Metamath Proof Explorer


Theorem fourierdlem92

Description: The integral of a piecewise continuous periodic function F is unchanged if the domain is shifted by its period T . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem92.a φA
fourierdlem92.b φB
fourierdlem92.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem92.m φM
fourierdlem92.t φT
fourierdlem92.q φQPM
fourierdlem92.fper φxABFx+T=Fx
fourierdlem92.s S=i0MQi+T
fourierdlem92.h H=mp0m|p0=A+Tpm=B+Ti0..^mpi<pi+1
fourierdlem92.f φF:
fourierdlem92.cncf φi0..^MFQiQi+1:QiQi+1cn
fourierdlem92.r φi0..^MRFQiQi+1limQi
fourierdlem92.l φi0..^MLFQiQi+1limQi+1
Assertion fourierdlem92 φA+TB+TFxdx=ABFxdx

Proof

Step Hyp Ref Expression
1 fourierdlem92.a φA
2 fourierdlem92.b φB
3 fourierdlem92.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
4 fourierdlem92.m φM
5 fourierdlem92.t φT
6 fourierdlem92.q φQPM
7 fourierdlem92.fper φxABFx+T=Fx
8 fourierdlem92.s S=i0MQi+T
9 fourierdlem92.h H=mp0m|p0=A+Tpm=B+Ti0..^mpi<pi+1
10 fourierdlem92.f φF:
11 fourierdlem92.cncf φi0..^MFQiQi+1:QiQi+1cn
12 fourierdlem92.r φi0..^MRFQiQi+1limQi
13 fourierdlem92.l φi0..^MLFQiQi+1limQi+1
14 1 adantr φ0<TA
15 2 adantr φ0<TB
16 4 adantr φ0<TM
17 5 adantr φ0<TT
18 simpr φ0<T0<T
19 17 18 elrpd φ0<TT+
20 6 adantr φ0<TQPM
21 7 adantlr φ0<TxABFx+T=Fx
22 fveq2 j=iQj=Qi
23 22 oveq1d j=iQj+T=Qi+T
24 23 cbvmptv j0MQj+T=i0MQi+T
25 10 adantr φ0<TF:
26 11 adantlr φ0<Ti0..^MFQiQi+1:QiQi+1cn
27 12 adantlr φ0<Ti0..^MRFQiQi+1limQi
28 13 adantlr φ0<Ti0..^MLFQiQi+1limQi+1
29 eqeq1 y=xy=Qix=Qi
30 eqeq1 y=xy=Qi+1x=Qi+1
31 fveq2 y=xFy=Fx
32 30 31 ifbieq2d y=xify=Qi+1LFy=ifx=Qi+1LFx
33 29 32 ifbieq2d y=xify=QiRify=Qi+1LFy=ifx=QiRifx=Qi+1LFx
34 33 cbvmptv yQiQi+1ify=QiRify=Qi+1LFy=xQiQi+1ifx=QiRifx=Qi+1LFx
35 eqid xj0MQj+Tij0MQj+Ti+1yQiQi+1ify=QiRify=Qi+1LFyxT=xj0MQj+Tij0MQj+Ti+1yQiQi+1ify=QiRify=Qi+1LFyxT
36 14 15 3 16 19 20 21 24 25 26 27 28 34 35 fourierdlem81 φ0<TA+TB+TFxdx=ABFxdx
37 simpr φT=0T=0
38 37 oveq2d φT=0A+T=A+0
39 1 recnd φA
40 39 adantr φT=0A
41 40 addridd φT=0A+0=A
