Metamath Proof Explorer


Theorem lgamcvg2

Description: The series G converges to log_G ( A + 1 ) . (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Hypotheses lgamcvg.g G=mAlogm+1mlogAm+1
lgamcvg.a φA
Assertion lgamcvg2 φseq1+GlogΓA+1

Proof

Step Hyp Ref Expression
1 lgamcvg.g G=mAlogm+1mlogAm+1
2 lgamcvg.a φA
3 nnuz =1
4 1zzd φ1
5 eqid mA+1logm+1mlogA+1m+1=mA+1logm+1mlogA+1m+1
6 1nn0 10
7 6 a1i φ10
8 2 7 dmgmaddnn0 φA+1
9 5 8 lgamcvg φseq1+mA+1logm+1mlogA+1m+1logΓA+1+logA+1
10 seqex seq1+GV
11 10 a1i φseq1+GV
12 2 eldifad φA
13 12 abscld φA
14 arch ArA<r
15 13 14 syl φrA<r
16 eqid r=r
17 simprl φrA<rr
18 17 nnzd φrA<rr
19 eqid −∞0=−∞0
20 19 logcn log−∞0:−∞0cn
21 20 a1i φrA<rlog−∞0:−∞0cn
22 eqid 1ballabs1=1ballabs1
23 22 dvlog2lem 1ballabs1−∞0
24 12 ad2antrr φrA<rmrA
25 eluznn rmrm
26 25 ex rmrm
27 26 ad2antrl φrA<rmrm
28 27 imp φrA<rmrm
29 28 nncnd φrA<rmrm
30 1cnd φrA<rmr1
31 29 30 addcld φrA<rmrm+1
32 28 peano2nnd φrA<rmrm+1
33 32 nnne0d φrA<rmrm+10
34 24 31 33 divcld φrA<rmrAm+1
35 34 30 addcld φrA<rmrAm+1+1
36 ax-1cn 1
37 eqid abs=abs
38 37 cnmetdval Am+1+11Am+1+1abs1=Am+1+1-1
39 35 36 38 sylancl φrA<rmrAm+1+1abs1=Am+1+1-1
40 34 30 pncand φrA<rmrAm+1+1-1=Am+1
41 40 fveq2d φrA<rmrAm+1+1-1=Am+1
42 24 31 33 absdivd φrA<rmrAm+1=Am+1
43 32 nnred φrA<rmrm+1
44 32 nnrpd φrA<rmrm+1+
45 44 rpge0d φrA<rmr0m+1
46 43 45 absidd φrA<rmrm+1=m+1
47 46 oveq2d φrA<rmrAm+1=Am+1
48 42 47 eqtrd φrA<rmrAm+1=Am+1
49 39 41 48 3eqtrd φrA<rmrAm+1+1abs1=Am+1
50 13 ad2antrr φrA<rmrA
51 17 adantr φrA<rmrr
52 51 nnred φrA<rmrr
53 simplrr φrA<rmrA<r
54 eluzle mrrm
55 54 adantl φrA<rmrrm
56 nnleltp1 rmrmr<m+1
57 51 28 56 syl2anc φrA<rmrrmr<m+1
58 55 57 mpbid φrA<rmrr<m+1
59 50 52 43 53 58 lttrd φrA<rmrA<m+1
60 31 mulridd φrA<rmrm+11=m+1
61 59 60 breqtrrd φrA<rmrA<m+11
62 1red φrA<rmr1
63 50 62 44 ltdivmuld φrA<rmrAm+1<1A<m+11
64 61 63 mpbird φrA<rmrAm+1<1
65 49 64 eqbrtrd φrA<rmrAm+1+1abs1<1
66 cnxmet abs∞Met
67 66 a1i φrA<rmrabs∞Met
68 1rp 1+
69 rpxr 1+1*
70 68 69 mp1i φrA<rmr1*
71 elbl3 abs∞Met1*1Am+1+1Am+1+11ballabs1Am+1+1abs1<1
72 67 70 30 35 71 syl22anc φrA<rmrAm+1+11ballabs1Am+1+1abs1<1
