Metamath Proof Explorer


Theorem heiborlem6

Description: Lemma for heibor . Since the sequence of balls connected by the function T ensures that each ball nontrivially intersects with the next (since the empty set has a finite subcover, the intersection of any two successive balls in the sequence is nonempty), and each ball is half the size of the previous one, the distance between the centers is at most 3 / 2 times the size of the larger, and so if we expand each ball by a factor of 3 we get a nested sequence of balls. (Contributed by Jeff Madsen, 23-Jan-2014)

Ref Expression
Hypotheses heibor.1 J=MetOpenD
heibor.3 K=u|¬v𝒫UFinuv
heibor.4 G=yn|n0yFnyBnK
heibor.5 B=zX,m0zballD12m
heibor.6 φDCMetX
heibor.7 φF:0𝒫XFin
heibor.8 φn0X=yFnyBn
heibor.9 φxGTxG2ndx+1BxTxB2ndx+1K
heibor.10 φCG0
heibor.11 S=seq0Tm0ifm=0Cm1
heibor.12 M=nSn32n
Assertion heiborlem6 φkballDMk+1ballDMk

Proof

Step Hyp Ref Expression
1 heibor.1 J=MetOpenD
2 heibor.3 K=u|¬v𝒫UFinuv
3 heibor.4 G=yn|n0yFnyBnK
4 heibor.5 B=zX,m0zballD12m
5 heibor.6 φDCMetX
6 heibor.7 φF:0𝒫XFin
7 heibor.8 φn0X=yFnyBn
8 heibor.9 φxGTxG2ndx+1BxTxB2ndx+1K
9 heibor.10 φCG0
10 heibor.11 S=seq0Tm0ifm=0Cm1
11 heibor.12 M=nSn32n
12 nnnn0 kk0
13 cmetmet DCMetXDMetX
14 5 13 syl φDMetX
15 metxmet DMetXD∞MetX
16 14 15 syl φD∞MetX
17 16 adantr φk0D∞MetX
18 inss1 𝒫XFin𝒫X
19 fss F:0𝒫XFin𝒫XFin𝒫XF:0𝒫X
20 6 18 19 sylancl φF:0𝒫X
21 peano2nn0 k0k+10
22 ffvelcdm F:0𝒫Xk+10Fk+1𝒫X
23 20 21 22 syl2an φk0Fk+1𝒫X
24 23 elpwid φk0Fk+1X
25 1 2 3 4 5 6 7 8 9 10 heiborlem4 φk+10Sk+1Gk+1
26 21 25 sylan2 φk0Sk+1Gk+1
27 fvex Sk+1V
28 ovex k+1V
29 1 2 3 27 28 heiborlem2 Sk+1Gk+1k+10Sk+1Fk+1Sk+1Bk+1K
30 29 simp2bi Sk+1Gk+1Sk+1Fk+1
31 26 30 syl φk0Sk+1Fk+1
32 24 31 sseldd φk0Sk+1X
33 20 ffvelcdmda φk0Fk𝒫X
34 33 elpwid φk0FkX
35 1 2 3 4 5 6 7 8 9 10 heiborlem4 φk0SkGk
36 fvex SkV
37 vex kV
38 1 2 3 36 37 heiborlem2 SkGkk0SkFkSkBkK
39 38 simp2bi SkGkSkFk
40 35 39 syl φk0SkFk
41 34 40 sseldd φk0SkX
42 3re 3
43 2nn 2
44 nnexpcl 2k+102k+1
45 43 21 44 sylancr k02k+1
46 45 nnrpd k02k+1+
47 46 adantl φk02k+1+
48 rerpdivcl 32k+1+32k+1
49 42 47 48 sylancr φk032k+1
50 nnexpcl 2k02k
51 43 50 mpan k02k
52 51 nnrpd k02k+
53 52 adantl φk02k+