42 38 41 eqtrd φT=0A+T=A
43 37 oveq2d φT=0B+T=B+0
44 2 recnd φB
45 44 adantr φT=0B
46 45 addridd φT=0B+0=B
47 43 46 eqtrd φT=0B+T=B
48 42 47 oveq12d φT=0A+TB+T=AB
49 48 itgeq1d φT=0A+TB+TFxdx=ABFxdx
50 49 adantlr φ¬0<TT=0A+TB+TFxdx=ABFxdx
51 simpll φ¬0<T¬T=0φ
52 simpr φ¬0<T¬T=0¬T=0
53 simplr φ¬0<T¬T=0¬0<T
54 ioran ¬T=00<T¬T=0¬0<T
55 52 53 54 sylanbrc φ¬0<T¬T=0¬T=00<T
56 51 5 syl φ¬0<T¬T=0T
57 0red φ¬0<T¬T=00
58 56 57 lttrid φ¬0<T¬T=0T<0¬T=00<T
59 55 58 mpbird φ¬0<T¬T=0T<0
60 56 lt0neg1d φ¬0<T¬T=0T<00<T
61 59 60 mpbid φ¬0<T¬T=00<T
62 1 5 readdcld φA+T
63 62 recnd φA+T
64 5 recnd φT
65 63 64 negsubd φA+T+T=A+T-T
66 39 64 pncand φA+T-T=A
67 65 66 eqtrd φA+T+T=A
68 2 5 readdcld φB+T
69 68 recnd φB+T
70 69 64 negsubd φB+T+T=B+T-T
71 44 64 pncand φB+T-T=B
72 70 71 eqtrd φB+T+T=B
73 67 72 oveq12d φA+T+TB+T+T=AB
74 73 eqcomd φAB=A+T+TB+T+T
75 74 itgeq1d φABFxdx=A+T+TB+T+TFxdx
76 75 adantr φ0<TABFxdx=A+T+TB+T+TFxdx
77 1 adantr φ0<TA
78 5 adantr φ0<TT
79 77 78 readdcld φ0<TA+T
80 2 adantr φ0<TB
81 80 78 readdcld φ0<TB+T
82 eqid mp0m|p0=A+Tpm=B+Ti0..^mpi<pi+1=mp0m|p0=A+Tpm=B+Ti0..^mpi<pi+1
83 4 adantr φ0<TM
84 78 renegcld φ0<TT
85 simpr φ0<T0<T
86 84 85 elrpd φ0<TT+
87 3 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
88 4 87 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
89 6 88 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
90 89 simpld φQ0M
91 elmapi Q0MQ:0M
92 90 91 syl φQ:0M
93 92 ffvelcdmda φi0MQi
94 5 adantr φi0MT
95 93 94 readdcld φi0MQi+T
96 95 8 fmptd φS:0M
97 reex V
98 97 a1i φV
99 ovex 0MV
100 99 a1i φ0MV
101 98 100 elmapd φS0MS:0M
102 96 101 mpbird φS0M
103 8 a1i φS=i0MQi+T
104 fveq2 i=0Qi=Q0
105 104 oveq1d i=0Qi+T=Q0+T
106 105 adantl φi=0Qi+T=Q0+T
107 0zd φ0
108 4 nnzd φM
109 0le0 00
110 109 a1i φ00
111 nnnn0 MM0
112 111 nn0ge0d M0M
113 4 112 syl φ0M
114 107 108 107 110 113 elfzd φ00M
115 92 114 ffvelcdmd φQ0
116 115 5 readdcld φQ0+T
117 103 106 114 116 fvmptd φS0=Q0+T
118 simprll Q0MQ0=AQM=Bi0..^MQi<Qi+1Q0=A
119 89 118 syl φQ0=A
120 119 oveq1d φQ0+T=A+T
