Metamath Proof Explorer


Theorem jm2.23

Description: Lemma for jm2.20nn . Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014)

Ref Expression
Assertion jm2.23 A 2 N J A Y rm N 3 A Y rm N J J A X rm N J 1 A Y rm N

Proof

Step Hyp Ref Expression
1 fzfi 3 J Fin
2 ssrab2 b 3 J | ¬ 2 b 3 J
3 ssfi 3 J Fin b 3 J | ¬ 2 b 3 J b 3 J | ¬ 2 b Fin
4 1 2 3 mp2an b 3 J | ¬ 2 b Fin
5 4 a1i A 2 N J b 3 J | ¬ 2 b Fin
6 nnnn0 J J 0
7 6 3ad2ant3 A 2 N J J 0
8 2 sseli a b 3 J | ¬ 2 b a 3 J
9 elfzelz a 3 J a
10 8 9 syl a b 3 J | ¬ 2 b a
11 bccl J 0 a ( J a) 0
12 7 10 11 syl2an A 2 N J a b 3 J | ¬ 2 b ( J a) 0
13 12 nn0zd A 2 N J a b 3 J | ¬ 2 b ( J a)
14 simpl1 A 2 N J a b 3 J | ¬ 2 b A 2
15 simpl2 A 2 N J a b 3 J | ¬ 2 b N
16 frmx X rm : 2 × 0
17 16 fovcl A 2 N A X rm N 0
18 14 15 17 syl2anc A 2 N J a b 3 J | ¬ 2 b A X rm N 0
19 18 nn0zd A 2 N J a b 3 J | ¬ 2 b A X rm N
20 8 adantl A 2 N J a b 3 J | ¬ 2 b a 3 J
21 fznn0sub a 3 J J a 0
22 20 21 syl A 2 N J a b 3 J | ¬ 2 b J a 0
23 zexpcl A X rm N J a 0 A X rm N J a
24 19 22 23 syl2anc A 2 N J a b 3 J | ¬ 2 b A X rm N J a
25 rmspecnonsq A 2 A 2 1
26 25 eldifad A 2 A 2 1
27 26 nnzd A 2 A 2 1
28 27 3ad2ant1 A 2 N J A 2 1
29 breq2 b = a 2 b 2 a
30 29 notbid b = a ¬ 2 b ¬ 2 a
31 30 elrab a b 3 J | ¬ 2 b a 3 J ¬ 2 a
32 31 simprbi a b 3 J | ¬ 2 b ¬ 2 a
33 1zzd a b 3 J | ¬ 2 b 1
34 n2dvds1 ¬ 2 1
35 34 a1i a b 3 J | ¬ 2 b ¬ 2 1
36 omoe a ¬ 2 a 1 ¬ 2 1 2 a 1
37 10 32 33 35 36 syl22anc a b 3 J | ¬ 2 b 2 a 1
38 2z 2
39 38 a1i a b 3 J | ¬ 2 b 2
40 2ne0 2 0
41 40 a1i a b 3 J | ¬ 2 b 2 0
42 peano2zm a a 1
43 10 42 syl a b 3 J | ¬ 2 b a 1
44 dvdsval2 2 2 0 a 1 2 a 1 a 1 2
45 39 41 43 44 syl3anc a b 3 J | ¬ 2 b 2 a 1 a 1 2
46 37 45 mpbid a b 3 J | ¬ 2 b a 1 2
47 43 zred a b 3 J | ¬ 2 b a 1
48 0red a 3 J 0
49 3re 3
50 49 a1i a 3 J 3
51 9 zred a 3 J a
52 3pos 0 < 3
53 52 a1i a 3 J 0 < 3
54 elfzle1 a 3 J 3 a
55 48 50 51 53 54 ltletrd a 3 J 0 < a
56 elnnz a a 0 < a
57 9 55 56 sylanbrc a 3 J a
58 nnm1nn0 a a 1 0
59 57 58 syl a 3 J a 1 0
60 59 nn0ge0d a 3 J 0 a 1
61 8 60 syl a b 3 J | ¬ 2 b 0 a 1
62 2re 2
63 62 a1i a b 3 J | ¬ 2 b 2
64 2pos 0 < 2
65 64 a1i a b 3 J | ¬ 2 b 0 < 2
66 divge0 a 1 0 a 1 2 0 < 2 0 a 1 2
67 47 61 63 65 66 syl22anc a b 3 J | ¬ 2 b 0 a 1 2
68 elnn0z a 1 2 0 a 1 2 0 a 1 2
69 46 67 68 sylanbrc a b 3 J | ¬ 2 b a 1 2 0
70 zexpcl A 2 1 a 1 2 0 A 2 1 a 1 2
71 28 69 70 syl2an A 2 N J a b 3 J | ¬ 2 b A 2 1 a 1 2
72 frmy Y rm : 2 ×
73 72 fovcl A 2 N A Y rm N
74 14 15 73 syl2anc A 2 N J a b 3 J | ¬ 2 b A Y rm N
75 elfzel1 a 3 J 3
76 9 75 zsubcld a 3 J a 3
77 subge0 a 3 0 a 3 3 a
78 51 49 77 sylancl a 3 J 0 a 3 3 a
79 54 78 mpbird a 3 J 0 a 3
