Metamath Proof Explorer


Theorem dveflem

Description: Derivative of the exponential function at 0. The key step in the proof is eftlub , to show that abs ( exp ( x ) - 1 - x ) <_ abs ( x ) ^ 2 x. ( 3 / 4 ) . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)

Ref Expression
Assertion dveflem 0 exp 1

Proof

Step Hyp Ref Expression
1 0cn 0
2 eqid TopOpen fld = TopOpen fld
3 2 cnfldtop TopOpen fld Top
4 unicntop = TopOpen fld
5 4 ntrtop TopOpen fld Top int TopOpen fld =
6 3 5 ax-mp int TopOpen fld =
7 1 6 eleqtrri 0 int TopOpen fld
8 ax-1cn 1
9 1rp 1 +
10 ifcl x + 1 + if x 1 x 1 +
11 9 10 mpan2 x + if x 1 x 1 +
12 eldifsn w 0 w w 0
13 simprl x + w w 0 w
14 13 subid1d x + w w 0 w 0 = w
15 14 fveq2d x + w w 0 w 0 = w
16 15 breq1d x + w w 0 w 0 < if x 1 x 1 w < if x 1 x 1
17 13 abscld x + w w 0 w
18 rpre x + x
19 18 adantr x + w w 0 x
20 1red x + w w 0 1
21 ltmin w x 1 w < if x 1 x 1 w < x w < 1
22 17 19 20 21 syl3anc x + w w 0 w < if x 1 x 1 w < x w < 1
23 16 22 bitrd x + w w 0 w 0 < if x 1 x 1 w < x w < 1
24 simplr x + w w 0 w < x w < 1 w w 0
25 24 12 sylibr x + w w 0 w < x w < 1 w 0
26 fveq2 z = w e z = e w
27 26 oveq1d z = w e z 1 = e w 1
28 id z = w z = w
29 27 28 oveq12d z = w e z 1 z = e w 1 w
30 eqid z 0 e z 1 z = z 0 e z 1 z
31 ovex e w 1 w V
32 29 30 31 fvmpt w 0 z 0 e z 1 z w = e w 1 w
33 25 32 syl x + w w 0 w < x w < 1 z 0 e z 1 z w = e w 1 w
34 33 fvoveq1d x + w w 0 w < x w < 1 z 0 e z 1 z w 1 = e w 1 w 1
35 simplrl x + w w 0 w < x w < 1 w
36 efcl w e w
37 35 36 syl x + w w 0 w < x w < 1 e w
38 1cnd x + w w 0 w < x w < 1 1
39 37 38 subcld x + w w 0 w < x w < 1 e w 1
40 simplrr x + w w 0 w < x w < 1 w 0
41 39 35 40 divcld x + w w 0 w < x w < 1 e w 1 w
42 41 38 subcld x + w w 0 w < x w < 1 e w 1 w 1
43 42 abscld x + w w 0 w < x w < 1 e w 1 w 1
44 35 abscld x + w w 0 w < x w < 1 w
45 simpll x + w w 0 w < x w < 1 x +
46 45 rpred x + w w 0 w < x w < 1 x
47 abscl w w
48 47 ad2antrr w w 0 w < 1 w
49 36 ad2antrr w w 0 w < 1 e w
50 subcl e w 1 e w 1
51 49 8 50 sylancl w w 0 w < 1 e w 1
52 simpll w w 0 w < 1 w
53 simplr w w 0 w < 1 w 0
54 51 52 53 divcld w w 0 w < 1 e w 1 w
55 1cnd w w 0 w < 1 1
56 54 55 subcld w w 0 w < 1 e w 1 w 1
57 56 abscld w w 0 w < 1 e w 1 w 1
58 48 57 remulcld w w 0 w < 1 w e w 1 w 1
59 48 resqcld w w 0 w < 1 w 2
60 3re 3
61 4nn 4
62 nndivre 3 4 3 4
63 60 61 62 mp2an 3 4
64 remulcl w 2 3 4 w 2 3 4
65 59 63 64 sylancl w w 0 w < 1 w 2 3 4
66 51 52 subcld w w 0 w < 1 e w - 1 - w
67 66 52 53 divcan2d w w 0 w < 1 w e w - 1 - w w = e w - 1 - w
68 51 52 52 53 divsubdird w w 0 w < 1 e w - 1 - w w = e w 1 w w w