73 65 72 mpbird φrA<rmrAm+1+11ballabs1
74 23 73 sselid φrA<rmrAm+1+1−∞0
75 74 fmpttd φrA<rmrAm+1+1:r−∞0
76 27 ssrdv φrA<rr
77 76 resmptd φrA<rmAm+1+1r=mrAm+1+1
78 nnex V
79 78 mptex mAm+1V
80 79 a1i φmAm+1V
81 oveq1 m=nm+1=n+1
82 81 oveq2d m=nAm+1=An+1
83 eqid mAm+1=mAm+1
84 ovex An+1V
85 82 83 84 fvmpt nmAm+1n=An+1
86 85 adantl φnmAm+1n=An+1
87 3 4 12 4 80 86 divcnvshft φmAm+10
88 1cnd φ1
89 78 mptex mAm+1+1V
90 89 a1i φmAm+1+1V
91 12 adantr φnA
92 simpr φnn
93 92 nncnd φnn
94 1cnd φn1
95 93 94 addcld φnn+1
96 92 peano2nnd φnn+1
97 96 nnne0d φnn+10
98 91 95 97 divcld φnAn+1
99 86 98 eqeltrd φnmAm+1n
100 82 oveq1d m=nAm+1+1=An+1+1
101 eqid mAm+1+1=mAm+1+1
102 ovex An+1+1V
103 100 101 102 fvmpt nmAm+1+1n=An+1+1
104 103 adantl φnmAm+1+1n=An+1+1
105 86 oveq1d φnmAm+1n+1=An+1+1
106 104 105 eqtr4d φnmAm+1+1n=mAm+1n+1
107 3 4 87 88 90 99 106 climaddc1 φmAm+1+10+1
108 0p1e1 0+1=1
109 107 108 breqtrdi φmAm+1+11
110 109 adantr φrA<rmAm+1+11
111 climres rmAm+1+1VmAm+1+1r1mAm+1+11
112 18 89 111 sylancl φrA<rmAm+1+1r1mAm+1+11
113 110 112 mpbird φrA<rmAm+1+1r1
114 77 113 eqbrtrrd φrA<rmrAm+1+11
115 68 a1i 11+
116 19 ellogdm 1−∞0111+
117 36 115 116 mpbir2an 1−∞0
118 117 a1i φrA<r1−∞0
119 16 18 21 75 114 118 climcncf φrA<rlog−∞0mrAm+1+1log−∞01
120 logf1o log:01-1 ontoranlog
121 f1of log:01-1 ontoranloglog:0ranlog
122 120 121 mp1i φrA<rlog:0ranlog
123 19 logdmss −∞00
124 123 74 sselid φrA<rmrAm+1+10
125 122 124 cofmpt φrA<rlogmrAm+1+1=mrlogAm+1+1
126 frn mrAm+1+1:r−∞0ranmrAm+1+1−∞0
127 cores ranmrAm+1+1−∞0log−∞0mrAm+1+1=logmrAm+1+1
128 75 126 127 3syl φrA<rlog−∞0mrAm+1+1=logmrAm+1+1
129 76 resmptd φrA<rmlogAm+1+1r=mrlogAm+1+1
130 125 128 129 3eqtr4d φrA<rlog−∞0mrAm+1+1=mlogAm+1+1r
131 fvres 1−∞0log−∞01=log1
132 117 131 mp1i φrA<rlog−∞01=log1
133 log1 log1=0
134 132 133 eqtrdi φrA<rlog−∞01=0
135 119 130 134 3brtr3d φrA<rmlogAm+1+1r0
136 78 mptex mlogAm+1+1V
137 climres rmlogAm+1+1VmlogAm+1+1r0mlogAm+1+10
138 18 136 137 sylancl φrA<rmlogAm+1+1r0mlogAm+1+10
139 135 138 mpbid φrA<rmlogAm+1+10
140 15 139 rexlimddv φmlogAm+1+10
141 12 88 addcld φA+1
142 8 dmgmn0 φA+10
143 141 142 logcld φlogA+1