80 elnn0z a 3 0 a 3 0 a 3
81 76 79 80 sylanbrc a 3 J a 3 0
82 8 81 syl a b 3 J | ¬ 2 b a 3 0
83 82 adantl A 2 N J a b 3 J | ¬ 2 b a 3 0
84 zexpcl A Y rm N a 3 0 A Y rm N a 3
85 74 83 84 syl2anc A 2 N J a b 3 J | ¬ 2 b A Y rm N a 3
86 71 85 zmulcld A 2 N J a b 3 J | ¬ 2 b A 2 1 a 1 2 A Y rm N a 3
87 24 86 zmulcld A 2 N J a b 3 J | ¬ 2 b A X rm N J a A 2 1 a 1 2 A Y rm N a 3
88 13 87 zmulcld A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3
89 5 88 fsumzcl A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3
90 73 3adant3 A 2 N J A Y rm N
91 3nn0 3 0
92 zexpcl A Y rm N 3 0 A Y rm N 3
93 90 91 92 sylancl A 2 N J A Y rm N 3
94 dvdsmul2 a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 A Y rm N 3 a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
95 89 93 94 syl2anc A 2 N J A Y rm N 3 a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
96 jm2.22 A 2 N J 0 A Y rm N J = a b 0 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2
97 6 96 syl3an3 A 2 N J A Y rm N J = a b 0 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2
98 1lt3 1 < 3
99 1re 1
100 99 49 ltnlei 1 < 3 ¬ 3 1
101 98 100 mpbi ¬ 3 1
102 elfzle1 1 3 J 3 1
103 101 102 mto ¬ 1 3 J
104 103 a1i A 2 N J ¬ 1 3 J
105 104 intnanrd A 2 N J ¬ 1 3 J ¬ 2 1
106 breq2 b = 1 2 b 2 1
107 106 notbid b = 1 ¬ 2 b ¬ 2 1
108 107 elrab 1 b 3 J | ¬ 2 b 1 3 J ¬ 2 1
109 105 108 sylnibr A 2 N J ¬ 1 b 3 J | ¬ 2 b
110 disjsn b 3 J | ¬ 2 b 1 = ¬ 1 b 3 J | ¬ 2 b
111 109 110 sylibr A 2 N J b 3 J | ¬ 2 b 1 =
112 simpr A 2 N J a 0 J ¬ 2 a a = 1 a = 1
113 112 olcd A 2 N J a 0 J ¬ 2 a a = 1 a 3 J ¬ 2 a a = 1
114 3z 3
115 114 a1i A 2 N J a 0 J ¬ 2 a a 1 3
116 nnz J J
117 116 3ad2ant3 A 2 N J J
118 117 ad2antrr A 2 N J a 0 J ¬ 2 a a 1 J
119 elfzelz a 0 J a
120 119 adantr a 0 J ¬ 2 a a
121 120 ad2antlr A 2 N J a 0 J ¬ 2 a a 1 a
122 elfznn0 a 0 J a 0
123 122 adantr a 0 J ¬ 2 a a 0
124 123 ad2antlr A 2 N J a 0 J ¬ 2 a a 1 a 0
125 simplrr A 2 N J a 0 J ¬ 2 a a 1 ¬ 2 a
126 simpr A 2 N J a 0 J ¬ 2 a a 1 a 1
127 elnn1uz2 a a = 1 a 2
128 df-ne a 1 ¬ a = 1
129 128 biimpi a 1 ¬ a = 1
130 129 3ad2ant3 a 0 ¬ 2 a a 1 ¬ a = 1
131 130 pm2.21d a 0 ¬ 2 a a 1 a = 1 3 a
132 131 imp a 0 ¬ 2 a a 1 a = 1 3 a
133 uzp1 a 2 a = 2 a 2 + 1
134 1z 1
135 dvdsmul1 2 1 2 2 1
136 38 134 135 mp2an 2 2 1
137 2t1e2 2 1 = 2
138 136 137 breqtri 2 2
139 breq2 a = 2 2 a 2 2
140 139 adantl a 0 ¬ 2 a a 1 a = 2 2 a 2 2
141 138 140 mpbiri a 0 ¬ 2 a a 1 a = 2 2 a
142 simpl2 a 0 ¬ 2 a a 1 a = 2 ¬ 2 a
143 141 142 pm2.21dd a 0 ¬ 2 a a 1 a = 2 3 a
144 eluzle a 3 3 a
145 2p1e3 2 + 1 = 3
146 145 fveq2i 2 + 1 = 3
147 144 146 eleq2s a 2 + 1 3 a
148 147 adantl a 0 ¬ 2 a a 1 a 2 + 1 3 a