54 rerpdivcl 32k+32k
55 42 53 54 sylancr φk032k
56 oveq1 z=SkzballD12m=SkballD12m
57 oveq2 m=k2m=2k
58 57 oveq2d m=k12m=12k
59 58 oveq2d m=kSkballD12m=SkballD12k
60 ovex SkballD12kV
61 56 59 4 60 ovmpo SkXk0SkBk=SkballD12k
62 41 61 sylancom φk0SkBk=SkballD12k
63 df-br SkGkSkkG
64 fveq2 x=SkkTx=TSkk
65 df-ov SkTk=TSkk
66 64 65 eqtr4di x=SkkTx=SkTk
67 36 37 op2ndd x=Skk2ndx=k
68 67 oveq1d x=Skk2ndx+1=k+1
69 66 68 breq12d x=SkkTxG2ndx+1SkTkGk+1
70 fveq2 x=SkkBx=BSkk
71 df-ov SkBk=BSkk
72 70 71 eqtr4di x=SkkBx=SkBk
73 66 68 oveq12d x=SkkTxB2ndx+1=SkTkBk+1
74 72 73 ineq12d x=SkkBxTxB2ndx+1=SkBkSkTkBk+1
75 74 eleq1d x=SkkBxTxB2ndx+1KSkBkSkTkBk+1K
76 69 75 anbi12d x=SkkTxG2ndx+1BxTxB2ndx+1KSkTkGk+1SkBkSkTkBk+1K
77 76 rspccv xGTxG2ndx+1BxTxB2ndx+1KSkkGSkTkGk+1SkBkSkTkBk+1K
78 8 77 syl φSkkGSkTkGk+1SkBkSkTkBk+1K
79 63 78 biimtrid φSkGkSkTkGk+1SkBkSkTkBk+1K
80 79 adantr φk0SkGkSkTkGk+1SkBkSkTkBk+1K
81 35 80 mpd φk0SkTkGk+1SkBkSkTkBk+1K
82 81 simpld φk0SkTkGk+1
83 ovex SkTkV
84 1 2 3 83 28 heiborlem2 SkTkGk+1k+10SkTkFk+1SkTkBk+1K
85 84 simp2bi SkTkGk+1SkTkFk+1
86 82 85 syl φk0SkTkFk+1
87 24 86 sseldd φk0SkTkX
88 21 adantl φk0k+10
89 oveq1 z=SkTkzballD12m=SkTkballD12m
90 oveq2 m=k+12m=2k+1
91 90 oveq2d m=k+112m=12k+1
92 91 oveq2d m=k+1SkTkballD12m=SkTkballD12k+1
93 ovex SkTkballD12k+1V
94 89 92 4 93 ovmpo SkTkXk+10SkTkBk+1=SkTkballD12k+1
95 87 88 94 syl2anc φk0SkTkBk+1=SkTkballD12k+1
96 62 95 ineq12d φk0SkBkSkTkBk+1=SkballD12kSkTkballD12k+1
97 81 simprd φk0SkBkSkTkBk+1K
98 0elpw 𝒫U
99 0fin Fin
100 elin 𝒫UFin𝒫UFin
101 98 99 100 mpbir2an 𝒫UFin
102 0ss
103 unieq v=v=
104 103 sseq2d v=v
105 104 rspcev 𝒫UFinv𝒫UFinv
106 101 102 105 mp2an v𝒫UFinv
107 0ex V
108 sseq1 u=uvv
109 108 rexbidv u=v𝒫UFinuvv𝒫UFinv
110 109 notbid u=¬v𝒫UFinuv¬v𝒫UFinv
111 107 110 2 elab2 K¬v𝒫UFinv
112 111 con2bii v𝒫UFinv¬K
113 106 112 mpbi ¬K
114 nelne2 SkBkSkTkBk+1K¬KSkBkSkTkBk+1
115 97 113 114 sylancl φk0SkBkSkTkBk+1
116 96 115 eqnetrrd φk0SkballD12kSkTkballD12k+1
117 52 rpreccld k012k+
118 117 adantl φk012k+
119 118 rpred φk012k
120 46 rpreccld k012k+1+
121 120 adantl φk012k+1+
122 121 rpred φk012k+1
123 rexadd 12k12k+112k+𝑒12k+1=12k+12k+1
124 119 122 123 syl2anc φk012k+𝑒12k+1=12k+12k+1