69 52 53 dividd w w 0 w < 1 w w = 1
70 69 oveq2d w w 0 w < 1 e w 1 w w w = e w 1 w 1
71 68 70 eqtrd w w 0 w < 1 e w - 1 - w w = e w 1 w 1
72 71 oveq2d w w 0 w < 1 w e w - 1 - w w = w e w 1 w 1
73 49 55 52 subsub4d w w 0 w < 1 e w - 1 - w = e w 1 + w
74 addcl 1 w 1 + w
75 8 52 74 sylancr w w 0 w < 1 1 + w
76 2nn0 2 0
77 eqid n 0 w n n ! = n 0 w n n !
78 77 eftlcl w 2 0 k 2 n 0 w n n ! k
79 52 76 78 sylancl w w 0 w < 1 k 2 n 0 w n n ! k
80 df-2 2 = 1 + 1
81 1nn0 1 0
82 1e0p1 1 = 0 + 1
83 0nn0 0 0
84 0cnd w w 0 w < 1 0
85 77 efval2 w e w = k 0 n 0 w n n ! k
86 85 ad2antrr w w 0 w < 1 e w = k 0 n 0 w n n ! k
87 nn0uz 0 = 0
88 87 sumeq1i k 0 n 0 w n n ! k = k 0 n 0 w n n ! k
89 86 88 eqtr2di w w 0 w < 1 k 0 n 0 w n n ! k = e w
90 89 oveq2d w w 0 w < 1 0 + k 0 n 0 w n n ! k = 0 + e w
91 49 addid2d w w 0 w < 1 0 + e w = e w
92 90 91 eqtr2d w w 0 w < 1 e w = 0 + k 0 n 0 w n n ! k
93 eft0val w w 0 0 ! = 1
94 93 ad2antrr w w 0 w < 1 w 0 0 ! = 1
95 94 oveq2d w w 0 w < 1 0 + w 0 0 ! = 0 + 1
96 95 82 eqtr4di w w 0 w < 1 0 + w 0 0 ! = 1
97 77 82 83 52 84 92 96 efsep w w 0 w < 1 e w = 1 + k 1 n 0 w n n ! k
98 exp1 w w 1 = w
99 98 ad2antrr w w 0 w < 1 w 1 = w
100 99 oveq1d w w 0 w < 1 w 1 1 ! = w 1 !
101 fac1 1 ! = 1
102 101 oveq2i w 1 ! = w 1
103 100 102 eqtrdi w w 0 w < 1 w 1 1 ! = w 1
104 div1 w w 1 = w
105 104 ad2antrr w w 0 w < 1 w 1 = w
106 103 105 eqtrd w w 0 w < 1 w 1 1 ! = w
107 106 oveq2d w w 0 w < 1 1 + w 1 1 ! = 1 + w
108 77 80 81 52 55 97 107 efsep w w 0 w < 1 e w = 1 + w + k 2 n 0 w n n ! k
109 75 79 108 mvrladdd w w 0 w < 1 e w 1 + w = k 2 n 0 w n n ! k
110 73 109 eqtrd w w 0 w < 1 e w - 1 - w = k 2 n 0 w n n ! k
111 67 72 110 3eqtr3d w w 0 w < 1 w e w 1 w 1 = k 2 n 0 w n n ! k
112 111 fveq2d w w 0 w < 1 w e w 1 w 1 = k 2 n 0 w n n ! k
113 52 56 absmuld w w 0 w < 1 w e w 1 w 1 = w e w 1 w 1
114 112 113 eqtr3d w w 0 w < 1 k 2 n 0 w n n ! k = w e w 1 w 1
115 eqid n 0 w n n ! = n 0 w n n !
116 eqid n 0 w 2 2 ! 1 2 + 1 n = n 0 w 2 2 ! 1 2 + 1 n
117 2nn 2
118 117 a1i w w 0 w < 1 2
119 1red w w 0 w < 1 1
120 simpr w w 0 w < 1 w < 1
121 48 119 120 ltled w w 0 w < 1 w 1
122 77 115 116 118 52 121 eftlub w w 0 w < 1 k 2 n 0 w n n ! k w 2 2 + 1 2 ! 2
123 114 122 eqbrtrrd w w 0 w < 1 w e w 1 w 1 w 2 2 + 1 2 ! 2
124 df-3 3 = 2 + 1
125 fac2 2 ! = 2
126 125 oveq1i 2 ! 2 = 2 2
127 2t2e4 2 2 = 4
128 126 127 eqtr2i 4 = 2 ! 2
129 124 128 oveq12i 3 4 = 2 + 1 2 ! 2
130 129 oveq2i w 2 3 4 = w 2 2 + 1 2 ! 2
131 123 130 breqtrrdi w w 0 w < 1 w e w 1 w 1 w 2 3 4
132 63 a1i w w 0 w < 1 3 4
133 48 sqge0d w w 0 w < 1 0 w 2
134 1re 1
135 3lt4 3 < 4
136 4cn 4
137 136 mulid1i 4 1 = 4
