Metamath Proof Explorer


Theorem dveflem

Description: Derivative of the exponential function at 0. The key step in the proof is eftlub , to show that abs ( exp ( x ) - 1 - x ) <_ abs ( x ) ^ 2 x. ( 3 / 4 ) . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)

Ref Expression
Assertion dveflem 0exp1

Proof

Step Hyp Ref Expression
1 0cn 0
2 eqid TopOpenfld=TopOpenfld
3 2 cnfldtop TopOpenfldTop
4 unicntop =TopOpenfld
5 4 ntrtop TopOpenfldTopintTopOpenfld=
6 3 5 ax-mp intTopOpenfld=
7 1 6 eleqtrri 0intTopOpenfld
8 ax-1cn 1
9 1rp 1+
10 ifcl x+1+ifx1x1+
11 9 10 mpan2 x+ifx1x1+
12 eldifsn w0ww0
13 simprl x+ww0w
14 13 subid1d x+ww0w0=w
15 14 fveq2d x+ww0w0=w
16 15 breq1d x+ww0w0<ifx1x1w<ifx1x1
17 13 abscld x+ww0w
18 rpre x+x
19 18 adantr x+ww0x
20 1red x+ww01
21 ltmin wx1w<ifx1x1w<xw<1
22 17 19 20 21 syl3anc x+ww0w<ifx1x1w<xw<1
23 16 22 bitrd x+ww0w0<ifx1x1w<xw<1
24 simplr x+ww0w<xw<1ww0
25 24 12 sylibr x+ww0w<xw<1w0
26 fveq2 z=wez=ew
27 26 oveq1d z=wez1=ew1
28 id z=wz=w
29 27 28 oveq12d z=wez1z=ew1w
30 eqid z0ez1z=z0ez1z
31 ovex ew1wV
32 29 30 31 fvmpt w0z0ez1zw=ew1w
33 25 32 syl x+ww0w<xw<1z0ez1zw=ew1w
34 33 fvoveq1d x+ww0w<xw<1z0ez1zw1=ew1w1
35 simplrl x+ww0w<xw<1w
36 efcl wew
37 35 36 syl x+ww0w<xw<1ew
38 1cnd x+ww0w<xw<11
39 37 38 subcld x+ww0w<xw<1ew1
40 simplrr x+ww0w<xw<1w0
41 39 35 40 divcld x+ww0w<xw<1ew1w
42 41 38 subcld x+ww0w<xw<1ew1w1
43 42 abscld x+ww0w<xw<1ew1w1
44 35 abscld x+ww0w<xw<1w
45 simpll x+ww0w<xw<1x+
46 45 rpred x+ww0w<xw<1x
47 abscl ww
48 47 ad2antrr ww0w<1w
49 36 ad2antrr ww0w<1ew
50 subcl ew1ew1
51 49 8 50 sylancl ww0w<1ew1
52 simpll ww0w<1w
53 simplr ww0w<1w0
54 51 52 53 divcld ww0w<1ew1w
55 1cnd ww0w<11
56 54 55 subcld ww0w<1ew1w1
57 56 abscld ww0w<1ew1w1
58 48 57 remulcld ww0w<1wew1w1
59 48 resqcld ww0w<1w2
60 3re 3
61 4nn 4
62 nndivre 3434
63 60 61 62 mp2an 34
64 remulcl w234w234
65 59 63 64 sylancl ww0w<1w234
66 51 52 subcld ww0w<1ew-1-w
67 66 52 53 divcan2d ww0w<1wew-1-ww=ew-1-w
68 51 52 52 53 divsubdird ww0w<1ew-1-ww=ew1www
69 52 53 dividd ww0w<1ww=1
70 69 oveq2d ww0w<1ew1www=ew1w1
71 68 70 eqtrd ww0w<1ew-1-ww=ew1w1
72 71 oveq2d ww0w<1wew-1-ww=wew1w1
73 49 55 52 subsub4d ww0w<1ew-1-w=ew1+w
74 addcl 1w1+w
75 8 52 74 sylancr ww0w<11+w
76 2nn0 20
77 eqid n0wnn!=n0wnn!
78 77 eftlcl w20k2n0wnn!k
79 52 76 78 sylancl ww0w<1k2n0wnn!k
80 df-2 2=1+1
81 1nn0 10
82 1e0p1 1=0+1
83 0nn0 00
84 0cnd ww0w<10
85 77 efval2 wew=k0n0wnn!k
86 85 ad2antrr ww0w<1ew=k0n0wnn!k
87 nn0uz 0=0
88 87 sumeq1i k0n0wnn!k=k0n0wnn!k
89 86 88 eqtr2di ww0w<1k0n0wnn!k=ew
90 89 oveq2d ww0w<10+k0n0wnn!k=0+ew
91 49 addlidd ww0w<10+ew=ew
92 90 91 eqtr2d ww0w<1ew=0+k0n0wnn!k
93 eft0val ww00!=1
94 93 ad2antrr ww0w<1w00!=1
95 94 oveq2d ww0w<10+w00!=0+1
96 95 82 eqtr4di ww0w<10+w00!=1
97 77 82 83 52 84 92 96 efsep ww0w<1ew=1+k1n0wnn!k
98 exp1 ww1=w
99 98 ad2antrr ww0w<1w1=w
100 99 oveq1d ww0w<1w11!=w1!
101 fac1 1!=1
102 101 oveq2i w1!=w1
