Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Gamma function
lgamcvg2
Next ⟩
gamcvg
Metamath Proof Explorer
Ascii
Unicode
Theorem
lgamcvg2
Description:
The series
G
converges to
log_G ( A + 1 )
.
(Contributed by
Mario Carneiro
, 9-Jul-2017)
Ref
Expression
Hypotheses
lgamcvg.g
⊢
G
=
m
∈
ℕ
⟼
A
log
m
+
1
m
−
log
A
m
+
1
lgamcvg.a
⊢
φ
→
A
∈
ℂ
∖
ℤ
∖
ℕ
Assertion
lgamcvg2
⊢
φ
→
seq
1
+
G
⇝
log
Γ
A
+
1
Proof
Step
Hyp
Ref
Expression
1
lgamcvg.g
⊢
G
=
m
∈
ℕ
⟼
A
log
m
+
1
m
−
log
A
m
+
1
2
lgamcvg.a
⊢
φ
→
A
∈
ℂ
∖
ℤ
∖
ℕ
3
nnuz
⊢
ℕ
=
ℤ
≥
1
4
1zzd
⊢
φ
→
1
∈
ℤ
5
eqid
⊢
m
∈
ℕ
⟼
A
+
1
log
m
+
1
m
−
log
A
+
1
m
+
1
=
m
∈
ℕ
⟼
A
+
1
log
m
+
1
m
−
log
A
+
1
m
+
1
6
1nn0
⊢
1
∈
ℕ
0
7
6
a1i
⊢
φ
→
1
∈
ℕ
0
8
2
7
dmgmaddnn0
⊢
φ
→
A
+
1
∈
ℂ
∖
ℤ
∖
ℕ
9
5
8
lgamcvg
⊢
φ
→
seq
1
+
m
∈
ℕ
⟼
A
+
1
log
m
+
1
m
−
log
A
+
1
m
+
1
⇝
log
Γ
A
+
1
+
log
A
+
1
10
seqex
⊢
seq
1
+
G
∈
V
11
10
a1i
⊢
φ
→
seq
1
+
G
∈
V
12
2
eldifad
⊢
φ
→
A
∈
ℂ
13
12
abscld
⊢
φ
→
A
∈
ℝ
14
arch
⊢
A
∈
ℝ
→
∃
r
∈
ℕ
A
<
r
15
13
14
syl
⊢
φ
→
∃
r
∈
ℕ
A
<
r
16
eqid
⊢
ℤ
≥
r
=
ℤ
≥
r
17
simprl
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
r
∈
ℕ
18
17
nnzd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
r
∈
ℤ
19
eqid
⊢
ℂ
∖
−∞
0
=
ℂ
∖
−∞
0
20
19
logcn
⊢
log
↾
ℂ
∖
−∞
0
:
ℂ
∖
−∞
0
⟶
cn
ℂ
21
20
a1i
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
log
↾
ℂ
∖
−∞
0
:
ℂ
∖
−∞
0
⟶
cn
ℂ
22
eqid
⊢
1
ball
abs
∘
−
1
=
1
ball
abs
∘
−
1
23
22
dvlog2lem
⊢
1
ball
abs
∘
−
1
⊆
ℂ
∖
−∞
0
24
12
ad2antrr
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
∈
ℂ
25
eluznn
⊢
r
∈
ℕ
∧
m
∈
ℤ
≥
r
→
m
∈
ℕ
26
25
ex
⊢
r
∈
ℕ
→
m
∈
ℤ
≥
r
→
m
∈
ℕ
27
26
ad2antrl
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
m
∈
ℤ
≥
r
→
m
∈
ℕ
28
27
imp
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
m
∈
ℕ
29
28
nncnd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
m
∈
ℂ
30
1cnd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
1
∈
ℂ
31
29
30
addcld
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
m
+
1
∈
ℂ
32
28
peano2nnd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
m
+
1
∈
ℕ
33
32
nnne0d
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
m
+
1
≠
0
34
24
31
33
divcld
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
∈
ℂ
35
34
30
addcld
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
+
1
∈
ℂ
36
ax-1cn
⊢
1
∈
ℂ
37
eqid
⊢
abs
∘
−
=
abs
∘
−
38
37
cnmetdval
⊢
A
m
+
1
+
1
∈
ℂ
∧
1
∈
ℂ
→
A
m
+
1
+
1
abs
∘
−
1
=
A
m
+
1
+
1
-
1
39
35
36
38
sylancl
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
+
1
abs
∘
−
1
=
A
m
+
1
+
1
-
1
40
34
30
pncand
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
+
1
-
1
=
A
m
+
1
41
40
fveq2d
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
+
1
-
1
=
A
m
+
1
42
24
31
33
absdivd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
=
A
m
+
1
43
32
nnred
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
m
+
1
∈
ℝ
44
32
nnrpd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
m
+
1
∈
ℝ
+
45
44
rpge0d
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
0
≤
m
+
1
46
43
45
absidd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
m
+
1
=
m
+
1
47
