
| 145 |
92
|
adantr |
|
| 146 |
145
|
negcld |
|
| 147 |
146 38
|
subcld |
|
| 148 |
46 147
|
cxpcld |
|
| 149 |
146 148
|
mulcld |
|
| 150 |
149
|
mulridd |
|
| 151 |
150
|
mpteq2dva |
|
| 152 |
|
nfcv |
|
| 153 |
|
nfcv |
|
| 154 |
|
oveq2 |
|
| 155 |
154
|
oveq1d |
|
| 156 |
155
|
oveq2d |
|
| 157 |
29 28 152 153 156
|
cbvmptf |
|
| 158 |
157
|
a1i |
|
| 159 |
144 151 158
|
3eqtrd |
|
| 160 |
35 159
|
eqtrid |
|