144 78 mptex mlogA+1logAm+1+1V
145 144 a1i φmlogA+1logAm+1+1V
146 82 fvoveq1d m=nlogAm+1+1=logAn+1+1
147 eqid mlogAm+1+1=mlogAm+1+1
148 fvex logAn+1+1V
149 146 147 148 fvmpt nmlogAm+1+1n=logAn+1+1
150 149 adantl φnmlogAm+1+1n=logAn+1+1
151 98 94 addcld φnAn+1+1
152 2 adantr φnA
153 152 96 dmgmdivn0 φnAn+1+10
154 151 153 logcld φnlogAn+1+1
155 150 154 eqeltrd φnmlogAm+1+1n
156 146 oveq2d m=nlogA+1logAm+1+1=logA+1logAn+1+1
157 eqid mlogA+1logAm+1+1=mlogA+1logAm+1+1
158 ovex logA+1logAn+1+1V
159 156 157 158 fvmpt nmlogA+1logAm+1+1n=logA+1logAn+1+1
160 159 adantl φnmlogA+1logAm+1+1n=logA+1logAn+1+1
161 150 oveq2d φnlogA+1mlogAm+1+1n=logA+1logAn+1+1
162 160 161 eqtr4d φnmlogA+1logAm+1+1n=logA+1mlogAm+1+1n
163 3 4 140 143 145 155 162 climsubc2 φmlogA+1logAm+1+1logA+10
164 143 subid1d φlogA+10=logA+1
165 163 164 breqtrd φmlogA+1logAm+1+1logA+1
166 elfznn k1nk
167 166 adantl φnk1nk
168 oveq1 m=km+1=k+1
169 id m=km=k
170 168 169 oveq12d m=km+1m=k+1k
171 170 fveq2d m=klogm+1m=logk+1k
172 171 oveq2d m=kA+1logm+1m=A+1logk+1k
173 oveq2 m=kA+1m=A+1k
174 173 fvoveq1d m=klogA+1m+1=logA+1k+1
175 172 174 oveq12d m=kA+1logm+1mlogA+1m+1=A+1logk+1klogA+1k+1
176 ovex A+1logk+1klogA+1k+1V
177 175 5 176 fvmpt kmA+1logm+1mlogA+1m+1k=A+1logk+1klogA+1k+1
178 167 177 syl φnk1nmA+1logm+1mlogA+1m+1k=A+1logk+1klogA+1k+1
179 92 3 eleqtrdi φnn1
180 12 ad2antrr φnk1nA
181 1cnd φnk1n1
182 180 181 addcld φnk1nA+1
183 167 peano2nnd φnk1nk+1
184 183 nnrpd φnk1nk+1+
185 167 nnrpd φnk1nk+
186 184 185 rpdivcld φnk1nk+1k+
187 186 relogcld φnk1nlogk+1k
188 187 recnd φnk1nlogk+1k
189 182 188 mulcld φnk1nA+1logk+1k
190 167 nncnd φnk1nk
191 167 nnne0d φnk1nk0
192 182 190 191 divcld φnk1nA+1k
193 192 181 addcld φnk1nA+1k+1
194 8 ad2antrr φnk1nA+1
195 194 167 dmgmdivn0 φnk1nA+1k+10
196 193 195 logcld φnk1nlogA+1k+1
197 189 196 subcld φnk1nA+1logk+1klogA+1k+1
198 178 179 197 fsumser φnk=1nA+1logk+1klogA+1k+1=seq1+mA+1logm+1mlogA+1m+1n
199 fzfid φn1nFin
200 199 197 fsumcl φnk=1nA+1logk+1klogA+1k+1
201 198 200 eqeltrrd φnseq1+mA+1logm+1mlogA+1m+1n
202 143 adantr φnlogA+1
203 202 154 subcld φnlogA+1logAn+1+1