46
oveq2d
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
=
A
m
+
1
48
42
47
eqtrd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
=
A
m
+
1
49
39
41
48
3eqtrd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
+
1
abs
∘
−
1
=
A
m
+
1
50
13
ad2antrr
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
∈
ℝ
51
17
adantr
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
r
∈
ℕ
52
51
nnred
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
r
∈
ℝ
53
simplrr
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
<
r
54
eluzle
⊢
m
∈
ℤ
≥
r
→
r
≤
m
55
54
adantl
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
r
≤
m
56
nnleltp1
⊢
r
∈
ℕ
∧
m
∈
ℕ
→
r
≤
m
↔
r
<
m
+
1
57
51
28
56
syl2anc
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
r
≤
m
↔
r
<
m
+
1
58
55
57
mpbid
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
r
<
m
+
1
59
50
52
43
53
58
lttrd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
<
m
+
1
60
31
mulridd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
m
+
1
⋅
1
=
m
+
1
61
59
60
breqtrrd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
<
m
+
1
⋅
1
62
1red
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
1
∈
ℝ
63
50
62
44
ltdivmuld
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
<
1
↔
A
<
m
+
1
⋅
1
64
61
63
mpbird
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
<
1
65
49
64
eqbrtrd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
+
1
abs
∘
−
1
<
1
66
cnxmet
⊢
abs
∘
−
∈
∞Met
ℂ
67
66
a1i
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
abs
∘
−
∈
∞Met
ℂ
68
1rp
⊢
1
∈
ℝ
+
69
rpxr
⊢
1
∈
ℝ
+
→
1
∈
ℝ
*
70
68
69
mp1i
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
1
∈
ℝ
*
71
elbl3
⊢
abs
∘
−
∈
∞Met
ℂ
∧
1
∈
ℝ
*
∧
1
∈
ℂ
∧
A
m
+
1
+
1
∈
ℂ
→
A
m
+
1
+
1
∈
1
ball
abs
∘
−
1
↔
A
m
+
1
+
1
abs
∘
−
1
<
1
72
67
70
30
35
71
syl22anc
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
+
1
∈
1
ball
abs
∘
−
1
↔
A
m
+
1
+
1
abs
∘
−
1
<
1
73
65
72
mpbird
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
+
1
∈
1
ball
abs
∘
−
1
74
23
73
sselid
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
+
1
∈
ℂ
∖
−∞
0
75
74
fmpttd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
m
∈
ℤ
≥
r
⟼
A
m
+
1
+
1
:
ℤ
≥
r
⟶
ℂ
∖
−∞
0
76
27
ssrdv
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
ℤ
≥
r
⊆
ℕ
77
76
resmptd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
m
∈
ℕ
⟼
A
m
+
1
+
1
↾
ℤ
≥
r
=
m
∈
ℤ
≥
r
⟼
A
m
+
1
+
1
78
nnex
⊢
ℕ
∈
V
79
78
mptex
⊢
m
∈
ℕ
⟼
A
m
+
1
∈
V
80
79
a1i
⊢
φ
→
m
∈
ℕ
⟼
A
m
+
1
∈
V
81
oveq1
⊢
m
=
n
→
m
+
1
=
n
+
1
82
81
oveq2d
⊢
m
=
n
→
A
m
+
1
=
A
n
+
1
83
eqid
⊢
m
∈
ℕ
⟼
A
m
+
1
=
m
∈
ℕ
⟼
A
m
+
1
84
ovex
⊢
A
n
+
1
∈
V
85
82
83
84
fvmpt
⊢
n
∈
ℕ
→
m
∈
ℕ
⟼
A
m
+
1
n
=
A
n
+
1
86
85
adantl
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
A
m
+
1
n
=
A
n
+
1
87
3
4
12
4
80
86
divcnvshft
⊢
φ
→
m
∈
ℕ
⟼
A
m
+
1
⇝
0
88
1cnd
⊢
φ
→
1
∈
ℂ
89
78
mptex
⊢
m
∈
ℕ
⟼
A
m
+
1
+
1
∈
V
90
89
a1i
⊢
φ
→
m
∈
ℕ
⟼
A
m
+
1
+
1
∈
V
91
12
adantr
⊢
φ
∧
n
∈
ℕ
→
A
∈
ℂ
92
simpr
⊢
φ
∧
n
∈
ℕ
→
n
∈
ℕ
93
92
nncnd
⊢
φ
∧
n
∈
ℕ
→
n
∈
ℂ
94
1cnd
⊢
φ
∧
n
∈
ℕ
→
1
∈
ℂ
95
93
94
addcld
⊢
φ
∧
n
