Metamath Proof Explorer


Theorem jm2.23

Description: Lemma for jm2.20nn . Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014)

Ref Expression
Assertion jm2.23 A2NJAYrmN3AYrm N JJAXrmNJ1AYrmN

Proof

Step Hyp Ref Expression
1 fzfi 3JFin
2 ssrab2 b3J|¬2b3J
3 ssfi 3JFinb3J|¬2b3Jb3J|¬2bFin
4 1 2 3 mp2an b3J|¬2bFin
5 4 a1i A2NJb3J|¬2bFin
6 nnnn0 JJ0
7 6 3ad2ant3 A2NJJ0
8 2 sseli ab3J|¬2ba3J
9 elfzelz a3Ja
10 8 9 syl ab3J|¬2ba
11 bccl J0a(Ja)0
12 7 10 11 syl2an A2NJab3J|¬2b(Ja)0
13 12 nn0zd A2NJab3J|¬2b(Ja)
14 simpl1 A2NJab3J|¬2bA2
15 simpl2 A2NJab3J|¬2bN
16 frmx Xrm:2×0
17 16 fovcl A2NAXrmN0
18 14 15 17 syl2anc A2NJab3J|¬2bAXrmN0
19 18 nn0zd A2NJab3J|¬2bAXrmN
20 8 adantl A2NJab3J|¬2ba3J
21 fznn0sub a3JJa0
22 20 21 syl A2NJab3J|¬2bJa0
23 zexpcl AXrmNJa0AXrmNJa
24 19 22 23 syl2anc A2NJab3J|¬2bAXrmNJa
25 rmspecnonsq A2A21
26 25 eldifad A2A21
27 26 nnzd A2A21
28 27 3ad2ant1 A2NJA21
29 breq2 b=a2b2a
30 29 notbid b=a¬2b¬2a
31 30 elrab ab3J|¬2ba3J¬2a
32 31 simprbi ab3J|¬2b¬2a
33 1zzd ab3J|¬2b1
34 n2dvds1 ¬21
35 34 a1i ab3J|¬2b¬21
36 omoe a¬2a1¬212a1
37 10 32 33 35 36 syl22anc ab3J|¬2b2a1
38 2z 2
39 38 a1i ab3J|¬2b2
40 2ne0 20
41 40 a1i ab3J|¬2b20
42 peano2zm aa1
43 10 42 syl ab3J|¬2ba1
44 dvdsval2 220a12a1a12
45 39 41 43 44 syl3anc ab3J|¬2b2a1a12
46 37 45 mpbid ab3J|¬2ba12
47 43 zred ab3J|¬2ba1
48 0red a3J0
49 3re 3
50 49 a1i a3J3
51 9 zred a3Ja
52 3pos 0<3
53 52 a1i a3J0<3
54 elfzle1 a3J3a
55 48 50 51 53 54 ltletrd a3J0<a
56 elnnz aa0<a
57 9 55 56 sylanbrc a3Ja
58 nnm1nn0 aa10
59 57 58 syl a3Ja10
60 59 nn0ge0d a3J0a1
61 8 60 syl ab3J|¬2b0a1
62 2re 2
63 62 a1i ab3J|¬2b2
64 2pos 0<2
65 64 a1i ab3J|¬2b0<2
66 divge0 a10a120<20a12
67 47 61 63 65 66 syl22anc ab3J|¬2b0a12
68 elnn0z a120a120a12
69 46 67 68 sylanbrc ab3J|¬2ba120
70 zexpcl A21a120A21a12
71 28 69 70 syl2an A2NJab3J|¬2bA21a12
72 frmy Yrm:2×
73 72 fovcl A2NAYrmN
74 14 15 73 syl2anc A2NJab3J|¬2bAYrmN
75 elfzel1 a3J3
76 9 75 zsubcld a3Ja3
77 subge0 a30a33a
78 51 49 77 sylancl a3J0a33a
79 54 78 mpbird a3J0a3
80 elnn0z a30a30a3
81 76 79 80 sylanbrc a3Ja30
82 8 81 syl ab3J|¬2ba30
83 82 adantl A2NJab3J|¬2ba30
84 zexpcl AYrmNa30AYrmNa3
85 74 83 84 syl2anc A2NJab3J|¬2bAYrmNa3
86 71 85 zmulcld A2NJab3J|¬2bA21a12AYrmNa3
87 24 86 zmulcld A2NJab3J|¬2bAXrmNJaA21a12AYrmNa3
88 13 87 zmulcld A2NJab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3
