Metamath Proof Explorer


Theorem binomcxplemdvbinom

Description: Lemma for binomcxp . By the power and chain rules, calculate the derivative of ( ( 1 + b ) ^c -u C ) , with respect to b in the disk of convergence D . We later multiply the derivative in the later binomcxplemdvsum by this derivative to show that ( ( 1 + b ) ^c C ) (with a nonnegated C ) and the later sum, since both at b = 0 equal one, are the same. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxp.a φA+
binomcxp.b φB
binomcxp.lt φB<A
binomcxp.c φC
binomcxplem.f F=j0CC𝑐j
binomcxplem.s S=bk0Fkbk
binomcxplem.r R=supr|seq0+Srdom*<
binomcxplem.e E=bkkFkbk1
binomcxplem.d D=abs-10R
Assertion binomcxplemdvbinom φ¬C0dbD1+bCdb=bDC1+b-C-1

Proof

Step Hyp Ref Expression
1 binomcxp.a φA+
2 binomcxp.b φB
3 binomcxp.lt φB<A
4 binomcxp.c φC
5 binomcxplem.f F=j0CC𝑐j
6 binomcxplem.s S=bk0Fkbk
7 binomcxplem.r R=supr|seq0+Srdom*<
8 binomcxplem.e E=bkkFkbk1
9 binomcxplem.d D=abs-10R
10 nfcv _babs-1
11 nfcv _b0
12 nfcv _b.
13 nfcv _b+
14 nfmpt1 _bbk0Fkbk
15 6 14 nfcxfr _bS
16 nfcv _br
17 15 16 nffv _bSr
18 11 13 17 nfseq _bseq0+Sr
19 18 nfel1 bseq0+Srdom
20 nfcv _b
21 19 20 nfrabw _br|seq0+Srdom
22 nfcv _b*
23 nfcv _b<
24 21 22 23 nfsup _bsupr|seq0+Srdom*<
25 7 24 nfcxfr _bR
26 11 12 25 nfov _b0R
27 10 26 nfima _babs-10R
28 9 27 nfcxfr _bD
29 nfcv _yD
30 nfcv _y1+bC
31 nfcv _b1+yC
32 oveq2 b=y1+b=1+y
33 32 oveq1d b=y1+bC=1+yC
34 28 29 30 31 33 cbvmptf bD1+bC=yD1+yC
35 34 oveq2i dbD1+bCdb=dyD1+yCdy
36 cnelprrecn
37 36 a1i φ¬C0
38 1cnd φ¬C0yD1
39 cnvimass abs-10Rdomabs
40 9 39 eqsstri Ddomabs
41 absf abs:
42 41 fdmi domabs=
43 40 42 sseqtri D
44 43 a1i φ¬C0D
45 44 sselda φ¬C0yDy
46 38 45 addcld φ¬C0yD1+y
47 simpr φ¬C0yD1+y1+y
48 1cnd φ¬C0yD1+y1
49 45 adantr φ¬C0yD1+yy
50 48 49 pncan2d φ¬C0yD1+y1+y-1=y
51 1red φ¬C0yD1+y1
52 47 51 resubcld φ¬C0yD1+y1+y-1
53 50 52 eqeltrrd φ¬C0yD1+yy
54 1pneg1e0 1+-1=0
55 1red φ¬C0yDy1
56 55 renegcld φ¬C0yDy1
57 simpr φ¬C0yDyy
58 ffn abs:absFn
59 elpreima absFnyabs-10Ryy0R
60 41 58 59 mp2b yabs-10Ryy0R
61 60 simprbi yabs-10Ry0R
62 61 9 eleq2s yDy0R
63 0re 0
64 ssrab2 r|seq0+Srdom
65 ressxr *
66 64 65 sstri r|seq0+Srdom*
67 supxrcl r|seq0+Srdom*supr|seq0+Srdom*<*
68 66 67 ax-mp supr|seq0+Srdom*<*
69 7 68 eqeltri R*
70 elico2 0R*y0Ry0yy<R
71 63 69 70 mp2an y0Ry0yy<R
72 62 71 sylib yDy0yy<R
73 72 simp3d yDy<R
74 73 adantl φ¬C0yDy<R
75 1 2 3 4 5 6 7 binomcxplemradcnv φ¬C0R=1
76 75 adantr φ¬C0yDR=1
77 74 76 breqtrd φ¬C0yDy<1
78 77 adantr φ¬C0yDyy<1
79 57 55 absltd φ¬C0yDyy<11<yy<1
