Metamath Proof Explorer


Theorem itg1addlem4OLD

Description: Obsolete version of itg1addlem4 . (Contributed by Mario Carneiro, 28-Jun-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses i1fadd.1 φFdom1
i1fadd.2 φGdom1
itg1add.3 I=i,jifi=0j=00volF-1iG-1j
itg1add.4 P=+ranF×ranG
Assertion itg1addlem4OLD φ1F+fG=yranFzranGy+zyIz

Proof

Step Hyp Ref Expression
1 i1fadd.1 φFdom1
2 i1fadd.2 φGdom1
3 itg1add.3 I=i,jifi=0j=00volF-1iG-1j
4 itg1add.4 P=+ranF×ranG
5 1 2 i1fadd φF+fGdom1
6 i1frn Fdom1ranFFin
7 1 6 syl φranFFin
8 i1frn Gdom1ranGFin
9 2 8 syl φranGFin
10 xpfi ranFFinranGFinranF×ranGFin
11 7 9 10 syl2anc φranF×ranGFin
12 ax-addf +:×
13 ffn +:×+Fn×
14 12 13 ax-mp +Fn×
15 i1ff Fdom1F:
16 1 15 syl φF:
17 16 frnd φranF
18 ax-resscn
19 17 18 sstrdi φranF
20 i1ff Gdom1G:
21 2 20 syl φG:
22 21 frnd φranG
23 22 18 sstrdi φranG
24 xpss12 ranFranGranF×ranG×
25 19 23 24 syl2anc φranF×ranG×
26 fnssres +Fn×ranF×ranG×+ranF×ranGFnranF×ranG
27 14 25 26 sylancr φ+ranF×ranGFnranF×ranG
28 4 fneq1i PFnranF×ranG+ranF×ranGFnranF×ranG
29 27 28 sylibr φPFnranF×ranG
30 dffn4 PFnranF×ranGP:ranF×ranGontoranP
31 29 30 sylib φP:ranF×ranGontoranP
32 fofi ranF×ranGFinP:ranF×ranGontoranPranPFin
33 11 31 32 syl2anc φranPFin
34 difss ranP0ranP
35 ssfi ranPFinranP0ranPranP0Fin
36 33 34 35 sylancl φranP0Fin
37 ffun +:×Fun+
38 12 37 ax-mp Fun+
39 12 fdmi dom+=×
40 25 39 sseqtrrdi φranF×ranGdom+
41 funfvima2 Fun+ranF×ranGdom+xyranF×ranG+xy+ranF×ranG
42 38 40 41 sylancr φxyranF×ranG+xy+ranF×ranG
43 opelxpi xranFyranGxyranF×ranG
44 42 43 impel φxranFyranG+xy+ranF×ranG
45 df-ov x+y=+xy
46 4 rneqi ranP=ran+ranF×ranG
47 df-ima +ranF×ranG=ran+ranF×ranG
48 46 47 eqtr4i ranP=+ranF×ranG
49 44 45 48 3eltr4g φxranFyranGx+yranP
50 16 ffnd φFFn
51 dffn3 FFnF:ranF
52 50 51 sylib φF:ranF
53 21 ffnd φGFn
54 dffn3 GFnG:ranG
55 53 54 sylib φG:ranG
56 reex V
57 56 a1i φV
58 inidm =
59 49 52 55 57 57 58 off φF+fG:ranP
60 59 frnd φranF+fGranP
61 60 ssdifd φranF+fG0ranP0
62 17 sselda φyranFy
63 22 sselda φzranGz
64 62 63 anim12dan φyranFzranGyz
65 readdcl yzy+z
66 64 65 syl φyranFzranGy+z
67 66 ralrimivva φyranFzranGy+z
68 funimassov Fun+ranF×ranGdom++ranF×ranGyranFzranGy+z
69 38 40 68 sylancr φ+ranF×ranGyranFzranGy+z
70 67 69 mpbird φ+ranF×ranG
71 48 70 eqsstrid φranP
72 71 ssdifd φranP00
73 itg1val2 F+fGdom1ranP0FinranF+fG0ranP0ranP001F+fG=wranP0wvolF+fG-1w
74 5 36 61 72 73 syl13anc φ1F+fG=wranP0wvolF+fG-1w