121 117 120 eqtrd φS0=A+T
122 fveq2 i=MQi=QM
123 122 oveq1d i=MQi+T=QM+T
124 123 adantl φi=MQi+T=QM+T
125 4 nnnn0d φM0
126 nn0uz 0=0
127 125 126 eleqtrdi φM0
128 eluzfz2 M0M0M
129 127 128 syl φM0M
130 92 129 ffvelcdmd φQM
131 130 5 readdcld φQM+T
132 103 124 129 131 fvmptd φSM=QM+T
133 simprlr Q0MQ0=AQM=Bi0..^MQi<Qi+1QM=B
134 89 133 syl φQM=B
135 134 oveq1d φQM+T=B+T
136 132 135 eqtrd φSM=B+T
137 121 136 jca φS0=A+TSM=B+T
138 92 adantr φi0..^MQ:0M
139 elfzofz i0..^Mi0M
140 139 adantl φi0..^Mi0M
141 138 140 ffvelcdmd φi0..^MQi
142 fzofzp1 i0..^Mi+10M
143 142 adantl φi0..^Mi+10M
144 138 143 ffvelcdmd φi0..^MQi+1
145 5 adantr φi0..^MT
146 89 simprrd φi0..^MQi<Qi+1
147 146 r19.21bi φi0..^MQi<Qi+1
148 141 144 145 147 ltadd1dd φi0..^MQi+T<Qi+1+T
149 141 145 readdcld φi0..^MQi+T
150 8 fvmpt2 i0MQi+TSi=Qi+T
151 140 149 150 syl2anc φi0..^MSi=Qi+T
152 8 24 eqtr4i S=j0MQj+T
153 152 a1i φi0..^MS=j0MQj+T
154 fveq2 j=i+1Qj=Qi+1
155 154 oveq1d j=i+1Qj+T=Qi+1+T
156 155 adantl φi0..^Mj=i+1Qj+T=Qi+1+T
157 144 145 readdcld φi0..^MQi+1+T
158 153 156 143 157 fvmptd φi0..^MSi+1=Qi+1+T
159 148 151 158 3brtr4d φi0..^MSi<Si+1
160 159 ralrimiva φi0..^MSi<Si+1
161 102 137 160 jca32 φS0MS0=A+TSM=B+Ti0..^MSi<Si+1
162 9 fourierdlem2 MSHMS0MS0=A+TSM=B+Ti0..^MSi<Si+1
163 4 162 syl φSHMS0MS0=A+TSM=B+Ti0..^MSi<Si+1
164 161 163 mpbird φSHM
165 9 fveq1i HM=mp0m|p0=A+Tpm=B+Ti0..^mpi<pi+1M
166 164 165 eleqtrdi φSmp0m|p0=A+Tpm=B+Ti0..^mpi<pi+1M
167 166 adantr φ0<TSmp0m|p0=A+Tpm=B+Ti0..^mpi<pi+1M
168 62 adantr φxA+TB+TA+T
169 68 adantr φxA+TB+TB+T
170 simpr φxA+TB+TxA+TB+T
171 eliccre A+TB+TxA+TB+Tx
172 168 169 170 171 syl3anc φxA+TB+Tx
173 172 recnd φxA+TB+Tx
174 64 negcld φT
175 174 adantr φxA+TB+TT
176 173 175 addcld φxA+TB+Tx+T
177 simpl φxA+TB+Tφ
178 1 adantr φxA+TB+TA
179 2 adantr φxA+TB+TB
180 5 renegcld φT
181 180 adantr φxA+TB+TT
182 172 181 readdcld φxA+TB+Tx+T
183 65 66 eqtr2d φA=A+T+T
184 183 adantr φxA+TB+TA=A+T+T
185 168 rexrd φxA+TB+TA+T*
186 169 rexrd φxA+TB+TB+T*
187 iccgelb A+T*B+T*xA+TB+TA+Tx
