Metamath Proof Explorer


Theorem efif1olem4

Description: The exponential function of an imaginary number maps any interval of length 2 _pi one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008) (Proof shortened by Mario Carneiro, 13-May-2014)

Ref Expression
Hypotheses efif1o.1 F=wDeiw
efif1o.2 C=abs-11
efif1olem4.3 φD
efif1olem4.4 φxDyDxy<2π
efif1olem4.5 φzyDzy2π
efif1olem4.6 S=sinπ2π2
Assertion efif1olem4 φF:D1-1 ontoC

Proof

Step Hyp Ref Expression
1 efif1o.1 F=wDeiw
2 efif1o.2 C=abs-11
3 efif1olem4.3 φD
4 efif1olem4.4 φxDyDxy<2π
5 efif1olem4.5 φzyDzy2π
6 efif1olem4.6 S=sinπ2π2
7 3 sselda φwDw
8 ax-icn i
9 recn ww
10 mulcl iwiw
11 8 9 10 sylancr wiw
12 efcl iweiw
13 11 12 syl weiw
14 absefi weiw=1
15 absf abs:
16 ffn abs:absFn
17 15 16 ax-mp absFn
18 fniniseg absFneiwabs-11eiweiw=1
19 17 18 ax-mp eiwabs-11eiweiw=1
20 13 14 19 sylanbrc weiwabs-11
21 20 2 eleqtrrdi weiwC
22 7 21 syl φwDeiwC
23 22 1 fmptd φF:DC
24 3 ad2antrr φxDyDFx=FyD
25 simplrl φxDyDFx=FyxD
26 24 25 sseldd φxDyDFx=Fyx
27 26 recnd φxDyDFx=Fyx
28 simplrr φxDyDFx=FyyD
29 24 28 sseldd φxDyDFx=Fyy
30 29 recnd φxDyDFx=Fyy
31 27 30 subcld φxDyDFx=Fyxy
32 2re 2
33 pire π
34 32 33 remulcli 2π
35 34 recni 2π
36 2pos 0<2
37 pipos 0<π
38 32 33 36 37 mulgt0ii 0<2π
39 34 38 gt0ne0ii 2π0
40 divcl xy2π2π0xy2π
41 35 39 40 mp3an23 xyxy2π
42 31 41 syl φxDyDFx=Fyxy2π
43 absdiv xy2π2π0xy2π=xy2π
44 35 39 43 mp3an23 xyxy2π=xy2π
45 31 44 syl φxDyDFx=Fyxy2π=xy2π
46 0re 0
47 46 34 38 ltleii 02π
48 absid 2π02π2π=2π
49 34 47 48 mp2an 2π=2π
50 49 oveq2i xy2π=xy2π
51 45 50 eqtrdi φxDyDFx=Fyxy2π=xy2π
52 4 adantr φxDyDFx=Fyxy<2π
53 35 mulridi 2π1=2π
54 52 53 breqtrrdi φxDyDFx=Fyxy<2π1
55 31 abscld φxDyDFx=Fyxy
56 1re 1
57 34 38 pm3.2i 2π0<2π
58 ltdivmul xy12π0<2πxy2π<1xy<2π1
59 56 57 58 mp3an23 xyxy2π<1xy<2π1
60 55 59 syl φxDyDFx=Fyxy2π<1xy<2π1
61 54 60 mpbird φxDyDFx=Fyxy2π<1
62 51 61 eqbrtrd φxDyDFx=Fyxy2π<1
63 35 39 pm3.2i 2π2π0
64 ine0 i0
65 8 64 pm3.2i ii0
66 divcan5 xy2π2π0ii0ixyi2π=xy2π
67 63 65 66 mp3an23 xyixyi2π=xy2π
68 31 67 syl φxDyDFx=Fyixyi2π=xy2π
69 8 a1i φxDyDFx=Fyi
70 69 27 30 subdid φxDyDFx=Fyixy=ixiy
71 70 fveq2d φxDyDFx=Fyeixy=eixiy
72 mulcl ixix
73 8 27 72 sylancr φxDyDFx=Fyix
74 mulcl iyiy
75 8 30 74 sylancr φxDyDFx=Fyiy
76 efsub ixiyeixiy=eixeiy
77 73 75 76 syl2anc φxDyDFx=Fyeixiy=eixeiy
78 efcl iyeiy
79 75 78 syl φxDyDFx=Fyeiy
80 efne0 iyeiy0
81 75 80 syl φxDyDFx=Fyeiy0
82 simpr φxDyDFx=FyFx=Fy
83 oveq2 w=xiw=ix
84 83 fveq2d w=xeiw=eix
85 fvex eixV
86 84 1 85 fvmpt xDFx=eix
87 25 86 syl φxDyDFx=FyFx=eix