80 78 79 mpbid φ¬C0yDy1<yy<1
81 80 simpld φ¬C0yDy1<y
82 56 57 55 81 ltadd2dd φ¬C0yDy1+-1<1+y
83 54 82 eqbrtrrid φ¬C0yDy0<1+y
84 53 83 syldan φ¬C0yD1+y0<1+y
85 47 84 elrpd φ¬C0yD1+y1+y+
86 85 ex φ¬C0yD1+y1+y+
87 eqid −∞0=−∞0
88 87 ellogdm 1+y−∞01+y1+y1+y+
89 46 86 88 sylanbrc φ¬C0yD1+y−∞0
90 eldifi x−∞0x
91 90 adantl φ¬C0x−∞0x
92 4 adantr φ¬C0C
93 92 negcld φ¬C0C
94 93 adantr φ¬C0x−∞0C
95 91 94 cxpcld φ¬C0x−∞0xC
96 ovexd φ¬C0x−∞0Cx-C-1V
97 1cnd φ¬C0x1
98 simpr φ¬C0xx
99 97 98 addcld φ¬C0x1+x
100 c0ex 0V
101 100 a1i φ¬C0x0V
102 1cnd φ¬C01
103 37 102 dvmptc φ¬C0dx1dx=x0
104 37 dvmptid φ¬C0dxxdx=x1
105 37 97 101 103 98 97 104 dvmptadd φ¬C0dx1+xdx=x0+1
106 0p1e1 0+1=1
107 106 mpteq2i x0+1=x1
108 105 107 eqtrdi φ¬C0dx1+xdx=x1
109 fvex TopOpenfldV
110 cnfldtps fldTopSp
111 cnfldbas =Basefld
112 eqid TopOpenfld=TopOpenfld
113 111 112 tpsuni fldTopSp=TopOpenfld
114 110 113 ax-mp =TopOpenfld
115 114 restid TopOpenfldVTopOpenfld𝑡=TopOpenfld
116 109 115 ax-mp TopOpenfld𝑡=TopOpenfld
117 116 eqcomi TopOpenfld=TopOpenfld𝑡
118 112 cnfldtop TopOpenfldTop
119 eqid abs=abs
120 119 cnbl0 R*abs-10R=0ballabsR
121 69 120 ax-mp abs-10R=0ballabsR
122 9 121 eqtri D=0ballabsR
123 cnxmet abs∞Met
124 0cn 0
125 112 cnfldtopn TopOpenfld=MetOpenabs
126 125 blopn abs∞Met0R*0ballabsRTopOpenfld
127 123 124 69 126 mp3an 0ballabsRTopOpenfld
128 122 127 eqeltri DTopOpenfld
129 isopn3i TopOpenfldTopDTopOpenfldintTopOpenfldD=D
130 118 128 129 mp2an intTopOpenfldD=D
131 130 a1i φ¬C0intTopOpenfldD=D
132 37 99 97 108 44 117 112 131 dvmptres2 φ¬C0dxD1+xdx=xD1
133 oveq2 x=y1+x=1+y
134 133 cbvmptv xD1+x=yD1+y
135 134 oveq2i dxD1+xdx=dyD1+ydy
136 eqidd x=y1=1
137 136 cbvmptv xD1=yD1
138 132 135 137 3eqtr3g φ¬C0dyD1+ydy=yD1
139 87 dvcncxp1 Cdx−∞0xCdx=x−∞0Cx-C-1
140 93 139 syl φ¬C0dx−∞0xCdx=x−∞0Cx-C-1
141 oveq1 x=1+yxC=1+yC
142 oveq1 x=1+yx-C-1=1+y-C-1
143 142 oveq2d x=1+yCx-C-1=C1+y-C-1
144 37 37 89 38 95 96 138 140 141 143 dvmptco φ¬C0dyD1+yCdy=yDC1+y-C-11
145 92 adantr φ¬C0yDC
146 145 negcld φ¬C0yDC
147 146 38 subcld φ¬C0yD-C-1
148 46 147 cxpcld φ¬C0yD1+y-C-1
149 146 148 mulcld φ¬C0yDC1+y-C-1
150 149 mulridd φ¬C0yDC1+y-C-11=C1+y-C-1
151 150 mpteq2dva φ¬C0yDC1+y-C-11=yDC1+y-C-1
152 nfcv _bC1+y-C-1
153 nfcv _yC1+b-C-1
154 oveq2 y=b1+y=1+b
155 154 oveq1d y=b1+y-C-1=1+b-C-1
156 155 oveq2d y=bC1+y-C-1=C1+b-C-1
157 29 28 152 153 156 cbvmptf yDC1+y-C-1=bDC1+b-C-1
158 157 a1i φ¬C0yDC1+y-C-1=bDC1+b-C-1
159 144 151 158 3eqtrd φ¬C0dyD1+yCdy=bDC1+b-C-1
160 35 159 eqtrid φ¬C0dbD1+bCdb=bDC1+b-C-1