188 185 186 170 187 syl3anc φxA+TB+TA+Tx
189 168 172 181 188 leadd1dd φxA+TB+TA+T+Tx+T
190 184 189 eqbrtrd φxA+TB+TAx+T
191 iccleub A+T*B+T*xA+TB+TxB+T
192 185 186 170 191 syl3anc φxA+TB+TxB+T
193 172 169 181 192 leadd1dd φxA+TB+Tx+TB+T+T
194 169 recnd φxA+TB+TB+T
195 64 adantr φxA+TB+TT
196 194 195 negsubd φxA+TB+TB+T+T=B+T-T
197 71 adantr φxA+TB+TB+T-T=B
198 196 197 eqtrd φxA+TB+TB+T+T=B
199 193 198 breqtrd φxA+TB+Tx+TB
200 178 179 182 190 199 eliccd φxA+TB+Tx+TAB
201 177 200 jca φxA+TB+Tφx+TAB
202 eleq1 y=x+TyABx+TAB
203 202 anbi2d y=x+TφyABφx+TAB
204 oveq1 y=x+Ty+T=x+T+T
205 204 fveq2d y=x+TFy+T=Fx+T+T
206 fveq2 y=x+TFy=Fx+T
207 205 206 eqeq12d y=x+TFy+T=FyFx+T+T=Fx+T
208 203 207 imbi12d y=x+TφyABFy+T=Fyφx+TABFx+T+T=Fx+T
209 eleq1 x=yxAByAB
210 209 anbi2d x=yφxABφyAB
211 oveq1 x=yx+T=y+T
212 211 fveq2d x=yFx+T=Fy+T
213 fveq2 x=yFx=Fy
214 212 213 eqeq12d x=yFx+T=FxFy+T=Fy
215 210 214 imbi12d x=yφxABFx+T=FxφyABFy+T=Fy
216 215 7 chvarvv φyABFy+T=Fy
217 208 216 vtoclg x+Tφx+TABFx+T+T=Fx+T
218 176 201 217 sylc φxA+TB+TFx+T+T=Fx+T
219 173 195 negsubd φxA+TB+Tx+T=xT
220 219 oveq1d φxA+TB+Tx+T+T=x-T+T
221 173 195 npcand φxA+TB+Tx-T+T=x
222 220 221 eqtrd φxA+TB+Tx+T+T=x
223 222 fveq2d φxA+TB+TFx+T+T=Fx
224 218 223 eqtr3d φxA+TB+TFx+T=Fx
225 224 adantlr φ0<TxA+TB+TFx+T=Fx
226 fveq2 j=iSj=Si
227 226 oveq1d j=iSj+T=Si+T
228 227 cbvmptv j0MSj+T=i0MSi+T
229 10 adantr φ0<TF:
230 10 adantr φi0..^MF:
231 ioossre SiSi+1
232 231 a1i φi0..^MSiSi+1
233 230 232 feqresmpt φi0..^MFSiSi+1=xSiSi+1Fx
234 151 158 oveq12d φi0..^MSiSi+1=Qi+TQi+1+T
235 141 144 145 iooshift φi0..^MQi+TQi+1+T=w|zQiQi+1w=z+T
236 234 235 eqtrd φi0..^MSiSi+1=w|zQiQi+1w=z+T
237 236 mpteq1d φi0..^MxSiSi+1Fx=xw|zQiQi+1w=z+TFx
238 simpll φi0..^Mxw|zQiQi+1w=z+Tφ
239 simplr φi0..^Mxw|zQiQi+1w=z+Ti0..^M
240 235 eleq2d φi0..^MxQi+TQi+1+Txw|zQiQi+1w=z+T
241 240 biimpar φi0..^Mxw|zQiQi+1w=z+TxQi+TQi+1+T
242 141 rexrd φi0..^MQi*
243 242 3adant3 φi0..^MxQi+TQi+1+TQi*
244 144 rexrd φi0..^MQi+1*
245 244 3adant3 φi0..^MxQi+TQi+1+TQi+1*
246 elioore xQi+TQi+1+Tx