149 143 148 jaodan a 0 ¬ 2 a a 1 a = 2 a 2 + 1 3 a
150 133 149 sylan2 a 0 ¬ 2 a a 1 a 2 3 a
151 132 150 jaodan a 0 ¬ 2 a a 1 a = 1 a 2 3 a
152 127 151 sylan2b a 0 ¬ 2 a a 1 a 3 a
153 dvds0 2 2 0
154 38 153 ax-mp 2 0
155 breq2 a = 0 2 a 2 0
156 154 155 mpbiri a = 0 2 a
157 156 adantl a 0 ¬ 2 a a 1 a = 0 2 a
158 simpl2 a 0 ¬ 2 a a 1 a = 0 ¬ 2 a
159 157 158 pm2.21dd a 0 ¬ 2 a a 1 a = 0 3 a
160 elnn0 a 0 a a = 0
161 160 biimpi a 0 a a = 0
162 161 3ad2ant1 a 0 ¬ 2 a a 1 a a = 0
163 152 159 162 mpjaodan a 0 ¬ 2 a a 1 3 a
164 124 125 126 163 syl3anc A 2 N J a 0 J ¬ 2 a a 1 3 a
165 elfzle2 a 0 J a J
166 165 adantr a 0 J ¬ 2 a a J
167 166 ad2antlr A 2 N J a 0 J ¬ 2 a a 1 a J
168 115 118 121 164 167 elfzd A 2 N J a 0 J ¬ 2 a a 1 a 3 J
169 168 125 jca A 2 N J a 0 J ¬ 2 a a 1 a 3 J ¬ 2 a
170 169 orcd A 2 N J a 0 J ¬ 2 a a 1 a 3 J ¬ 2 a a = 1
171 113 170 pm2.61dane A 2 N J a 0 J ¬ 2 a a 3 J ¬ 2 a a = 1
172 nn0uz 0 = 0
173 91 172 eleqtri 3 0
174 fzss1 3 0 3 J 0 J
175 173 174 ax-mp 3 J 0 J
176 175 sseli a 3 J a 0 J
177 176 anim1i a 3 J ¬ 2 a a 0 J ¬ 2 a
178 177 adantl A 2 N J a 3 J ¬ 2 a a 0 J ¬ 2 a
179 0zd A 2 N J a = 1 0
180 117 adantr A 2 N J a = 1 J
181 1zzd A 2 N J a = 1 1
182 0le1 0 1
183 182 a1i A 2 N J a = 1 0 1
184 nnge1 J 1 J
185 184 3ad2ant3 A 2 N J 1 J
186 185 adantr A 2 N J a = 1 1 J
187 179 180 181 183 186 elfzd A 2 N J a = 1 1 0 J
188 34 a1i A 2 N J a = 1 ¬ 2 1
189 eleq1 a = 1 a 0 J 1 0 J
190 breq2 a = 1 2 a 2 1
191 190 notbid a = 1 ¬ 2 a ¬ 2 1
192 189 191 anbi12d a = 1 a 0 J ¬ 2 a 1 0 J ¬ 2 1
193 192 adantl A 2 N J a = 1 a 0 J ¬ 2 a 1 0 J ¬ 2 1
194 187 188 193 mpbir2and A 2 N J a = 1 a 0 J ¬ 2 a
195 178 194 jaodan A 2 N J a 3 J ¬ 2 a a = 1 a 0 J ¬ 2 a
196 171 195 impbida A 2 N J a 0 J ¬ 2 a a 3 J ¬ 2 a a = 1
197 30 elrab a b 0 J | ¬ 2 b a 0 J ¬ 2 a
198 elun a b 3 J | ¬ 2 b 1 a b 3 J | ¬ 2 b a 1
199 velsn a 1 a = 1
200 31 199 orbi12i a b 3 J | ¬ 2 b a 1 a 3 J ¬ 2 a a = 1
201 198 200 bitri a b 3 J | ¬ 2 b 1 a 3 J ¬ 2 a a = 1
202 196 197 201 3bitr4g A 2 N J a b 0 J | ¬ 2 b a b 3 J | ¬ 2 b 1
203 202 eqrdv A 2 N J b 0 J | ¬ 2 b = b 3 J | ¬ 2 b 1
204 fzfi 0 J Fin
205 ssrab2 b 0 J | ¬ 2 b 0 J
206 ssfi 0 J Fin b 0 J | ¬ 2 b 0 J b 0 J | ¬ 2 b Fin
207 204 205 206 mp2an b 0 J | ¬ 2 b Fin
208 207 a1i A 2 N J b 0 J | ¬ 2 b Fin
209 205 sseli a b 0 J | ¬ 2 b a 0 J
210 209 119 syl a b 0 J | ¬ 2 b a
211 7 210 11 syl2an A 2 N J a b 0 J | ¬ 2 b ( J a) 0
212 211 nn0cnd A 2 N J a b 0 J | ¬ 2 b ( J a)
213 17 3adant3 A 2 N J A X rm N 0
214 213 nn0cnd A 2 N J A X rm N
215 214 adantr A 2 N J a b 0 J | ¬ 2 b A X rm N
216 209 adantl A 2 N J a b 0 J | ¬ 2 b a 0 J
217 fznn0sub a 0 J J a 0
218 216 217 syl A 2 N J a b 0 J | ¬ 2 b J a 0