88 oveq2 w=yiw=iy
89 88 fveq2d w=yeiw=eiy
90 fvex eiyV
91 89 1 90 fvmpt yDFy=eiy
92 28 91 syl φxDyDFx=FyFy=eiy
93 82 87 92 3eqtr3d φxDyDFx=Fyeix=eiy
94 79 81 93 diveq1bd φxDyDFx=Fyeixeiy=1
95 71 77 94 3eqtrd φxDyDFx=Fyeixy=1
96 mulcl ixyixy
97 8 31 96 sylancr φxDyDFx=Fyixy
98 efeq1 ixyeixy=1ixyi2π
99 97 98 syl φxDyDFx=Fyeixy=1ixyi2π
100 95 99 mpbid φxDyDFx=Fyixyi2π
101 68 100 eqeltrrd φxDyDFx=Fyxy2π
102 nn0abscl xy2πxy2π0
103 101 102 syl φxDyDFx=Fyxy2π0
104 nn0lt10b xy2π0xy2π<1xy2π=0
105 103 104 syl φxDyDFx=Fyxy2π<1xy2π=0
106 62 105 mpbid φxDyDFx=Fyxy2π=0
107 42 106 abs00d φxDyDFx=Fyxy2π=0
108 diveq0 xy2π2π0xy2π=0xy=0
109 35 39 108 mp3an23 xyxy2π=0xy=0
110 31 109 syl φxDyDFx=Fyxy2π=0xy=0
111 107 110 mpbid φxDyDFx=Fyxy=0
112 27 30 111 subeq0d φxDyDFx=Fyx=y
113 112 ex φxDyDFx=Fyx=y
114 113 ralrimivva φxDyDFx=Fyx=y
115 dff13 F:D1-1CF:DCxDyDFx=Fyx=y
116 23 114 115 sylanbrc φF:D1-1C
117 oveq1 z=2S-1xzy=2S-1xy
118 117 oveq1d z=2S-1xzy2π=2S-1xy2π
119 118 eleq1d z=2S-1xzy2π2S-1xy2π
120 119 rexbidv z=2S-1xyDzy2πyD2S-1xy2π
121 5 ralrimiva φzyDzy2π
122 121 adantr φxCzyDzy2π
123 neghalfpire π2
124 halfpire π2
125 iccssre π2π2π2π2
126 123 124 125 mp2an π2π2
127 1 2 efif1olem3 φxCx11
128 resinf1o sinπ2π2:π2π21-1 onto11
129 f1oeq1 S=sinπ2π2S:π2π21-1 onto11sinπ2π2:π2π21-1 onto11
130 6 129 ax-mp S:π2π21-1 onto11sinπ2π2:π2π21-1 onto11
131 128 130 mpbir S:π2π21-1 onto11
132 f1ocnv S:π2π21-1 onto11S-1:111-1 ontoπ2π2
133 f1of S-1:111-1 ontoπ2π2S-1:11π2π2
134 131 132 133 mp2b S-1:11π2π2
135 134 ffvelcdmi x11S-1xπ2π2
136 127 135 syl φxCS-1xπ2π2
137 126 136 sselid φxCS-1x
138 remulcl 2S-1x2S-1x
139 32 137 138 sylancr φxC2S-1x
140 120 122 139 rspcdva φxCyD2S-1xy2π
141 oveq1 ei2S-1xy=1ei2S-1xyeiy=1eiy
142 8 a1i φxCyDi
143 139 adantr φxCyD2S-1x
144 143 recnd φxCyD2S-1x
145 3 ad2antrr φxCyDD
146 simpr φxCyDyD
147 145 146 sseldd φxCyDy
148 147 recnd φxCyDy
149 142 144 148 subdid φxCyDi2S-1xy=i2S-1xiy
150 149 oveq1d φxCyDi2S-1xy+iy=i2S-1x-iy+iy
151 mulcl i2S-1xi2S-1x
152 8 144 151 sylancr φxCyDi2S-1x
153 8 148 74 sylancr φxCyDiy
154 152 153 npcand φxCyDi2S-1x-iy+iy=i2S-1x
155 150 154 eqtrd φxCyDi2S-1xy+iy=i2S-1x
156 155 fveq2d φxCyDei2S-1xy+iy=ei2S-1x
157 144 148 subcld φxCyD2S-1xy
158 mulcl i2S-1xyi2S-1xy
159 8 157 158 sylancr φxCyDi2S-1xy
160 efadd i2S-1xyiyei2S-1xy+iy=ei2S-1xyeiy
161 159 153 160 syl2anc φxCyDei2S-1xy+iy=ei2S-1xyeiy
162 2cn 2
163 137 recnd φxCS-1x
164 mul12 i2S-1xi2S-1x=2iS-1x
165 8 162 163 164 mp3an12i φxCi2S-1x=2iS-1x
166 165 fveq2d φxCei2S-1x=e2iS-1x
167 mulcl iS-1xiS-1x
168 8 163 167 sylancr φxCiS-1x