247 246 adantl φxQi+TQi+1+Tx
248 5 adantr φxQi+TQi+1+TT
249 247 248 resubcld φxQi+TQi+1+TxT
250 249 3adant2 φi0..^MxQi+TQi+1+TxT
251 141 recnd φi0..^MQi
252 64 adantr φi0..^MT
253 251 252 pncand φi0..^MQi+T-T=Qi
254 253 eqcomd φi0..^MQi=Qi+T-T
255 254 3adant3 φi0..^MxQi+TQi+1+TQi=Qi+T-T
256 149 3adant3 φi0..^MxQi+TQi+1+TQi+T
257 247 3adant2 φi0..^MxQi+TQi+1+Tx
258 5 3ad2ant1 φi0..^MxQi+TQi+1+TT
259 149 rexrd φi0..^MQi+T*
260 259 3adant3 φi0..^MxQi+TQi+1+TQi+T*
261 157 rexrd φi0..^MQi+1+T*
262 261 3adant3 φi0..^MxQi+TQi+1+TQi+1+T*
263 simp3 φi0..^MxQi+TQi+1+TxQi+TQi+1+T
264 ioogtlb Qi+T*Qi+1+T*xQi+TQi+1+TQi+T<x
265 260 262 263 264 syl3anc φi0..^MxQi+TQi+1+TQi+T<x
266 256 257 258 265 ltsub1dd φi0..^MxQi+TQi+1+TQi+T-T<xT
267 255 266 eqbrtrd φi0..^MxQi+TQi+1+TQi<xT
268 157 3adant3 φi0..^MxQi+TQi+1+TQi+1+T
269 iooltub Qi+T*Qi+1+T*xQi+TQi+1+Tx<Qi+1+T
270 260 262 263 269 syl3anc φi0..^MxQi+TQi+1+Tx<Qi+1+T
271 257 268 258 270 ltsub1dd φi0..^MxQi+TQi+1+TxT<Qi+1+T-T
272 144 recnd φi0..^MQi+1
273 272 252 pncand φi0..^MQi+1+T-T=Qi+1
274 273 3adant3 φi0..^MxQi+TQi+1+TQi+1+T-T=Qi+1
275 271 274 breqtrd φi0..^MxQi+TQi+1+TxT<Qi+1
276 243 245 250 267 275 eliood φi0..^MxQi+TQi+1+TxTQiQi+1
277 238 239 241 276 syl3anc φi0..^Mxw|zQiQi+1w=z+TxTQiQi+1
278 fvres xTQiQi+1FQiQi+1xT=FxT
279 277 278 syl φi0..^Mxw|zQiQi+1w=z+TFQiQi+1xT=FxT
280 238 241 249 syl2anc φi0..^Mxw|zQiQi+1w=z+TxT
281 1 3ad2ant1 φi0..^MxQi+TQi+1+TA
282 2 3ad2ant1 φi0..^MxQi+TQi+1+TB
283 66 eqcomd φA=A+T-T
284 283 3ad2ant1 φi0..^MxQi+TQi+1+TA=A+T-T
285 62 3ad2ant1 φi0..^MxQi+TQi+1+TA+T
286 1 adantr φi0..^MA
287 1 rexrd φA*
288 287 adantr φi0..^MA*
289 2 rexrd φB*
290 289 adantr φi0..^MB*
291 3 4 6 fourierdlem15 φQ:0MAB
292 291 adantr φi0..^MQ:0MAB
293 292 140 ffvelcdmd φi0..^MQiAB
294 iccgelb A*B*QiABAQi
295 288 290 293 294 syl3anc φi0..^MAQi
296 286 141 145 295 leadd1dd φi0..^MA+TQi+T
297 296 3adant3 φi0..^MxQi+TQi+1+TA+TQi+T
298 285 256 257 297 265 lelttrd φi0..^MxQi+TQi+1+TA+T<x
299 285 257 258 298 ltsub1dd φi0..^MxQi+TQi+1+TA+T-T<xT