89 5 88 fsumzcl A2NJab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3
90 73 3adant3 A2NJAYrmN
91 3nn0 30
92 zexpcl AYrmN30AYrmN3
93 90 91 92 sylancl A2NJAYrmN3
94 dvdsmul2 ab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3AYrmN3ab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3
95 89 93 94 syl2anc A2NJAYrmN3ab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3
96 jm2.22 A2NJ0AYrm N J=ab0J|¬2b(Ja)AXrmNJaAYrmNaA21a12
97 6 96 syl3an3 A2NJAYrm N J=ab0J|¬2b(Ja)AXrmNJaAYrmNaA21a12
98 1lt3 1<3
99 1re 1
100 99 49 ltnlei 1<3¬31
101 98 100 mpbi ¬31
102 elfzle1 13J31
103 101 102 mto ¬13J
104 103 a1i A2NJ¬13J
105 104 intnanrd A2NJ¬13J¬21
106 breq2 b=12b21
107 106 notbid b=1¬2b¬21
108 107 elrab 1b3J|¬2b13J¬21
109 105 108 sylnibr A2NJ¬1b3J|¬2b
110 disjsn b3J|¬2b1=¬1b3J|¬2b
111 109 110 sylibr A2NJb3J|¬2b1=
112 simpr A2NJa0J¬2aa=1a=1
113 112 olcd A2NJa0J¬2aa=1a3J¬2aa=1
114 3z 3
115 114 a1i A2NJa0J¬2aa13
116 nnz JJ
117 116 3ad2ant3 A2NJJ
118 117 ad2antrr A2NJa0J¬2aa1J
119 elfzelz a0Ja
120 119 adantr a0J¬2aa
121 120 ad2antlr A2NJa0J¬2aa1a
122 elfznn0 a0Ja0
123 122 adantr a0J¬2aa0
124 123 ad2antlr A2NJa0J¬2aa1a0
125 simplrr A2NJa0J¬2aa1¬2a
126 simpr A2NJa0J¬2aa1a1
127 elnn1uz2 aa=1a2
128 df-ne a1¬a=1
129 128 biimpi a1¬a=1
130 129 3ad2ant3 a0¬2aa1¬a=1
131 130 pm2.21d a0¬2aa1a=13a
132 131 imp a0¬2aa1a=13a
133 uzp1 a2a=2a2+1
134 1z 1
135 dvdsmul1 21221
136 38 134 135 mp2an 221
137 2t1e2 21=2
138 136 137 breqtri 22
139 breq2 a=22a22
140 139 adantl a0¬2aa1a=22a22
141 138 140 mpbiri a0¬2aa1a=22a
142 simpl2 a0¬2aa1a=2¬2a
143 141 142 pm2.21dd a0¬2aa1a=23a
144 eluzle a33a
145 2p1e3 2+1=3
146 145 fveq2i 2+1=3
147 144 146 eleq2s a2+13a
148 147 adantl a0¬2aa1a2+13a
149 143 148 jaodan a0¬2aa1a=2a2+13a
150 133 149 sylan2 a0¬2aa1a23a
151 132 150 jaodan a0¬2aa1a=1a23a
152 127 151 sylan2b a0¬2aa1a3a
153 dvds0 220
154 38 153 ax-mp 20
155 breq2 a=02a20
156 154 155 mpbiri a=02a
157 156 adantl a0¬2aa1a=02a
158 simpl2 a0¬2aa1a=0¬2a
159 157 158 pm2.21dd a0¬2aa1a=03a
160 elnn0 a0aa=0
161 160 biimpi a0aa=0
162 161 3ad2ant1 a0¬2aa1aa=0
163 152 159 162 mpjaodan a0¬2aa13a
164 124 125 126 163 syl3anc A2NJa0J¬2aa13a
165 elfzle2 a0JaJ
166 165 adantr a0J¬2aaJ
167 166 ad2antlr A2NJa0J¬2aa1aJ
168 115 118 121 164 167 elfzd A2NJa0J¬2aa1a3J
169 168 125 jca A2NJa0J¬2aa1a3J¬2a
170 169 orcd A2NJa0J¬2aa1a3J¬2aa=1