103 100 102 eqtrdi ww0w<1w11!=w1
104 div1 ww1=w
105 104 ad2antrr ww0w<1w1=w
106 103 105 eqtrd ww0w<1w11!=w
107 106 oveq2d ww0w<11+w11!=1+w
108 77 80 81 52 55 97 107 efsep ww0w<1ew=1+w+k2n0wnn!k
109 75 79 108 mvrladdd ww0w<1ew1+w=k2n0wnn!k
110 73 109 eqtrd ww0w<1ew-1-w=k2n0wnn!k
111 67 72 110 3eqtr3d ww0w<1wew1w1=k2n0wnn!k
112 111 fveq2d ww0w<1wew1w1=k2n0wnn!k
113 52 56 absmuld ww0w<1wew1w1=wew1w1
114 112 113 eqtr3d ww0w<1k2n0wnn!k=wew1w1
115 eqid n0wnn!=n0wnn!
116 eqid n0w22!12+1n=n0w22!12+1n
117 2nn 2
118 117 a1i ww0w<12
119 1red ww0w<11
120 simpr ww0w<1w<1
121 48 119 120 ltled ww0w<1w1
122 77 115 116 118 52 121 eftlub ww0w<1k2n0wnn!kw22+12!2
123 114 122 eqbrtrrd ww0w<1wew1w1w22+12!2
124 df-3 3=2+1
125 fac2 2!=2
126 125 oveq1i 2!2=22
127 2t2e4 22=4
128 126 127 eqtr2i 4=2!2
129 124 128 oveq12i 34=2+12!2
130 129 oveq2i w234=w22+12!2
131 123 130 breqtrrdi ww0w<1wew1w1w234
132 63 a1i ww0w<134
133 48 sqge0d ww0w<10w2
134 1re 1
135 3lt4 3<4
136 4cn 4
137 136 mulridi 41=4
138 135 137 breqtrri 3<41
139 4re 4
140 4pos 0<4
141 139 140 pm3.2i 40<4
142 ltdivmul 3140<434<13<41
143 60 134 141 142 mp3an 34<13<41
144 138 143 mpbir 34<1
145 63 134 144 ltleii 341
146 145 a1i ww0w<1341
147 132 119 59 133 146 lemul2ad ww0w<1w234w21
148 48 recnd ww0w<1w
149 148 sqcld ww0w<1w2
150 149 mulridd ww0w<1w21=w2
151 147 150 breqtrd ww0w<1w234w2
152 58 65 59 131 151 letrd ww0w<1wew1w1w2
153 148 sqvald ww0w<1w2=ww
154 152 153 breqtrd ww0w<1wew1w1ww
155 absgt0 ww00<w
156 155 ad2antrr ww0w<1w00<w
157 53 156 mpbid ww0w<10<w
158 48 157 elrpd ww0w<1w+
159 57 48 158 lemul2d ww0w<1ew1w1wwew1w1ww
160 154 159 mpbird ww0w<1ew1w1w
161 160 ad2ant2l x+ww0w<xw<1ew1w1w
162 simprl x+ww0w<xw<1w<x
163 43 44 46 161 162 lelttrd x+ww0w<xw<1ew1w1<x
164 34 163 eqbrtrd x+ww0w<xw<1z0ez1zw1<x
165 164 ex x+ww0w<xw<1z0ez1zw1<x
166 23 165 sylbid x+ww0w0<ifx1x1z0ez1zw1<x
167 166 adantld x+ww0w0w0<ifx1x1z0ez1zw1<x
168 12 167 sylan2b x+w0w0w0<ifx1x1z0ez1zw1<x
169 168 ralrimiva x+w0w0w0<ifx1x1z0ez1zw1<x
170 brimralrspcev ifx1x1+w0w0w0<ifx1x1z0ez1zw1<xy+w0w0w0<yz0ez1zw1<x
171 11 169 170 syl2anc x+y+w0w0w0<yz0ez1zw1<x
172 171 rgen x+y+w0w0w0<yz0ez1zw1<x
173 eldifi z0z
174 efcl zez
175 173 174 syl z0ez
176 1cnd z01
177 175 176 subcld z0ez1
178 eldifsni z0z0
179 177 173 178 divcld z0ez1z
180 30 179 fmpti z0ez1z:0
181 180 a1i z0ez1z:0
182 difssd 0
183 0cnd 0
184 181 182 183 ellimc3 1z0ez1zlim01x+y+w0w0w0<yz0ez1zw1<x
185 184 mptru 1z0ez1zlim01x+y+w0w0w0<yz0ez1zw1<x
186 8 172 185 mpbir2an 1z0ez1zlim0
187 2 cnfldtopon TopOpenfldTopOn
188 187 toponrestid TopOpenfld=TopOpenfld𝑡
189 173 subid1d z0z0=z
190 189 oveq2d z0eze0z0=eze0z
191 ef0 e0=1
192 191 oveq2i eze0=ez1
193 192 oveq1i eze0z=ez1z
194 190 193 eqtr2di z0ez1z=eze0z0
195 194 mpteq2ia z0ez1z=z0eze0z0
196 ssidd
197 eff exp:
198 197 a1i exp:
199 188 2 195 196 198 196 eldv 0exp10intTopOpenfld1z0ez1zlim0
200 199 mptru 0exp10intTopOpenfld1z0ez1zlim0
201 7 186 200 mpbir2an 0exp1