300 284 299 eqbrtrd φi0..^MxQi+TQi+1+TA<xT
301 281 250 300 ltled φi0..^MxQi+TQi+1+TAxT
302 144 3adant3 φi0..^MxQi+TQi+1+TQi+1
303 292 143 ffvelcdmd φi0..^MQi+1AB
304 iccleub A*B*Qi+1ABQi+1B
305 288 290 303 304 syl3anc φi0..^MQi+1B
306 305 3adant3 φi0..^MxQi+TQi+1+TQi+1B
307 250 302 282 275 306 ltletrd φi0..^MxQi+TQi+1+TxT<B
308 250 282 307 ltled φi0..^MxQi+TQi+1+TxTB
309 281 282 250 301 308 eliccd φi0..^MxQi+TQi+1+TxTAB
310 238 239 241 309 syl3anc φi0..^Mxw|zQiQi+1w=z+TxTAB
311 238 310 jca φi0..^Mxw|zQiQi+1w=z+TφxTAB
312 eleq1 y=xTyABxTAB
313 312 anbi2d y=xTφyABφxTAB
314 oveq1 y=xTy+T=x-T+T
315 314 fveq2d y=xTFy+T=Fx-T+T
316 fveq2 y=xTFy=FxT
317 315 316 eqeq12d y=xTFy+T=FyFx-T+T=FxT
318 313 317 imbi12d y=xTφyABFy+T=FyφxTABFx-T+T=FxT
319 318 216 vtoclg xTφxTABFx-T+T=FxT
320 280 311 319 sylc φi0..^Mxw|zQiQi+1w=z+TFx-T+T=FxT
321 241 246 syl φi0..^Mxw|zQiQi+1w=z+Tx
322 recn xx
323 322 adantl φxx
324 64 adantr φxT
325 323 324 npcand φxx-T+T=x
326 325 fveq2d φxFx-T+T=Fx
327 238 321 326 syl2anc φi0..^Mxw|zQiQi+1w=z+TFx-T+T=Fx
328 279 320 327 3eqtr2rd φi0..^Mxw|zQiQi+1w=z+TFx=FQiQi+1xT
329 328 mpteq2dva φi0..^Mxw|zQiQi+1w=z+TFx=xw|zQiQi+1w=z+TFQiQi+1xT
330 233 237 329 3eqtrd φi0..^MFSiSi+1=xw|zQiQi+1w=z+TFQiQi+1xT
331 ioosscn QiQi+1
332 331 a1i φi0..^MQiQi+1
333 eqeq1 w=xw=z+Tx=z+T
334 333 rexbidv w=xzQiQi+1w=z+TzQiQi+1x=z+T
335 oveq1 z=yz+T=y+T
336 335 eqeq2d z=yx=z+Tx=y+T
337 336 cbvrexvw zQiQi+1x=z+TyQiQi+1x=y+T
338 334 337 bitrdi w=xzQiQi+1w=z+TyQiQi+1x=y+T
339 338 cbvrabv w|zQiQi+1w=z+T=x|yQiQi+1x=y+T
340 eqid xw|zQiQi+1w=z+TFQiQi+1xT=xw|zQiQi+1w=z+TFQiQi+1xT
341 332 252 339 11 340 cncfshift φi0..^Mxw|zQiQi+1w=z+TFQiQi+1xT:w|zQiQi+1w=z+Tcn
342 236 eqcomd φi0..^Mw|zQiQi+1w=z+T=SiSi+1
343 342 oveq1d φi0..^Mw|zQiQi+1w=z+Tcn=SiSi+1cn
344 341 343 eleqtrd φi0..^Mxw|zQiQi+1w=z+TFQiQi+1xT:SiSi+1cn
345 330 344 eqeltrd φi0..^MFSiSi+1:SiSi+1cn
346 345 adantlr φ0<Ti0..^MFSiSi+1:SiSi+1cn
347 ffdm F:F:domFdomF
348 10 347 syl φF:domFdomF
349 348 simpld φF:domF
350 349 adantr φi0..^MF:domF
351 ioossre QiQi+1