∈
ℕ
→
n
+
1
∈
ℂ
96
92
peano2nnd
⊢
φ
∧
n
∈
ℕ
→
n
+
1
∈
ℕ
97
96
nnne0d
⊢
φ
∧
n
∈
ℕ
→
n
+
1
≠
0
98
91
95
97
divcld
⊢
φ
∧
n
∈
ℕ
→
A
n
+
1
∈
ℂ
99
86
98
eqeltrd
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
A
m
+
1
n
∈
ℂ
100
82
oveq1d
⊢
m
=
n
→
A
m
+
1
+
1
=
A
n
+
1
+
1
101
eqid
⊢
m
∈
ℕ
⟼
A
m
+
1
+
1
=
m
∈
ℕ
⟼
A
m
+
1
+
1
102
ovex
⊢
A
n
+
1
+
1
∈
V
103
100
101
102
fvmpt
⊢
n
∈
ℕ
→
m
∈
ℕ
⟼
A
m
+
1
+
1
n
=
A
n
+
1
+
1
104
103
adantl
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
A
m
+
1
+
1
n
=
A
n
+
1
+
1
105
86
oveq1d
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
A
m
+
1
n
+
1
=
A
n
+
1
+
1
106
104
105
eqtr4d
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
A
m
+
1
+
1
n
=
m
∈
ℕ
⟼
A
m
+
1
n
+
1
107
3
4
87
88
90
99
106
climaddc1
⊢
φ
→
m
∈
ℕ
⟼
A
m
+
1
+
1
⇝
0
+
1
108
0p1e1
⊢
0
+
1
=
1
109
107
108
breqtrdi
⊢
φ
→
m
∈
ℕ
⟼
A
m
+
1
+
1
⇝
1
110
109
adantr
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
m
∈
ℕ
⟼
A
m
+
1
+
1
⇝
1
111
climres
⊢
r
∈
ℤ
∧
m
∈
ℕ
⟼
A
m
+
1
+
1
∈
V
→
m
∈
ℕ
⟼
A
m
+
1
+
1
↾
ℤ
≥
r
⇝
1
↔
m
∈
ℕ
⟼
A
m
+
1
+
1
⇝
1
112
18
89
111
sylancl
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
m
∈
ℕ
⟼
A
m
+
1
+
1
↾
ℤ
≥
r
⇝
1
↔
m
∈
ℕ
⟼
A
m
+
1
+
1
⇝
1
113
110
112
mpbird
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
m
∈
ℕ
⟼
A
m
+
1
+
1
↾
ℤ
≥
r
⇝
1
114
77
113
eqbrtrrd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
m
∈
ℤ
≥
r
⟼
A
m
+
1
+
1
⇝
1
115
68
a1i
⊢
1
∈
ℝ
→
1
∈
ℝ
+
116
19
ellogdm
⊢
1
∈
ℂ
∖
−∞
0
↔
1
∈
ℂ
∧
1
∈
ℝ
→
1
∈
ℝ
+
117
36
115
116
mpbir2an
⊢
1
∈
ℂ
∖
−∞
0
118
117
a1i
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
1
∈
ℂ
∖
−∞
0
119
16
18
21
75
114
118
climcncf
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
log
↾
ℂ
∖
−∞
0
∘
m
∈
ℤ
≥
r
⟼
A
m
+
1
+
1
⇝
log
↾
ℂ
∖
−∞
0
1
120
logf1o
⊢
log
:
ℂ
∖
0
⟶
1-1 onto
ran
log
121
f1of
⊢
log
:
ℂ
∖
0
⟶
1-1 onto
ran
log
→
log
:
ℂ
∖
0
⟶
ran
log
122
120
121
mp1i
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
log
:
ℂ
∖
0
⟶
ran
log
123
19
logdmss
⊢
ℂ
∖
−∞
0
⊆
ℂ
∖
0
124
123
74
sselid
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
∧
m
∈
ℤ
≥
r
→
A
m
+
1
+
1
∈
ℂ
∖
0
125
122
124
cofmpt
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
log
∘
m
∈
ℤ
≥
r
⟼
A
m
+
1
+
1
=
m
∈
ℤ
≥
r
⟼
log
A
m
+
1
+
1
126
frn
⊢
m
∈
ℤ
≥
r
⟼
A
m
+
1
+
1
:
ℤ
≥
r
⟶
ℂ
∖
−∞
0
→
ran
m
∈
ℤ
≥
r
⟼
A
m
+
1
+
1
⊆
ℂ
∖
−∞
0
127
cores
⊢
ran
m
∈
ℤ
≥
r
⟼
A
m
+
1
+
1
⊆
ℂ
∖
−∞
0
→
log
↾
ℂ
∖
−∞
0
∘
m
∈
ℤ
≥
r
⟼
A
m
+
1
+
1
=
log
∘
m
∈
ℤ
≥
r
⟼
A
m
+
1
+
1
128
75
126
127
3syl
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
log
↾
ℂ
∖
−∞
0
∘
m
∈
ℤ
≥
r
⟼
A
m
+
1
+
1
=
log
∘
m
∈
ℤ
≥
r
⟼
A
m
+
1
+
1
129
76
resmptd
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
m
∈
ℕ
⟼
log
A
m
+
1
+
1
↾
ℤ
≥
r
=
m
∈
ℤ
≥
r
⟼
log
A
m
+
1
+
1
130
125
128
129
3eqtr4d
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
log
↾
ℂ
∖
−∞
0
∘
m
∈
ℤ
≥
r
⟼
A
m
+
1
+
1
=
m
∈
ℕ
⟼
log
A
m
+
1
+
1
↾
ℤ
≥
r
131
fvres
⊢
1
∈
ℂ
∖
−∞
0
→
log
↾
ℂ
∖
−∞
0
1
=
log
1
132
117
131
mp1i
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
log
↾
ℂ
∖
−∞
0
1
=
log
1
133
log1
⊢
log
1
=
0
134
132
133
eqtrdi