171 113 170 pm2.61dane A2NJa0J¬2aa3J¬2aa=1
172 nn0uz 0=0
173 91 172 eleqtri 30
174 fzss1 303J0J
175 173 174 ax-mp 3J0J
176 175 sseli a3Ja0J
177 176 anim1i a3J¬2aa0J¬2a
178 177 adantl A2NJa3J¬2aa0J¬2a
179 0zd A2NJa=10
180 117 adantr A2NJa=1J
181 1zzd A2NJa=11
182 0le1 01
183 182 a1i A2NJa=101
184 nnge1 J1J
185 184 3ad2ant3 A2NJ1J
186 185 adantr A2NJa=11J
187 179 180 181 183 186 elfzd A2NJa=110J
188 34 a1i A2NJa=1¬21
189 eleq1 a=1a0J10J
190 breq2 a=12a21
191 190 notbid a=1¬2a¬21
192 189 191 anbi12d a=1a0J¬2a10J¬21
193 192 adantl A2NJa=1a0J¬2a10J¬21
194 187 188 193 mpbir2and A2NJa=1a0J¬2a
195 178 194 jaodan A2NJa3J¬2aa=1a0J¬2a
196 171 195 impbida A2NJa0J¬2aa3J¬2aa=1
197 30 elrab ab0J|¬2ba0J¬2a
198 elun ab3J|¬2b1ab3J|¬2ba1
199 velsn a1a=1
200 31 199 orbi12i ab3J|¬2ba1a3J¬2aa=1
201 198 200 bitri ab3J|¬2b1a3J¬2aa=1
202 196 197 201 3bitr4g A2NJab0J|¬2bab3J|¬2b1
203 202 eqrdv A2NJb0J|¬2b=b3J|¬2b1
204 fzfi 0JFin
205 ssrab2 b0J|¬2b0J
206 ssfi 0JFinb0J|¬2b0Jb0J|¬2bFin
207 204 205 206 mp2an b0J|¬2bFin
208 207 a1i A2NJb0J|¬2bFin
209 205 sseli ab0J|¬2ba0J
210 209 119 syl ab0J|¬2ba
211 7 210 11 syl2an A2NJab0J|¬2b(Ja)0
212 211 nn0cnd A2NJab0J|¬2b(Ja)
213 17 3adant3 A2NJAXrmN0
214 213 nn0cnd A2NJAXrmN
215 214 adantr A2NJab0J|¬2bAXrmN
216 209 adantl A2NJab0J|¬2ba0J
217 fznn0sub a0JJa0
218 216 217 syl A2NJab0J|¬2bJa0
219 215 218 expcld A2NJab0J|¬2bAXrmNJa
220 90 zcnd A2NJAYrmN
221 209 122 syl ab0J|¬2ba0
222 expcl AYrmNa0AYrmNa
223 220 221 222 syl2an A2NJab0J|¬2bAYrmNa
224 rmspecpos A2A21+
225 224 rpcnd A2A21
226 225 3ad2ant1 A2NJA21
227 197 simprbi ab0J|¬2b¬2a
228 1zzd ab0J|¬2b1
229 34 a1i ab0J|¬2b¬21
230 210 227 228 229 36 syl22anc ab0J|¬2b2a1
231 38 a1i ab0J|¬2b2
232 40 a1i ab0J|¬2b20
233 210 42 syl ab0J|¬2ba1
234 231 232 233 44 syl3anc ab0J|¬2b2a1a12
235 230 234 mpbid ab0J|¬2ba12
236 233 zred ab0J|¬2ba1
237 156 a1i a0Ja=02a
238 237 con3dimp a0J¬2a¬a=0
239 197 238 sylbi ab0J|¬2b¬a=0
240 221 161 syl ab0J|¬2baa=0
241 orel2 ¬a=0aa=0a
242 239 240 241 sylc ab0J|¬2ba
243 242 58 syl ab0J|¬2ba10
244 243 nn0ge0d ab0J|¬2b0a1
245 62 a1i ab0J|¬2b2
246 64 a1i ab0J|¬2b0<2
247 236 244 245 246 66 syl22anc ab0J|¬2b0a12
248 235 247 68 sylanbrc ab0J|¬2ba120
249 expcl A21a120A21a12
250 226 248 249 syl2an A2NJab0J|¬2bA21a12
251 223 250 mulcld A2NJab0J|¬2bAYrmNaA21a12
252 219 251 mulcld A2NJab0J|¬2bAXrmNJaAYrmNaA21a12