219 215 218 expcld A 2 N J a b 0 J | ¬ 2 b A X rm N J a
220 90 zcnd A 2 N J A Y rm N
221 209 122 syl a b 0 J | ¬ 2 b a 0
222 expcl A Y rm N a 0 A Y rm N a
223 220 221 222 syl2an A 2 N J a b 0 J | ¬ 2 b A Y rm N a
224 rmspecpos A 2 A 2 1 +
225 224 rpcnd A 2 A 2 1
226 225 3ad2ant1 A 2 N J A 2 1
227 197 simprbi a b 0 J | ¬ 2 b ¬ 2 a
228 1zzd a b 0 J | ¬ 2 b 1
229 34 a1i a b 0 J | ¬ 2 b ¬ 2 1
230 210 227 228 229 36 syl22anc a b 0 J | ¬ 2 b 2 a 1
231 38 a1i a b 0 J | ¬ 2 b 2
232 40 a1i a b 0 J | ¬ 2 b 2 0
233 210 42 syl a b 0 J | ¬ 2 b a 1
234 231 232 233 44 syl3anc a b 0 J | ¬ 2 b 2 a 1 a 1 2
235 230 234 mpbid a b 0 J | ¬ 2 b a 1 2
236 233 zred a b 0 J | ¬ 2 b a 1
237 156 a1i a 0 J a = 0 2 a
238 237 con3dimp a 0 J ¬ 2 a ¬ a = 0
239 197 238 sylbi a b 0 J | ¬ 2 b ¬ a = 0
240 221 161 syl a b 0 J | ¬ 2 b a a = 0
241 orel2 ¬ a = 0 a a = 0 a
242 239 240 241 sylc a b 0 J | ¬ 2 b a
243 242 58 syl a b 0 J | ¬ 2 b a 1 0
244 243 nn0ge0d a b 0 J | ¬ 2 b 0 a 1
245 62 a1i a b 0 J | ¬ 2 b 2
246 64 a1i a b 0 J | ¬ 2 b 0 < 2
247 236 244 245 246 66 syl22anc a b 0 J | ¬ 2 b 0 a 1 2
248 235 247 68 sylanbrc a b 0 J | ¬ 2 b a 1 2 0
249 expcl A 2 1 a 1 2 0 A 2 1 a 1 2
250 226 248 249 syl2an A 2 N J a b 0 J | ¬ 2 b A 2 1 a 1 2
251 223 250 mulcld A 2 N J a b 0 J | ¬ 2 b A Y rm N a A 2 1 a 1 2
252 219 251 mulcld A 2 N J a b 0 J | ¬ 2 b A X rm N J a A Y rm N a A 2 1 a 1 2
253 212 252 mulcld A 2 N J a b 0 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2
254 111 203 208 253 fsumsplit A 2 N J a b 0 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 = a b 3 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 + a 1 ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2
255 expcl A Y rm N 3 0 A Y rm N 3
256 220 91 255 sylancl A 2 N J A Y rm N 3
257 88 zcnd A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3
258 5 256 257 fsummulc1 A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
259 12 nn0cnd A 2 N J a b 3 J | ¬ 2 b ( J a)
260 214 adantr A 2 N J a b 3 J | ¬ 2 b A X rm N
261 260 22 expcld A 2 N J a b 3 J | ¬ 2 b A X rm N J a
262 226 69 249 syl2an A 2 N J a b 3 J | ¬ 2 b A 2 1 a 1 2
263 expcl A Y rm N a 3 0 A Y rm N a 3
264 220 82 263 syl2an A 2 N J a b 3 J | ¬ 2 b A Y rm N a 3
265 262 264 mulcld A 2 N J a b 3 J | ¬ 2 b A 2 1 a 1 2 A Y rm N a 3
266 261 265 mulcld A 2 N J a b 3 J | ¬ 2 b A X rm N J a A 2 1 a 1 2 A Y rm N a 3
267 256 adantr A 2 N J a b 3 J | ¬ 2 b A Y rm N 3
268 259 266 267 mulassd A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
269 261 265 267 mulassd A 2 N J a b 3 J | ¬ 2 b A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