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
log
↾
ℂ
∖
−∞
0
1
=
0
135
119
130
134
3brtr3d
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
m
∈
ℕ
⟼
log
A
m
+
1
+
1
↾
ℤ
≥
r
⇝
0
136
78
mptex
⊢
m
∈
ℕ
⟼
log
A
m
+
1
+
1
∈
V
137
climres
⊢
r
∈
ℤ
∧
m
∈
ℕ
⟼
log
A
m
+
1
+
1
∈
V
→
m
∈
ℕ
⟼
log
A
m
+
1
+
1
↾
ℤ
≥
r
⇝
0
↔
m
∈
ℕ
⟼
log
A
m
+
1
+
1
⇝
0
138
18
136
137
sylancl
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
m
∈
ℕ
⟼
log
A
m
+
1
+
1
↾
ℤ
≥
r
⇝
0
↔
m
∈
ℕ
⟼
log
A
m
+
1
+
1
⇝
0
139
135
138
mpbid
⊢
φ
∧
r
∈
ℕ
∧
A
<
r
→
m
∈
ℕ
⟼
log
A
m
+
1
+
1
⇝
0
140
15
139
rexlimddv
⊢
φ
→
m
∈
ℕ
⟼
log
A
m
+
1
+
1
⇝
0
141
12
88
addcld
⊢
φ
→
A
+
1
∈
ℂ
142
8
dmgmn0
⊢
φ
→
A
+
1
≠
0
143
141
142
logcld
⊢
φ
→
log
A
+
1
∈
ℂ
144
78
mptex
⊢
m
∈
ℕ
⟼
log
A
+
1
−
log
A
m
+
1
+
1
∈
V
145
144
a1i
⊢
φ
→
m
∈
ℕ
⟼
log
A
+
1
−
log
A
m
+
1
+
1
∈
V
146
82
fvoveq1d
⊢
m
=
n
→
log
A
m
+
1
+
1
=
log
A
n
+
1
+
1
147
eqid
⊢
m
∈
ℕ
⟼
log
A
m
+
1
+
1
=
m
∈
ℕ
⟼
log
A
m
+
1
+
1
148
fvex
⊢
log
A
n
+
1
+
1
∈
V
149
146
147
148
fvmpt
⊢
n
∈
ℕ
→
m
∈
ℕ
⟼
log
A
m
+
1
+
1
n
=
log
A
n
+
1
+
1
150
149
adantl
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
log
A
m
+
1
+
1
n
=
log
A
n
+
1
+
1
151
98
94
addcld
⊢
φ
∧
n
∈
ℕ
→
A
n
+
1
+
1
∈
ℂ
152
2
adantr
⊢
φ
∧
n
∈
ℕ
→
A
∈
ℂ
∖
ℤ
∖
ℕ
153
152
96
dmgmdivn0
⊢
φ
∧
n
∈
ℕ
→
A
n
+
1
+
1
≠
0
154
151
153
logcld
⊢
φ
∧
n
∈
ℕ
→
log
A
n
+
1
+
1
∈
ℂ
155
150
154
eqeltrd
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
log
A
m
+
1
+
1
n
∈
ℂ
156
146
oveq2d
⊢
m
=
n
→
log
A
+
1
−
log
A
m
+
1
+
1
=
log
A
+
1
−
log
A
n
+
1
+
1
157
eqid
⊢
m
∈
ℕ
⟼
log
A
+
1
−
log
A
m
+
1
+
1
=
m
∈
ℕ
⟼
log
A
+
1
−
log
A
m
+
1
+
1
158
ovex
⊢
log
A
+
1
−
log
A
n
+
1
+
1
∈
V
159
156
157
158
fvmpt
⊢
n
∈
ℕ
→
m
∈
ℕ
⟼
log
A
+
1
−
log
A
m
+
1
+
1
n
=
log
A
+
1
−
log
A
n
+
1
+
1
160
159
adantl
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
log
A
+
1
−
log
A
m
+
1
+
1
n
=
log
A
+
1
−
log
A
n
+
1
+
1
161
150
oveq2d
⊢
φ
∧
n
∈
ℕ
→
log
A
+
1
−
m
∈
ℕ
⟼
log
A
m
+
1
+
1
n
=
log
A
+
1
−
log
A
n
+
1
+
1
162
160
161
eqtr4d
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
log
A
+
1
−
log
A
m
+
1
+
1
n
=
log
A
+
1
−
m
∈
ℕ
⟼
log
A
m
+
1
+
1
n
163
3
4
140
143
145
155
162
climsubc2
⊢
φ
→
m
∈
ℕ
⟼
log
A
+
1
−
log
A
m
+
1
+
1
⇝
log
A
+
1
−
0
164
143
subid1d
⊢
φ
→
log
A
+
1
−
0
=
log
A
+
1
165
163
164
breqtrd
⊢
φ
→
m
∈
ℕ
⟼
log
A
+
1
−
log
A
m
+
1
+
1
⇝
log
A
+
1
166
elfznn
⊢
k
∈
1
…
n
→
k
∈
ℕ
167
166
adantl
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
k
∈
ℕ
168
oveq1
⊢
m
=
k
→
m
+
1
=
k
+
1
169
id
⊢
m
=
k
→
m
=
k
170
168
169
oveq12d
⊢
m
=
k
→
m
+
1
m
=
k
+
1
k
171
170
fveq2d
⊢
m
=
k
→
log
m
+
1
m
=
log
k
+
1
k
172
171
oveq2d
⊢
m
=
k
→
A
+
1
log
m
+
1
m
=
A
+
1
log
k
+
1
k
173
oveq2
⊢
m
=
k
→
A
+
1
m
=
A
+
1
k
174
173
fvoveq1d
⊢
m
=
k
→
log
A
+
1
m
+
1
=
log
A
+
1
k
+
1
175
172
174
oveq12d
⊢
m
=
k
→
A
+
1
log
m
+
1
m
−
log
A
+
1
m
+
1
=
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
176
ovex
⊢
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
∈
V
177
175
5
176
fvmpt
⊢
k
∈
ℕ
→
m
∈
ℕ
⟼
A
+
1
log
m
+
1
m
−
log
A
+
1
m
+
1
k
=
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