75 21 adantr φwranP0G:
76 9 adantr φwranP0ranGFin
77 inss2 F-1wzG-1zG-1z
78 77 a1i φwranP0zranGF-1wzG-1zG-1z
79 i1fima Fdom1F-1wzdomvol
80 1 79 syl φF-1wzdomvol
81 i1fima Gdom1G-1zdomvol
82 2 81 syl φG-1zdomvol
83 inmbl F-1wzdomvolG-1zdomvolF-1wzG-1zdomvol
84 80 82 83 syl2anc φF-1wzG-1zdomvol
85 84 ad2antrr φwranP0zranGF-1wzG-1zdomvol
86 34 71 sstrid φranP0
87 86 sselda φwranP0w
88 87 adantr φwranP0zranGw
89 63 adantlr φwranP0zranGz
90 88 89 resubcld φwranP0zranGwz
91 88 recnd φwranP0zranGw
92 89 recnd φwranP0zranGz
93 91 92 npcand φwranP0zranGw-z+z=w
94 eldifsni wranP0w0
95 94 ad2antlr φwranP0zranGw0
96 93 95 eqnetrd φwranP0zranGw-z+z0
97 oveq12 wz=0z=0w-z+z=0+0
98 00id 0+0=0
99 97 98 eqtrdi wz=0z=0w-z+z=0
100 99 necon3ai w-z+z0¬wz=0z=0
101 96 100 syl φwranP0zranG¬wz=0z=0
102 1 2 3 itg1addlem3 wzz¬wz=0z=0wzIz=volF-1wzG-1z
103 90 89 101 102 syl21anc φwranP0zranGwzIz=volF-1wzG-1z
104 1 2 3 itg1addlem2 φI:2
105 104 ad2antrr φwranP0zranGI:2
106 105 90 89 fovcdmd φwranP0zranGwzIz
107 103 106 eqeltrrd φwranP0zranGvolF-1wzG-1z
108 75 76 78 85 107 itg1addlem1 φwranP0volzranGF-1wzG-1z=zranGvolF-1wzG-1z
109 87 recnd φwranP0w
110 1 2 i1faddlem φwF+fG-1w=zranGF-1wzG-1z
111 109 110 syldan φwranP0F+fG-1w=zranGF-1wzG-1z
112 111 fveq2d φwranP0volF+fG-1w=volzranGF-1wzG-1z
113 103 sumeq2dv φwranP0zranGwzIz=zranGvolF-1wzG-1z
114 108 112 113 3eqtr4d φwranP0volF+fG-1w=zranGwzIz
115 114 oveq2d φwranP0wvolF+fG-1w=wzranGwzIz
116 106 recnd φwranP0zranGwzIz
117 76 109 116 fsummulc2 φwranP0wzranGwzIz=zranGwwzIz
118 115 117 eqtrd φwranP0wvolF+fG-1w=zranGwwzIz
119 118 sumeq2dv φwranP0wvolF+fG-1w=wranP0zranGwwzIz
120 91 116 mulcld φwranP0zranGwwzIz
121 120 anasss φwranP0zranGwwzIz
122 36 9 121 fsumcom φwranP0zranGwwzIz=zranGwranP0wwzIz
123 74 119 122 3eqtrd φ1F+fG=zranGwranP0wwzIz
124 oveq1 y=wzy+z=w-z+z
125 oveq1 y=wzyIz=wzIz
126 124 125 oveq12d y=wzy+zyIz=w-z+zwzIz
127 33 adantr φzranGranPFin
128 71 adantr φzranGranP
129 128 sselda φzranGvranPv
130 63 adantr φzranGvranPz
131 129 130 resubcld φzranGvranPvz
132 131 ex φzranGvranPvz
133 129 recnd φzranGvranPv
134 133 adantrr φzranGvranPyranPv
135 71 sselda φyranPy
136 135 ad2ant2rl φzranGvranPyranPy
137 136 recnd φzranGvranPyranPy
138 63 recnd φzranGz
139 138 adantr φzranGvranPyranPz
140 134 137 139 subcan2ad φzranGvranPyranPvz=yzv=y
141 140 ex φzranGvranPyranPvz=yzv=y
142 132 141 dom2lem φzranGvranPvz:ranP1-1