270 262 264 267 mulassd A 2 N J a b 3 J | ¬ 2 b A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
271 264 267 mulcld A 2 N J a b 3 J | ¬ 2 b A Y rm N a 3 A Y rm N 3
272 262 271 mulcomd A 2 N J a b 3 J | ¬ 2 b A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = A Y rm N a 3 A Y rm N 3 A 2 1 a 1 2
273 220 adantr A 2 N J a b 3 J | ¬ 2 b A Y rm N
274 91 a1i A 2 N J a b 3 J | ¬ 2 b 3 0
275 273 274 83 expaddd A 2 N J a b 3 J | ¬ 2 b A Y rm N a - 3 + 3 = A Y rm N a 3 A Y rm N 3
276 10 adantl A 2 N J a b 3 J | ¬ 2 b a
277 276 zcnd A 2 N J a b 3 J | ¬ 2 b a
278 3cn 3
279 npcan a 3 a - 3 + 3 = a
280 277 278 279 sylancl A 2 N J a b 3 J | ¬ 2 b a - 3 + 3 = a
281 280 oveq2d A 2 N J a b 3 J | ¬ 2 b A Y rm N a - 3 + 3 = A Y rm N a
282 275 281 eqtr3d A 2 N J a b 3 J | ¬ 2 b A Y rm N a 3 A Y rm N 3 = A Y rm N a
283 282 oveq1d A 2 N J a b 3 J | ¬ 2 b A Y rm N a 3 A Y rm N 3 A 2 1 a 1 2 = A Y rm N a A 2 1 a 1 2
284 270 272 283 3eqtrd A 2 N J a b 3 J | ¬ 2 b A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = A Y rm N a A 2 1 a 1 2
285 284 oveq2d A 2 N J a b 3 J | ¬ 2 b A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = A X rm N J a A Y rm N a A 2 1 a 1 2
286 269 285 eqtrd A 2 N J a b 3 J | ¬ 2 b A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = A X rm N J a A Y rm N a A 2 1 a 1 2
287 286 oveq2d A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2
288 268 287 eqtrd A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2
289 288 sumeq2dv A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = a b 3 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2
290 258 289 eqtr2d A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 = a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
291 1nn 1
292 bccl J 0 1 ( J 1 ) 0
293 6 134 292 sylancl J ( J 1 ) 0
294 293 nn0cnd J ( J 1 )
295 294 3ad2ant3 A 2 N J ( J 1 )
296 nnm1nn0 J J 1 0
297 296 3ad2ant3 A 2 N J J 1 0
298 214 297 expcld A 2 N J A X rm N J 1
299 1nn0 1 0
300 expcl A Y rm N 1 0 A Y rm N 1
301 220 299 300 sylancl A 2 N J A Y rm N 1
302 1m1e0 1 1 = 0
303 302 oveq1i 1 1 2 = 0 2
304 2cn 2
305 304 40 div0i 0 2 = 0
306 303 305 eqtri 1 1 2 = 0
307 0nn0 0 0
308 306 307 eqeltri 1 1 2 0
309 expcl A 2 1 1 1 2 0 A 2 1 1 1 2
310 226 308 309 sylancl A 2 N J A 2 1 1 1 2
311 301 310 mulcld A 2 N J A Y rm N 1 A 2 1 1 1 2
312 298 311 mulcld A 2 N J A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
313 295 312 mulcld A 2 N J ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
314 oveq2 a = 1 ( J a) = ( J 1 )
315 oveq2 a = 1 J a = J 1
316 315 oveq2d a = 1 A X rm N J a = A X rm N J 1
317 oveq2 a = 1 A Y rm N a = A Y rm N 1
318 oveq1 a = 1 a 1 = 1 1