253 212 252 mulcld A2NJab0J|¬2b(Ja)AXrmNJaAYrmNaA21a12
254 111 203 208 253 fsumsplit A2NJab0J|¬2b(Ja)AXrmNJaAYrmNaA21a12=ab3J|¬2b(Ja)AXrmNJaAYrmNaA21a12+a1(Ja)AXrmNJaAYrmNaA21a12
255 expcl AYrmN30AYrmN3
256 220 91 255 sylancl A2NJAYrmN3
257 88 zcnd A2NJab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3
258 5 256 257 fsummulc1 A2NJab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3=ab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3
259 12 nn0cnd A2NJab3J|¬2b(Ja)
260 214 adantr A2NJab3J|¬2bAXrmN
261 260 22 expcld A2NJab3J|¬2bAXrmNJa
262 226 69 249 syl2an A2NJab3J|¬2bA21a12
263 expcl AYrmNa30AYrmNa3
264 220 82 263 syl2an A2NJab3J|¬2bAYrmNa3
265 262 264 mulcld A2NJab3J|¬2bA21a12AYrmNa3
266 261 265 mulcld A2NJab3J|¬2bAXrmNJaA21a12AYrmNa3
267 256 adantr A2NJab3J|¬2bAYrmN3
268 259 266 267 mulassd A2NJab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3=(Ja)AXrmNJaA21a12AYrmNa3AYrmN3
269 261 265 267 mulassd A2NJab3J|¬2bAXrmNJaA21a12AYrmNa3AYrmN3=AXrmNJaA21a12AYrmNa3AYrmN3
270 262 264 267 mulassd A2NJab3J|¬2bA21a12AYrmNa3AYrmN3=A21a12AYrmNa3AYrmN3
271 264 267 mulcld A2NJab3J|¬2bAYrmNa3AYrmN3
272 262 271 mulcomd A2NJab3J|¬2bA21a12AYrmNa3AYrmN3=AYrmNa3AYrmN3A21a12
273 220 adantr A2NJab3J|¬2bAYrmN
274 91 a1i A2NJab3J|¬2b30
275 273 274 83 expaddd A2NJab3J|¬2bAYrmNa-3+3=AYrmNa3AYrmN3
276 10 adantl A2NJab3J|¬2ba
277 276 zcnd A2NJab3J|¬2ba
278 3cn 3
279 npcan a3a-3+3=a
280 277 278 279 sylancl A2NJab3J|¬2ba-3+3=a
281 280 oveq2d A2NJab3J|¬2bAYrmNa-3+3=AYrmNa
282 275 281 eqtr3d A2NJab3J|¬2bAYrmNa3AYrmN3=AYrmNa
283 282 oveq1d A2NJab3J|¬2bAYrmNa3AYrmN3A21a12=AYrmNaA21a12
284 270 272 283 3eqtrd A2NJab3J|¬2bA21a12AYrmNa3AYrmN3=AYrmNaA21a12
285 284 oveq2d A2NJab3J|¬2bAXrmNJaA21a12AYrmNa3AYrmN3=AXrmNJaAYrmNaA21a12
286 269 285 eqtrd A2NJab3J|¬2bAXrmNJaA21a12AYrmNa3AYrmN3=AXrmNJaAYrmNaA21a12
287 286 oveq2d A2NJab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3=(Ja)AXrmNJaAYrmNaA21a12
288 268 287 eqtrd A2NJab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3=(Ja)AXrmNJaAYrmNaA21a12
289 288 sumeq2dv A2NJab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3=ab3J|¬2b(Ja)AXrmNJaAYrmNaA21a12
290 258 289 eqtr2d A2NJab3J|¬2b(Ja)AXrmNJaAYrmNaA21a12=ab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3
291 1nn 1
292 bccl J01(J1)0
293 6 134 292 sylancl J(J1)0
294 293 nn0cnd J(J1)
295 294 3ad2ant3 A2NJ(J1)