138 135 137 breqtrri 3 < 4 1
139 4re 4
140 4pos 0 < 4
141 139 140 pm3.2i 4 0 < 4
142 ltdivmul 3 1 4 0 < 4 3 4 < 1 3 < 4 1
143 60 134 141 142 mp3an 3 4 < 1 3 < 4 1
144 138 143 mpbir 3 4 < 1
145 63 134 144 ltleii 3 4 1
146 145 a1i w w 0 w < 1 3 4 1
147 132 119 59 133 146 lemul2ad w w 0 w < 1 w 2 3 4 w 2 1
148 48 recnd w w 0 w < 1 w
149 148 sqcld w w 0 w < 1 w 2
150 149 mulid1d w w 0 w < 1 w 2 1 = w 2
151 147 150 breqtrd w w 0 w < 1 w 2 3 4 w 2
152 58 65 59 131 151 letrd w w 0 w < 1 w e w 1 w 1 w 2
153 148 sqvald w w 0 w < 1 w 2 = w w
154 152 153 breqtrd w w 0 w < 1 w e w 1 w 1 w w
155 absgt0 w w 0 0 < w
156 155 ad2antrr w w 0 w < 1 w 0 0 < w
157 53 156 mpbid w w 0 w < 1 0 < w
158 48 157 elrpd w w 0 w < 1 w +
159 57 48 158 lemul2d w w 0 w < 1 e w 1 w 1 w w e w 1 w 1 w w
160 154 159 mpbird w w 0 w < 1 e w 1 w 1 w
161 160 ad2ant2l x + w w 0 w < x w < 1 e w 1 w 1 w
162 simprl x + w w 0 w < x w < 1 w < x
163 43 44 46 161 162 lelttrd x + w w 0 w < x w < 1 e w 1 w 1 < x
164 34 163 eqbrtrd x + w w 0 w < x w < 1 z 0 e z 1 z w 1 < x
165 164 ex x + w w 0 w < x w < 1 z 0 e z 1 z w 1 < x
166 23 165 sylbid x + w w 0 w 0 < if x 1 x 1 z 0 e z 1 z w 1 < x
167 166 adantld x + w w 0 w 0 w 0 < if x 1 x 1 z 0 e z 1 z w 1 < x
168 12 167 sylan2b x + w 0 w 0 w 0 < if x 1 x 1 z 0 e z 1 z w 1 < x
169 168 ralrimiva x + w 0 w 0 w 0 < if x 1 x 1 z 0 e z 1 z w 1 < x
170 brimralrspcev if x 1 x 1 + w 0 w 0 w 0 < if x 1 x 1 z 0 e z 1 z w 1 < x y + w 0 w 0 w 0 < y z 0 e z 1 z w 1 < x
171 11 169 170 syl2anc x + y + w 0 w 0 w 0 < y z 0 e z 1 z w 1 < x
172 171 rgen x + y + w 0 w 0 w 0 < y z 0 e z 1 z w 1 < x
173 eldifi z 0 z
174 efcl z e z
175 173 174 syl z 0 e z
176 1cnd z 0 1
177 175 176 subcld z 0 e z 1
178 eldifsni z 0 z 0
179 177 173 178 divcld z 0 e z 1 z
180 30 179 fmpti z 0 e z 1 z : 0
181 180 a1i z 0 e z 1 z : 0
182 difssd 0
183 0cnd 0
184 181 182 183 ellimc3 1 z 0 e z 1 z lim 0 1 x + y + w 0 w 0 w 0 < y z 0 e z 1 z w 1 < x
185 184 mptru 1 z 0 e z 1 z lim 0 1 x + y + w 0 w 0 w 0 < y z 0 e z 1 z w 1 < x
186 8 172 185 mpbir2an 1 z 0 e z 1 z lim 0
187 2 cnfldtopon TopOpen fld TopOn
188 187 toponrestid TopOpen fld = TopOpen fld 𝑡
189 173 subid1d z 0 z 0 = z
190 189 oveq2d z 0 e z e 0 z 0 = e z e 0 z
191 ef0 e 0 = 1
192 191 oveq2i e z e 0 = e z 1
193 192 oveq1i e z e 0 z = e z 1 z
194 190 193 eqtr2di z 0 e z 1 z = e z e 0 z 0
195 194 mpteq2ia z 0 e z 1 z = z 0 e z e 0 z 0
196 ssidd
197 eff exp :
198 197 a1i exp :
199 188 2 195 196 198 196 eldv 0 exp 1 0 int TopOpen fld 1 z 0 e z 1 z lim 0
200 199 mptru 0 exp 1 0 int TopOpen fld 1 z 0 e z 1 z lim 0
201 7 186 200 mpbir2an 0 exp 1