178
167
177
syl
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
m
∈
ℕ
⟼
A
+
1
log
m
+
1
m
−
log
A
+
1
m
+
1
k
=
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
179
92
3
eleqtrdi
⊢
φ
∧
n
∈
ℕ
→
n
∈
ℤ
≥
1
180
12
ad2antrr
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
∈
ℂ
181
1cnd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
1
∈
ℂ
182
180
181
addcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
∈
ℂ
183
167
peano2nnd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
k
+
1
∈
ℕ
184
183
nnrpd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
k
+
1
∈
ℝ
+
185
167
nnrpd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
k
∈
ℝ
+
186
184
185
rpdivcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
k
+
1
k
∈
ℝ
+
187
186
relogcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
k
+
1
k
∈
ℝ
188
187
recnd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
k
+
1
k
∈
ℂ
189
182
188
mulcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
log
k
+
1
k
∈
ℂ
190
167
nncnd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
k
∈
ℂ
191
167
nnne0d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
k
≠
0
192
182
190
191
divcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
k
∈
ℂ
193
192
181
addcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
k
+
1
∈
ℂ
194
8
ad2antrr
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
∈
ℂ
∖
ℤ
∖
ℕ
195
194
167
dmgmdivn0
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
k
+
1
≠
0
196
193
195
logcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
+
1
k
+
1
∈
ℂ
197
189
196
subcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
∈
ℂ
198
178
179
197
fsumser
⊢
φ
∧
n
∈
ℕ
→
∑
k
=
1
n
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
=
seq
1
+
m
∈
ℕ
⟼
A
+
1
log
m
+
1
m
−
log
A
+
1
m
+
1
n
199
fzfid
⊢
φ
∧
n
∈
ℕ
→
1
…
n
∈
Fin
200
199
197
fsumcl
⊢
φ
∧
n
∈
ℕ
→
∑
k
=
1
n
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
∈
ℂ
201
198
200
eqeltrrd
⊢
φ
∧
n
∈
ℕ
→
seq
1
+
m
∈
ℕ
⟼
A
+
1
log
m
+
1
m
−
log
A
+
1
m
+
1
n
∈
ℂ
202
143
adantr
⊢
φ
∧
n
∈
ℕ
→
log
A
+
1
∈
ℂ
203
202
154
subcld
⊢
φ
∧
n
∈
ℕ
→
log
A
+
1
−
log
A
n
+
1
+
1
∈
ℂ
204
160
203
eqeltrd
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
log
A
+
1
−
log
A
m
+
1
+
1
n
∈
ℂ
205
180
188
mulcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
log
k
+
1
k
∈
ℂ
206
180
190
191
divcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
k
∈
ℂ
207
206
181
addcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
k
+
1
∈
ℂ
208
2
ad2antrr
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
∈
ℂ
∖
ℤ
∖
ℕ
209
208
167
dmgmdivn0
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
k
+
1
≠
0
210
207
209
logcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
k
+
1
∈
ℂ
211
205
210
subcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
log
k
+
1
k
−
log
A
k
+
1
∈
ℂ
212
199
211
fsumcl
⊢
φ
∧
n
∈
ℕ
→
∑
k
=
1
n
A
log
k
+
1
k
−
log
A
k
+
1
∈
ℂ
213
200
212
nncand
⊢
φ
∧
n
∈
ℕ
→
∑
k
=
1
n
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
−
∑
k
=
1
n
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