352 fdm F:domF=
353 230 352 syl φi0..^MdomF=
354 351 353 sseqtrrid φi0..^MQiQi+1domF
355 339 eqcomi x|yQiQi+1x=y+T=w|zQiQi+1w=z+T
356 232 342 353 3sstr4d φi0..^Mw|zQiQi+1w=z+TdomF
357 339 356 eqsstrrid φi0..^Mx|yQiQi+1x=y+TdomF
358 simpll φi0..^MzQiQi+1φ
359 358 287 syl φi0..^MzQiQi+1A*
360 358 289 syl φi0..^MzQiQi+1B*
361 358 291 syl φi0..^MzQiQi+1Q:0MAB
362 simplr φi0..^MzQiQi+1i0..^M
363 ioossicc QiQi+1QiQi+1
364 363 sseli zQiQi+1zQiQi+1
365 364 adantl φi0..^MzQiQi+1zQiQi+1
366 359 360 361 362 365 fourierdlem1 φi0..^MzQiQi+1zAB
367 eleq1 x=zxABzAB
368 367 anbi2d x=zφxABφzAB
369 oveq1 x=zx+T=z+T
370 369 fveq2d x=zFx+T=Fz+T
371 fveq2 x=zFx=Fz
372 370 371 eqeq12d x=zFx+T=FxFz+T=Fz
373 368 372 imbi12d x=zφxABFx+T=FxφzABFz+T=Fz
374 373 7 chvarvv φzABFz+T=Fz
375 358 366 374 syl2anc φi0..^MzQiQi+1Fz+T=Fz
376 350 332 354 252 355 357 375 12 limcperiod φi0..^MRFx|yQiQi+1x=y+TlimQi+T
377 355 342 eqtrid φi0..^Mx|yQiQi+1x=y+T=SiSi+1
378 377 reseq2d φi0..^MFx|yQiQi+1x=y+T=FSiSi+1
379 151 eqcomd φi0..^MQi+T=Si
380 378 379 oveq12d φi0..^MFx|yQiQi+1x=y+TlimQi+T=FSiSi+1limSi
381 376 380 eleqtrd φi0..^MRFSiSi+1limSi
382 381 adantlr φ0<Ti0..^MRFSiSi+1limSi
383 350 332 354 252 355 357 375 13 limcperiod φi0..^MLFx|yQiQi+1x=y+TlimQi+1+T
384 158 eqcomd φi0..^MQi+1+T=Si+1
385 378 384 oveq12d φi0..^MFx|yQiQi+1x=y+TlimQi+1+T=FSiSi+1limSi+1
386 383 385 eleqtrd φi0..^MLFSiSi+1limSi+1
387 386 adantlr φ0<Ti0..^MLFSiSi+1limSi+1
388 eqeq1 y=xy=Six=Si
389 eqeq1 y=xy=Si+1x=Si+1
390 389 31 ifbieq2d y=xify=Si+1LFy=ifx=Si+1LFx
391 388 390 ifbieq2d y=xify=SiRify=Si+1LFy=ifx=SiRifx=Si+1LFx
392 391 cbvmptv ySiSi+1ify=SiRify=Si+1LFy=xSiSi+1ifx=SiRifx=Si+1LFx
393 eqid xj0MSj+Tij0MSj+Ti+1ySiSi+1ify=SiRify=Si+1LFyxT=xj0MSj+Tij0MSj+Ti+1ySiSi+1ify=SiRify=Si+1LFyxT
394 79 81 82 83 86 167 225 228 229 346 382 387 392 393 fourierdlem81 φ0<TA+T+TB+T+TFxdx=A+TB+TFxdx
395 76 394 eqtr2d φ0<TA+TB+TFxdx=ABFxdx
396 51 61 395 syl2anc φ¬0<T¬T=0A+TB+TFxdx=ABFxdx
397 50 396 pm2.61dan φ¬0<TA+TB+TFxdx=ABFxdx
398 36 397 pm2.61dan φA+TB+TFxdx=ABFxdx