143 f1f1orn vranPvz:ranP1-1vranPvz:ranP1-1 ontoranvranPvz
144 142 143 syl φzranGvranPvz:ranP1-1 ontoranvranPvz
145 oveq1 v=wvz=wz
146 eqid vranPvz=vranPvz
147 ovex wzV
148 145 146 147 fvmpt wranPvranPvzw=wz
149 148 adantl φzranGwranPvranPvzw=wz
150 f1f vranPvz:ranP1-1vranPvz:ranP
151 frn vranPvz:ranPranvranPvz
152 142 150 151 3syl φzranGranvranPvz
153 152 sselda φzranGyranvranPvzy
154 63 adantr φzranGyranvranPvzz
155 153 154 readdcld φzranGyranvranPvzy+z
156 104 ad2antrr φzranGyranvranPvzI:2
157 156 153 154 fovcdmd φzranGyranvranPvzyIz
158 155 157 remulcld φzranGyranvranPvzy+zyIz
159 158 recnd φzranGyranvranPvzy+zyIz
160 126 127 144 149 159 fsumf1o φzranGyranvranPvzy+zyIz=wranPw-z+zwzIz
161 128 sselda φzranGwranPw
162 161 recnd φzranGwranPw
163 138 adantr φzranGwranPz
164 162 163 npcand φzranGwranPw-z+z=w
165 164 oveq1d φzranGwranPw-z+zwzIz=wwzIz
166 165 sumeq2dv φzranGwranPw-z+zwzIz=wranPwwzIz
167 160 166 eqtrd φzranGyranvranPvzy+zyIz=wranPwwzIz
168 40 ad2antrr φzranGyranFranF×ranGdom+
169 simpr φzranGyranFyranF
170 simplr φzranGyranFzranG
171 169 170 opelxpd φzranGyranFyzranF×ranG
172 funfvima2 Fun+ranF×ranGdom+yzranF×ranG+yz+ranF×ranG
173 38 172 mpan ranF×ranGdom+yzranF×ranG+yz+ranF×ranG
174 168 171 173 sylc φzranGyranF+yz+ranF×ranG
175 df-ov y+z=+yz
176 174 175 48 3eltr4g φzranGyranFy+zranP
177 62 adantlr φzranGyranFy
178 177 recnd φzranGyranFy
179 138 adantr φzranGyranFz
180 178 179 pncand φzranGyranFy+z-z=y
181 180 eqcomd φzranGyranFy=y+z-z
182 oveq1 v=y+zvz=y+z-z
183 182 rspceeqv y+zranPy=y+z-zvranPy=vz
184 176 181 183 syl2anc φzranGyranFvranPy=vz
185 184 ralrimiva φzranGyranFvranPy=vz
186 ssabral ranFy|vranPy=vzyranFvranPy=vz
187 185 186 sylibr φzranGranFy|vranPy=vz
188 146 rnmpt ranvranPvz=y|vranPy=vz
189 187 188 sseqtrrdi φzranGranFranvranPvz
190 63 adantr φzranGyranFz
191 177 190 readdcld φzranGyranFy+z
192 104 ad2antrr φzranGyranFI:2
193 192 177 190 fovcdmd φzranGyranFyIz
194 191 193 remulcld φzranGyranFy+zyIz
195 194 recnd φzranGyranFy+zyIz
196 152 ssdifd φzranGranvranPvzranFranF
197 196 sselda φzranGyranvranPvzranFyranF
198 eldifi yranFy
199 198 ad2antrl φzranGyranF¬y=0z=0y
200 63 adantr φzranGyranF¬y=0z=0z
201 simprr φzranGyranF¬y=0z=0¬y=0z=0
202 1 2 3 itg1addlem3 yz¬y=0z=0yIz=volF-1yG-1z
203 199 200 201 202 syl21anc φzranGyranF¬y=0z=0yIz=volF-1yG-1z
204 inss1 F-1yG-1zF-1y
205 eldifn yranF¬yranF
206 205 ad2antrl φzranGyranF¬y=0z=0¬yranF