169 2z 2
170 efexp iS-1x2e2iS-1x=eiS-1x2
171 168 169 170 sylancl φxCe2iS-1x=eiS-1x2
172 166 171 eqtrd φxCei2S-1x=eiS-1x2
173 137 recoscld φxCcosS-1x
174 simpr φxCxC
175 174 2 eleqtrdi φxCxabs-11
176 fniniseg absFnxabs-11xx=1
177 17 176 ax-mp xabs-11xx=1
178 175 177 sylib φxCxx=1
179 178 simpld φxCx
180 179 sqrtcld φxCx
181 180 recld φxCx
182 cosq14ge0 S-1xπ2π20cosS-1x
183 136 182 syl φxC0cosS-1x
184 179 sqrtrege0d φxC0x
185 sincossq S-1xsinS-1x2+cosS-1x2=1
186 163 185 syl φxCsinS-1x2+cosS-1x2=1
187 179 sqsqrtd φxCx2=x
188 187 fveq2d φxCx2=x
189 2nn0 20
190 absexp x20x2=x2
191 180 189 190 sylancl φxCx2=x2
192 178 simprd φxCx=1
193 188 191 192 3eqtr3d φxCx2=1
194 180 absvalsq2d φxCx2=x2+x2
195 186 193 194 3eqtr2d φxCsinS-1x2+cosS-1x2=x2+x2
196 6 fveq1i SS-1x=sinπ2π2S-1x
197 136 fvresd φxCsinπ2π2S-1x=sinS-1x
198 196 197 eqtrid φxCSS-1x=sinS-1x
199 f1ocnvfv2 S:π2π21-1 onto11x11SS-1x=x
200 131 127 199 sylancr φxCSS-1x=x
201 198 200 eqtr3d φxCsinS-1x=x
202 201 oveq1d φxCsinS-1x2=x2
203 195 202 oveq12d φxCsinS-1x2+cosS-1x2-sinS-1x2=x2+x2-x2
204 163 sincld φxCsinS-1x
205 204 sqcld φxCsinS-1x2
206 163 coscld φxCcosS-1x
207 206 sqcld φxCcosS-1x2
208 205 207 pncan2d φxCsinS-1x2+cosS-1x2-sinS-1x2=cosS-1x2
209 181 recnd φxCx
210 209 sqcld φxCx2
211 202 205 eqeltrrd φxCx2
212 210 211 pncand φxCx2+x2-x2=x2
213 203 208 212 3eqtr3d φxCcosS-1x2=x2
214 173 181 183 184 213 sq11d φxCcosS-1x=x
215 201 oveq2d φxCisinS-1x=ix
216 214 215 oveq12d φxCcosS-1x+isinS-1x=x+ix
217 efival S-1xeiS-1x=cosS-1x+isinS-1x
218 163 217 syl φxCeiS-1x=cosS-1x+isinS-1x
219 180 replimd φxCx=x+ix
220 216 218 219 3eqtr4d φxCeiS-1x=x
221 220 oveq1d φxCeiS-1x2=x2
222 172 221 187 3eqtrd φxCei2S-1x=x
223 222 adantr φxCyDei2S-1x=x
224 156 161 223 3eqtr3d φxCyDei2S-1xyeiy=x
225 153 78 syl φxCyDeiy
226 225 mullidd φxCyD1eiy=eiy
227 224 226 eqeq12d φxCyDei2S-1xyeiy=1eiyx=eiy
228 141 227 imbitrid φxCyDei2S-1xy=1x=eiy
229 efeq1 i2S-1xyei2S-1xy=1i2S-1xyi2π
230 159 229 syl φxCyDei2S-1xy=1i2S-1xyi2π
231 divcan5 2S-1xy2π2π0ii0i2S-1xyi2π=2S-1xy2π
232 63 65 231 mp3an23 2S-1xyi2S-1xyi2π=2S-1xy2π
233 157 232 syl φxCyDi2S-1xyi2π=2S-1xy2π
234 233 eleq1d φxCyDi2S-1xyi2π2S-1xy2π
235 230 234 bitr2d φxCyD2S-1xy2πei2S-1xy=1
236 91 adantl φxCyDFy=eiy
237 236 eqeq2d φxCyDx=Fyx=eiy
238 228 235 237 3imtr4d φxCyD2S-1xy2πx=Fy
239 238 reximdva φxCyD2S-1xy2πyDx=Fy
240 140 239 mpd φxCyDx=Fy
241 240 ralrimiva φxCyDx=Fy
242 dffo3 F:DontoCF:DCxCyDx=Fy
243 23 241 242 sylanbrc φF:DontoC
244 df-f1o F:D1-1 ontoCF:D1-1CF:DontoC
245 116 243 244 sylanbrc φF:D1-1 ontoC