125 124 breq1d φk012k+𝑒12k+1SkDSkTk12k+12k+1SkDSkTk
126 118 rpxrd φk012k*
127 121 rpxrd φk012k+1*
128 bldisj D∞MetXSkXSkTkX12k*12k+1*12k+𝑒12k+1SkDSkTkSkballD12kSkTkballD12k+1=
129 128 3exp2 D∞MetXSkXSkTkX12k*12k+1*12k+𝑒12k+1SkDSkTkSkballD12kSkTkballD12k+1=
130 129 imp32 D∞MetXSkXSkTkX12k*12k+1*12k+𝑒12k+1SkDSkTkSkballD12kSkTkballD12k+1=
131 17 41 87 126 127 130 syl32anc φk012k+𝑒12k+1SkDSkTkSkballD12kSkTkballD12k+1=
132 125 131 sylbird φk012k+12k+1SkDSkTkSkballD12kSkTkballD12k+1=
133 132 necon3ad φk0SkballD12kSkTkballD12k+1¬12k+12k+1SkDSkTk
134 116 133 mpd φk0¬12k+12k+1SkDSkTk
135 118 121 rpaddcld φk012k+12k+1+
136 135 rpred φk012k+12k+1
137 14 adantr φk0DMetX
138 metcl DMetXSkXSkTkXSkDSkTk
139 137 41 87 138 syl3anc φk0SkDSkTk
140 136 139 letrid φk012k+12k+1SkDSkTkSkDSkTk12k+12k+1
141 140 ord φk0¬12k+12k+1SkDSkTkSkDSkTk12k+12k+1
142 134 141 mpd φk0SkDSkTk12k+12k+1
143 seqp1 k0seq0Tm0ifm=0Cm1k+1=seq0Tm0ifm=0Cm1kTm0ifm=0Cm1k+1
144 nn0uz 0=0
145 143 144 eleq2s k0seq0Tm0ifm=0Cm1k+1=seq0Tm0ifm=0Cm1kTm0ifm=0Cm1k+1
146 10 fveq1i Sk+1=seq0Tm0ifm=0Cm1k+1
147 10 fveq1i Sk=seq0Tm0ifm=0Cm1k
148 147 oveq1i SkTm0ifm=0Cm1k+1=seq0Tm0ifm=0Cm1kTm0ifm=0Cm1k+1
149 145 146 148 3eqtr4g k0Sk+1=SkTm0ifm=0Cm1k+1
150 eqid m0ifm=0Cm1=m0ifm=0Cm1
151 eqeq1 m=k+1m=0k+1=0
152 oveq1 m=k+1m1=k+1-1
153 151 152 ifbieq2d m=k+1ifm=0Cm1=ifk+1=0Ck+1-1
154 nn0p1nn k0k+1
155 nnne0 k+1k+10
156 155 neneqd k+1¬k+1=0
157 154 156 syl k0¬k+1=0
158 157 iffalsed k0ifk+1=0Ck+1-1=k+1-1
159 ovex k+1-1V
160 158 159 eqeltrdi k0ifk+1=0Ck+1-1V
161 150 153 21 160 fvmptd3 k0m0ifm=0Cm1k+1=ifk+1=0Ck+1-1
162 nn0cn k0k
163 ax-1cn 1
164 pncan k1k+1-1=k
165 162 163 164 sylancl k0k+1-1=k
166 161 158 165 3eqtrd k0m0ifm=0Cm1k+1=k
167 166 oveq2d k0SkTm0ifm=0Cm1k+1=SkTk
168 149 167 eqtrd k0Sk+1=SkTk
169 168 adantl φk0Sk+1=SkTk
170 169 oveq1d φk0Sk+1DSk=SkTkDSk
171 metsym DMetXSkTkXSkXSkTkDSk=SkDSkTk
172 137 87 41 171 syl3anc φk0SkTkDSk=SkDSkTk
173 170 172 eqtrd φk0Sk+1DSk=SkDSkTk
174 3cn 3
175 174 2timesi 23=3+3
176 175 oveq1i 233=3+3-3
177 174 174 pncan3oi 3+3-3=3
178 df-3 3=2+1
179 176 177 178 3eqtri 233=2+1
180 179 oveq1i 2332k+1=2+12k+1
181 rpcn 2k+1+2k+1
182 rpne0 2k+1+2k+10
183 2cn 2
184 183 174 mulcli 23