−
∑
k
=
1
n
A
log
k
+
1
k
−
log
A
k
+
1
=
∑
k
=
1
n
A
log
k
+
1
k
−
log
A
k
+
1
214
189
196
205
210
sub4d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
log
k
+
1
k
-
log
A
+
1
k
+
1
-
A
log
k
+
1
k
−
log
A
k
+
1
=
A
+
1
log
k
+
1
k
-
A
log
k
+
1
k
-
log
A
+
1
k
+
1
−
log
A
k
+
1
215
180
181
pncan2d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
-
A
=
1
216
215
oveq1d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
-
A
log
k
+
1
k
=
1
log
k
+
1
k
217
182
180
188
subdird
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
-
A
log
k
+
1
k
=
A
+
1
log
k
+
1
k
−
A
log
k
+
1
k
218
188
mullidd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
1
log
k
+
1
k
=
log
k
+
1
k
219
216
217
218
3eqtr3d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
log
k
+
1
k
−
A
log
k
+
1
k
=
log
k
+
1
k
220
219
oveq1d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
log
k
+
1
k
-
A
log
k
+
1
k
-
log
A
+
1
k
+
1
−
log
A
k
+
1
=
log
k
+
1
k
−
log
A
+
1
k
+
1
−
log
A
k
+
1
221
188
196
210
subsubd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
k
+
1
k
−
log
A
+
1
k
+
1
−
log
A
k
+
1
=
log
k
+
1
k
-
log
A
+
1
k
+
1
+
log
A
k
+
1
222
188
196
subcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
k
+
1
k
−
log
A
+
1
k
+
1
∈
ℂ
223
222
210
addcomd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
k
+
1
k
-
log
A
+
1
k
+
1
+
log
A
k
+
1
=
log
A
k
+
1
+
log
k
+
1
k
-
log
A
+
1
k
+
1
224
210
196
188
subsub2d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
k
+
1
−
log
A
+
1
k
+
1
−
log
k
+
1
k
=
log
A
k
+
1
+
log
k
+
1
k
-
log
A
+
1
k
+
1
225
183
nncnd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
k
+
1
∈
ℂ
226
180
225
addcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
k
+
1
∈
ℂ
227
183
nnnn0d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
k
+
1
∈
ℕ
0
228
dmgmaddn0
⊢
A
∈
ℂ
∖
ℤ
∖
ℕ
∧
k
+
1
∈
ℕ
0
→
A
+
k
+
1
≠
0
229
208
227
228
syl2anc
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
k
+
1
≠
0
230
226
229
logcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
+
k
+
1
∈
ℂ
231
184
relogcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
k
+
1
∈
ℝ
232
231
recnd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
k
+
1
∈
ℂ
233
185
relogcld
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
k
∈
ℝ
234
233
recnd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
k
∈
ℂ
235
230
232
234
nnncan2d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
+
k
+
1
-
log
k
-
log
k
+
1
−
log
k
=
log
A
+
k
+
1
−
log
k
+
1
236
182
190
190
191
divdird
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
+
k
k
=
A
+
1
k
+
k
k
237
180
190
181
add32d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
k
+
1
=
A
+
1
+
k
238
180
190
181
addassd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
k
+
1
=
A
+
k
+
1
239
237
238
eqtr3d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
+
k
=
A
+
k
+
1
240
239
oveq1d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
+
k
k
=
A
+
k
+
1
k
241
190
191
dividd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
k
k
=
1
242
241
oveq2d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