207 vex vV
208 207 eliniseg yVvF-1yvFy
209 208 elv vF-1yvFy
210 vex yV
211 207 210 brelrn vFyyranF
212 209 211 sylbi vF-1yyranF
213 206 212 nsyl φzranGyranF¬y=0z=0¬vF-1y
214 213 pm2.21d φzranGyranF¬y=0z=0vF-1yv
215 214 ssrdv φzranGyranF¬y=0z=0F-1y
216 204 215 sstrid φzranGyranF¬y=0z=0F-1yG-1z
217 ss0 F-1yG-1zF-1yG-1z=
218 216 217 syl φzranGyranF¬y=0z=0F-1yG-1z=
219 218 fveq2d φzranGyranF¬y=0z=0volF-1yG-1z=vol
220 0mbl domvol
221 mblvol domvolvol=vol*
222 220 221 ax-mp vol=vol*
223 ovol0 vol*=0
224 222 223 eqtri vol=0
225 219 224 eqtrdi φzranGyranF¬y=0z=0volF-1yG-1z=0
226 203 225 eqtrd φzranGyranF¬y=0z=0yIz=0
227 226 oveq2d φzranGyranF¬y=0z=0y+zyIz=y+z0
228 199 200 readdcld φzranGyranF¬y=0z=0y+z
229 228 recnd φzranGyranF¬y=0z=0y+z
230 229 mul01d φzranGyranF¬y=0z=0y+z0=0
231 227 230 eqtrd φzranGyranF¬y=0z=0y+zyIz=0
232 231 expr φzranGyranF¬y=0z=0y+zyIz=0
233 oveq12 y=0z=0y+z=0+0
234 233 98 eqtrdi y=0z=0y+z=0
235 oveq12 y=0z=0yIz=0I0
236 0re 0
237 iftrue i=0j=0ifi=0j=00volF-1iG-1j=0
238 c0ex 0V
239 237 3 238 ovmpoa 000I0=0
240 236 236 239 mp2an 0I0=0
241 235 240 eqtrdi y=0z=0yIz=0
242 234 241 oveq12d y=0z=0y+zyIz=00
243 0cn 0
244 243 mul01i 00=0
245 242 244 eqtrdi y=0z=0y+zyIz=0
246 232 245 pm2.61d2 φzranGyranFy+zyIz=0
247 197 246 syldan φzranGyranvranPvzranFy+zyIz=0
248 f1ofo vranPvz:ranP1-1 ontoranvranPvzvranPvz:ranPontoranvranPvz
249 144 248 syl φzranGvranPvz:ranPontoranvranPvz
250 fofi ranPFinvranPvz:ranPontoranvranPvzranvranPvzFin
251 127 249 250 syl2anc φzranGranvranPvzFin
252 189 195 247 251 fsumss φzranGyranFy+zyIz=yranvranPvzy+zyIz
253 34 a1i φzranGranP0ranP
254 120 an32s φzranGwranP0wwzIz
255 dfin4 ranP0=ranPranP0
256 inss2 ranP00
257 255 256 eqsstrri ranPranP00
258 257 sseli wranPranP0w0
259 elsni w0w=0
260 259 adantl φzranGw0w=0
261 260 oveq1d φzranGw0wwzIz=0wzIz
262 104 ad2antrr φzranGw0I:2
263 260 236 eqeltrdi φzranGw0w
264 63 adantr φzranGw0z
265 263 264 resubcld φzranGw0wz
266 262 265 264 fovcdmd φzranGw0wzIz
267 266 recnd φzranGw0wzIz
268 267 mul02d φzranGw00wzIz=0
269 261 268 eqtrd φzranGw0wwzIz=0
270 258 269 sylan2 φzranGwranPranP0wwzIz=0
271 253 254 270 127 fsumss φzranGwranP0wwzIz=wranPwwzIz
272 167 252 271 3eqtr4d φzranGyranFy+zyIz=wranP0wwzIz
273 272 sumeq2dv φzranGyranFy+zyIz=zranGwranP0wwzIz
274 195 anasss φzranGyranFy+zyIz
275 9 7 274 fsumcom φzranGyranFy+zyIz=yranFzranGy+zyIz
276 123 273 275 3eqtr2d φ1F+fG=yranFzranGy+zyIz