185 divsubdir 2332k+12k+102332k+1=232k+132k+1
186 184 174 185 mp3an12 2k+12k+102332k+1=232k+132k+1
187 181 182 186 syl2anc 2k+1+2332k+1=232k+132k+1
188 46 187 syl k02332k+1=232k+132k+1
189 divdir 212k+12k+102+12k+1=22k+1+12k+1
190 183 163 189 mp3an12 2k+12k+102+12k+1=22k+1+12k+1
191 181 182 190 syl2anc 2k+1+2+12k+1=22k+1+12k+1
192 46 191 syl k02+12k+1=22k+1+12k+1
193 180 188 192 3eqtr3a k0232k+132k+1=22k+1+12k+1
194 rpcn 2k+2k
195 rpne0 2k+2k0
196 2cnne0 220
197 divcan5 32k2k02202322k=32k
198 174 196 197 mp3an13 2k2k02322k=32k
199 194 195 198 syl2anc 2k+2322k=32k
200 52 199 syl k02322k=32k
201 52 194 syl k02k
202 mulcom 22k22k=2k2
203 183 201 202 sylancr k022k=2k2
204 expp1 2k02k+1=2k2
205 183 204 mpan k02k+1=2k2
206 203 205 eqtr4d k022k=2k+1
207 206 oveq2d k02322k=232k+1
208 200 207 eqtr3d k032k=232k+1
209 208 oveq1d k032k32k+1=232k+132k+1
210 divcan5 12k2k02202122k=12k
211 163 196 210 mp3an13 2k2k02122k=12k
212 194 195 211 syl2anc 2k+2122k=12k
213 52 212 syl k02122k=12k
214 2t1e2 21=2
215 214 a1i k021=2
216 215 206 oveq12d k02122k=22k+1
217 213 216 eqtr3d k012k=22k+1
218 217 oveq1d k012k+12k+1=22k+1+12k+1
219 193 209 218 3eqtr4d k032k32k+1=12k+12k+1
220 219 adantl φk032k32k+1=12k+12k+1
221 142 173 220 3brtr4d φk0Sk+1DSk32k32k+1
222 blss2 D∞MetXSk+1XSkX32k+132kSk+1DSk32k32k+1Sk+1ballD32k+1SkballD32k
223 17 32 41 49 55 221 222 syl33anc φk0Sk+1ballD32k+1SkballD32k
224 12 223 sylan2 φkSk+1ballD32k+1SkballD32k
225 peano2nn kk+1
226 fveq2 n=k+1Sn=Sk+1
227 oveq2 n=k+12n=2k+1
228 227 oveq2d n=k+132n=32k+1
229 226 228 opeq12d n=k+1Sn32n=Sk+132k+1
230 opex Sk+132k+1V
231 229 11 230 fvmpt k+1Mk+1=Sk+132k+1
232 225 231 syl kMk+1=Sk+132k+1
233 232 adantl φkMk+1=Sk+132k+1
234 233 fveq2d φkballDMk+1=ballDSk+132k+1
235 df-ov Sk+1ballD32k+1=ballDSk+132k+1
236 234 235 eqtr4di φkballDMk+1=Sk+1ballD32k+1
237 fveq2 n=kSn=Sk
238 oveq2 n=k2n=2k
239 238 oveq2d n=k32n=32k
240 237 239 opeq12d n=kSn32n=Sk32k
241 opex Sk32kV
242 240 11 241 fvmpt kMk=Sk32k
243 242 fveq2d kballDMk=ballDSk32k
244 df-ov SkballD32k=ballDSk32k
245 243 244 eqtr4di kballDMk=SkballD32k
246 245 adantl φkballDMk=SkballD32k
247 224 236 246 3sstr4d φkballDMk+1ballDMk
248 247 ralrimiva φkballDMk+1ballDMk