319 318 oveq1d a = 1 a 1 2 = 1 1 2
320 319 oveq2d a = 1 A 2 1 a 1 2 = A 2 1 1 1 2
321 317 320 oveq12d a = 1 A Y rm N a A 2 1 a 1 2 = A Y rm N 1 A 2 1 1 1 2
322 316 321 oveq12d a = 1 A X rm N J a A Y rm N a A 2 1 a 1 2 = A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
323 314 322 oveq12d a = 1 ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 = ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
324 323 sumsn 1 ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2 a 1 ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 = ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
325 291 313 324 sylancr A 2 N J a 1 ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 = ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
326 290 325 oveq12d A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 + a 1 ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 = a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 + ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
327 97 254 326 3eqtrd A 2 N J A Y rm N J = a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 + ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
328 bcn1 J 0 ( J 1 ) = J
329 7 328 syl A 2 N J ( J 1 ) = J
330 329 eqcomd A 2 N J J = ( J 1 )
331 220 exp1d A 2 N J A Y rm N 1 = A Y rm N
332 306 a1i A 2 N J 1 1 2 = 0
333 332 oveq2d A 2 N J A 2 1 1 1 2 = A 2 1 0
334 226 exp0d A 2 N J A 2 1 0 = 1
335 333 334 eqtrd A 2 N J A 2 1 1 1 2 = 1
336 331 335 oveq12d A 2 N J A Y rm N 1 A 2 1 1 1 2 = A Y rm N 1
337 220 mulid1d A 2 N J A Y rm N 1 = A Y rm N
338 336 337 eqtr2d A 2 N J A Y rm N = A Y rm N 1 A 2 1 1 1 2
339 338 oveq2d A 2 N J A X rm N J 1 A Y rm N = A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
340 330 339 oveq12d A 2 N J J A X rm N J 1 A Y rm N = ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
341 327 340 oveq12d A 2 N J A Y rm N J J A X rm N J 1 A Y rm N = a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 + ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2 - ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
342 5 257 fsumcl A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3
343 342 256 mulcld A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
344 343 313 pncand A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 + ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2 - ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2 = a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
345 341 344 eqtrd A 2 N J A Y rm N J J A X rm N J 1 A Y rm N = a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
346 95 345 breqtrrd A 2 N J A Y rm N 3 A Y rm N J J A X rm N J 1 A Y rm N