k
+
k
k
=
A
+
1
k
+
1
243
236
240
242
3eqtr3rd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
k
+
1
=
A
+
k
+
1
k
244
243
fveq2d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
+
1
k
+
1
=
log
A
+
k
+
1
k
245
logdiv2
⊢
A
+
k
+
1
∈
ℂ
∧
A
+
k
+
1
≠
0
∧
k
∈
ℝ
+
→
log
A
+
k
+
1
k
=
log
A
+
k
+
1
−
log
k
246
226
229
185
245
syl3anc
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
+
k
+
1
k
=
log
A
+
k
+
1
−
log
k
247
244
246
eqtrd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
+
1
k
+
1
=
log
A
+
k
+
1
−
log
k
248
184
185
relogdivd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
k
+
1
k
=
log
k
+
1
−
log
k
249
247
248
oveq12d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
+
1
k
+
1
−
log
k
+
1
k
=
log
A
+
k
+
1
-
log
k
-
log
k
+
1
−
log
k
250
183
nnne0d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
k
+
1
≠
0
251
180
225
225
250
divdird
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
k
+
1
k
+
1
=
A
k
+
1
+
k
+
1
k
+
1
252
225
250
dividd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
k
+
1
k
+
1
=
1
253
252
oveq2d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
k
+
1
+
k
+
1
k
+
1
=
A
k
+
1
+
1
254
251
253
eqtr2d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
k
+
1
+
1
=
A
+
k
+
1
k
+
1
255
254
fveq2d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
k
+
1
+
1
=
log
A
+
k
+
1
k
+
1
256
logdiv2
⊢
A
+
k
+
1
∈
ℂ
∧
A
+
k
+
1
≠
0
∧
k
+
1
∈
ℝ
+
→
log
A
+
k
+
1
k
+
1
=
log
A
+
k
+
1
−
log
k
+
1
257
226
229
184
256
syl3anc
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
+
k
+
1
k
+
1
=
log
A
+
k
+
1
−
log
k
+
1
258
255
257
eqtrd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
k
+
1
+
1
=
log
A
+
k
+
1
−
log
k
+
1
259
235
249
258
3eqtr4d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
+
1
k
+
1
−
log
k
+
1
k
=
log
A
k
+
1
+
1
260
259
oveq2d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
k
+
1
−
log
A
+
1
k
+
1
−
log
k
+
1
k
=
log
A
k
+
1
−
log
A
k
+
1
+
1
261
224
260
eqtr3d
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
A
k
+
1
+
log
k
+
1
k
-
log
A
+
1
k
+
1
=
log
A
k
+
1
−
log
A
k
+
1
+
1
262
221
223
261
3eqtrd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
log
k
+
1
k
−
log
A
+
1
k
+
1
−
log
A
k
+
1
=
log
A
k
+
1
−
log
A
k
+
1
+
1
263
214
220
262
3eqtrd
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
A
+
1
log
k
+
1
k
-
log
A
+
1
k
+
1
-
A
log
k
+
1
k
−
log
A
k
+
1
=
log
A
k
+
1
−
log
A
k
+
1
+
1
264
263
sumeq2dv
⊢
φ
∧
n
∈
ℕ
→
∑
k
=
1
n
A
+
1
log
k
+
1
k
-
log
A
+
1
k
+
1
-
A
log
k
+
1
k
−
log
A
k
+
1
=
∑
k
=
1
n
log
A
k
+
1
−
log
A
k
+
1
+
1
265
199
197
211
fsumsub
⊢
φ
∧
n
∈
ℕ
→
∑
k
=
1
n
A
+
1
log
k
+
1
k
-
log
A
+
1
k
+
1
-
A
log
k
+
1
k
−
log
A
k
+
1
=
∑
k
=
1
n
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
−
∑
k
=
1
n
A
log
k
+
1
k
−
log
A
k
+
1
266
oveq2
⊢
x
=
k
→
A
x
=
A
k
267
266
fvoveq1d
⊢
x
=
k
→
log
A
x
+
1
=
log
A
k
+
1
268
oveq2
⊢
x
=
k
+
1
→
A
x
=
A
k
+
1
269
268
fvoveq1d
⊢
x
=
k
+
1
→
log
A
x
+
1
=
log
A
k
+
1
+
1
270
oveq2
⊢
x
=
1
→
A
x
=
A
1
271
270
fvoveq1d
⊢
x
=
1
→
log
A
x
+