296 nnm1nn0 JJ10
297 296 3ad2ant3 A2NJJ10
298 214 297 expcld A2NJAXrmNJ1
299 1nn0 10
300 expcl AYrmN10AYrmN1
301 220 299 300 sylancl A2NJAYrmN1
302 1m1e0 11=0
303 302 oveq1i 112=02
304 2cn 2
305 304 40 div0i 02=0
306 303 305 eqtri 112=0
307 0nn0 00
308 306 307 eqeltri 1120
309 expcl A211120A21112
310 226 308 309 sylancl A2NJA21112
311 301 310 mulcld A2NJAYrmN1A21112
312 298 311 mulcld A2NJAXrmNJ1AYrmN1A21112
313 295 312 mulcld A2NJ(J1)AXrmNJ1AYrmN1A21112
314 oveq2 a=1(Ja)=(J1)
315 oveq2 a=1Ja=J1
316 315 oveq2d a=1AXrmNJa=AXrmNJ1
317 oveq2 a=1AYrmNa=AYrmN1
318 oveq1 a=1a1=11
319 318 oveq1d a=1a12=112
320 319 oveq2d a=1A21a12=A21112
321 317 320 oveq12d a=1AYrmNaA21a12=AYrmN1A21112
322 316 321 oveq12d a=1AXrmNJaAYrmNaA21a12=AXrmNJ1AYrmN1A21112
323 314 322 oveq12d a=1(Ja)AXrmNJaAYrmNaA21a12=(J1)AXrmNJ1AYrmN1A21112
324 323 sumsn 1(J1)AXrmNJ1AYrmN1A21112a1(Ja)AXrmNJaAYrmNaA21a12=(J1)AXrmNJ1AYrmN1A21112
325 291 313 324 sylancr A2NJa1(Ja)AXrmNJaAYrmNaA21a12=(J1)AXrmNJ1AYrmN1A21112
326 290 325 oveq12d A2NJab3J|¬2b(Ja)AXrmNJaAYrmNaA21a12+a1(Ja)AXrmNJaAYrmNaA21a12=ab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3+(J1)AXrmNJ1AYrmN1A21112
327 97 254 326 3eqtrd A2NJAYrm N J=ab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3+(J1)AXrmNJ1AYrmN1A21112
328 bcn1 J0(J1)=J
329 7 328 syl A2NJ(J1)=J
330 329 eqcomd A2NJJ=(J1)
331 220 exp1d A2NJAYrmN1=AYrmN
332 306 a1i A2NJ112=0
333 332 oveq2d A2NJA21112=A210
334 226 exp0d A2NJA210=1
335 333 334 eqtrd A2NJA21112=1
336 331 335 oveq12d A2NJAYrmN1A21112=AYrmN1
337 220 mulridd A2NJAYrmN1=AYrmN
338 336 337 eqtr2d A2NJAYrmN=AYrmN1A21112
339 338 oveq2d A2NJAXrmNJ1AYrmN=AXrmNJ1AYrmN1A21112
340 330 339 oveq12d A2NJJAXrmNJ1AYrmN=(J1)AXrmNJ1AYrmN1A21112
341 327 340 oveq12d A2NJAYrm N JJAXrmNJ1AYrmN=ab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3+(J1)AXrmNJ1AYrmN1A21112-(J1)AXrmNJ1AYrmN1A21112
342 5 257 fsumcl A2NJab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3
343 342 256 mulcld A2NJab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3
344 343 313 pncand A2NJab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3+(J1)AXrmNJ1AYrmN1A21112-(J1)AXrmNJ1AYrmN1A21112=ab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3
345 341 344 eqtrd A2NJAYrm N JJAXrmNJ1AYrmN=ab3J|¬2b(Ja)AXrmNJaA21a12AYrmNa3AYrmN3
346 95 345 breqtrrd A2NJAYrmN3AYrm N JJAXrmNJ1AYrmN