1
=
log
A
1
+
1
272
oveq2
⊢
x
=
n
+
1
→
A
x
=
A
n
+
1
273
272
fvoveq1d
⊢
x
=
n
+
1
→
log
A
x
+
1
=
log
A
n
+
1
+
1
274
92
nnzd
⊢
φ
∧
n
∈
ℕ
→
n
∈
ℤ
275
96
3
eleqtrdi
⊢
φ
∧
n
∈
ℕ
→
n
+
1
∈
ℤ
≥
1
276
12
ad2antrr
⊢
φ
∧
n
∈
ℕ
∧
x
∈
1
…
n
+
1
→
A
∈
ℂ
277
elfznn
⊢
x
∈
1
…
n
+
1
→
x
∈
ℕ
278
277
adantl
⊢
φ
∧
n
∈
ℕ
∧
x
∈
1
…
n
+
1
→
x
∈
ℕ
279
278
nncnd
⊢
φ
∧
n
∈
ℕ
∧
x
∈
1
…
n
+
1
→
x
∈
ℂ
280
278
nnne0d
⊢
φ
∧
n
∈
ℕ
∧
x
∈
1
…
n
+
1
→
x
≠
0
281
276
279
280
divcld
⊢
φ
∧
n
∈
ℕ
∧
x
∈
1
…
n
+
1
→
A
x
∈
ℂ
282
1cnd
⊢
φ
∧
n
∈
ℕ
∧
x
∈
1
…
n
+
1
→
1
∈
ℂ
283
281
282
addcld
⊢
φ
∧
n
∈
ℕ
∧
x
∈
1
…
n
+
1
→
A
x
+
1
∈
ℂ
284
2
ad2antrr
⊢
φ
∧
n
∈
ℕ
∧
x
∈
1
…
n
+
1
→
A
∈
ℂ
∖
ℤ
∖
ℕ
285
284
278
dmgmdivn0
⊢
φ
∧
n
∈
ℕ
∧
x
∈
1
…
n
+
1
→
A
x
+
1
≠
0
286
283
285
logcld
⊢
φ
∧
n
∈
ℕ
∧
x
∈
1
…
n
+
1
→
log
A
x
+
1
∈
ℂ
287
267
269
271
273
274
275
286
telfsum
⊢
φ
∧
n
∈
ℕ
→
∑
k
=
1
n
log
A
k
+
1
−
log
A
k
+
1
+
1
=
log
A
1
+
1
−
log
A
n
+
1
+
1
288
91
div1d
⊢
φ
∧
n
∈
ℕ
→
A
1
=
A
289
288
fvoveq1d
⊢
φ
∧
n
∈
ℕ
→
log
A
1
+
1
=
log
A
+
1
290
289
oveq1d
⊢
φ
∧
n
∈
ℕ
→
log
A
1
+
1
−
log
A
n
+
1
+
1
=
log
A
+
1
−
log
A
n
+
1
+
1
291
287
290
eqtrd
⊢
φ
∧
n
∈
ℕ
→
∑
k
=
1
n
log
A
k
+
1
−
log
A
k
+
1
+
1
=
log
A
+
1
−
log
A
n
+
1
+
1
292
264
265
291
3eqtr3d
⊢
φ
∧
n
∈
ℕ
→
∑
k
=
1
n
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
−
∑
k
=
1
n
A
log
k
+
1
k
−
log
A
k
+
1
=
log
A
+
1
−
log
A
n
+
1
+
1
293
292
oveq2d
⊢
φ
∧
n
∈
ℕ
→
∑
k
=
1
n
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
−
∑
k
=
1
n
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
−
∑
k
=
1
n
A
log
k
+
1
k
−
log
A
k
+
1
=
∑
k
=
1
n
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
−
log
A
+
1
−
log
A
n
+
1
+
1
294
213
293
eqtr3d
⊢
φ
∧
n
∈
ℕ
→
∑
k
=
1
n
A
log
k
+
1
k
−
log
A
k
+
1
=
∑
k
=
1
n
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
−
log
A
+
1
−
log
A
n
+
1
+
1
295
171
oveq2d
⊢
m
=
k
→
A
log
m
+
1
m
=
A
log
k
+
1
k
296
oveq2
⊢
m
=
k
→
A
m
=
A
k
297
296
fvoveq1d
⊢
m
=
k
→
log
A
m
+
1
=
log
A
k
+
1
298
295
297
oveq12d
⊢
m
=
k
→
A
log
m
+
1
m
−
log
A
m
+
1
=
A
log
k
+
1
k
−
log
A
k
+
1
299
ovex
⊢
A
log
k
+
1
k
−
log
A
k
+
1
∈
V
300
298
1
299
fvmpt
⊢
k
∈
ℕ
→
G
k
=
A
log
k
+
1
k
−
log
A
k
+
1
301
167
300
syl
⊢
φ
∧
n
∈
ℕ
∧
k
∈
1
…
n
→
G
k
=
A
log
k
+
1
k
−
log
A
k
+
1
302
301
179
211
fsumser
⊢
φ
∧
n
∈
ℕ
→
∑
k
=
1
n
A
log
k
+
1
k
−
log
A
k
+
1
=
seq
1
+
G
n
303
160
eqcomd
⊢
φ
∧
n
∈
ℕ
→
log
A
+
1
−
log
A
n
+
1
+
1
=
m
∈
ℕ
⟼
log
A
+
1
−
log
A
m
+
1
+
1
n
304
198
303
oveq12d
⊢
φ
∧
n
∈
ℕ
→
∑
k
=
1
n
A
+
1
log
k
+
1
k
−
log
A
+
1
k
+
1
−
log
A
+
1
−
log
A
n
+
1
+
1
=
seq
1
+
m
∈
ℕ
⟼
A
+
1
log
m
+
1
m
−
log
A
+
1
m
+
1
n
−
m
∈
ℕ
⟼
log
A
+
1
−
log
A
m
+
1
+
1
n
305
294
302
304
3eqtr3d
⊢
φ
∧
n
∈
ℕ
→
seq
1
+
G
n
=
seq
1
+
m
∈
ℕ
⟼
A
+
1
log
m
+
1
m
−
log
A
+
1
m
+
1
n
−
m
∈
ℕ
⟼
log
A
+
1
−
log
A
m
+
1
+
1
n
306
3
4
9
11
165
201
204
305
climsub
⊢
φ
→
seq
1
+
G
⇝
log
Γ
A
+
1
+
log
A
+
1
-
log
A
+
1
307
lgamcl
⊢
A
+
1
∈
ℂ
∖
ℤ
∖
ℕ
→
log
Γ
A
+
1
∈
ℂ
308
8
307
syl
⊢
φ
→
log
Γ
A
+
1
∈
ℂ
309
308
143
pncand
⊢
φ
→
log
Γ
A
+
1
+
log
A
+
1
-
log
A
+
1
=
log
Γ
A
+
1
310
306
309
breqtrd
⊢
φ
→
seq
1
+
G
⇝
log
Γ
A
+
1