204 160 203 eqeltrd φnmlogA+1logAm+1+1n
205 180 188 mulcld φnk1nAlogk+1k
206 180 190 191 divcld φnk1nAk
207 206 181 addcld φnk1nAk+1
208 2 ad2antrr φnk1nA
209 208 167 dmgmdivn0 φnk1nAk+10
210 207 209 logcld φnk1nlogAk+1
211 205 210 subcld φnk1nAlogk+1klogAk+1
212 199 211 fsumcl φnk=1nAlogk+1klogAk+1
213 200 212 nncand φnk=1nA+1logk+1klogA+1k+1k=1nA+1logk+1klogA+1k+1k=1nAlogk+1klogAk+1=k=1nAlogk+1klogAk+1
214 189 196 205 210 sub4d φnk1nA+1logk+1k-logA+1k+1-Alogk+1klogAk+1=A+1logk+1k-Alogk+1k-logA+1k+1logAk+1
215 180 181 pncan2d φnk1nA+1-A=1
216 215 oveq1d φnk1nA+1-Alogk+1k=1logk+1k
217 182 180 188 subdird φnk1nA+1-Alogk+1k=A+1logk+1kAlogk+1k
218 188 mullidd φnk1n1logk+1k=logk+1k
219 216 217 218 3eqtr3d φnk1nA+1logk+1kAlogk+1k=logk+1k
220 219 oveq1d φnk1nA+1logk+1k-Alogk+1k-logA+1k+1logAk+1=logk+1klogA+1k+1logAk+1
221 188 196 210 subsubd φnk1nlogk+1klogA+1k+1logAk+1=logk+1k-logA+1k+1+logAk+1
222 188 196 subcld φnk1nlogk+1klogA+1k+1
223 222 210 addcomd φnk1nlogk+1k-logA+1k+1+logAk+1=logAk+1+logk+1k-logA+1k+1
224 210 196 188 subsub2d φnk1nlogAk+1logA+1k+1logk+1k=logAk+1+logk+1k-logA+1k+1
225 183 nncnd φnk1nk+1
226 180 225 addcld φnk1nA+k+1
227 183 nnnn0d φnk1nk+10
228 dmgmaddn0 Ak+10A+k+10
229 208 227 228 syl2anc φnk1nA+k+10
230 226 229 logcld φnk1nlogA+k+1
231 184 relogcld φnk1nlogk+1
232 231 recnd φnk1nlogk+1
233 185 relogcld φnk1nlogk
234 233 recnd φnk1nlogk
235 230 232 234 nnncan2d φnk1nlogA+k+1-logk-logk+1logk=logA+k+1logk+1
236 182 190 190 191 divdird φnk1nA+1+kk=A+1k+kk
237 180 190 181 add32d φnk1nA+k+1=A+1+k
238 180 190 181 addassd φnk1nA+k+1=A+k+1
239 237 238 eqtr3d φnk1nA+1+k=A+k+1
240 239 oveq1d φnk1nA+1+kk=A+k+1k
241 190 191 dividd φnk1nkk=1
242 241 oveq2d φnk1nA+1k+kk=A+1k+1
243 236 240 242 3eqtr3rd φnk1nA+1k+1=A+k+1k
244 243 fveq2d φnk1nlogA+1k+1=logA+k+1k
245 logdiv2 A+k+1A+k+10k+logA+k+1k=logA+k+1logk
246 226 229 185 245 syl3anc φnk1nlogA+k+1k=logA+k+1logk
247 244 246 eqtrd φnk1nlogA+1k+1=logA+k+1logk
248 184 185 relogdivd φnk1nlogk+1k=logk+1logk
249 247 248 oveq12d φnk1nlogA+1k+1logk+1k=logA+k+1-logk-logk+1logk
250 183 nnne0d φnk1nk+10
251 180 225 225 250 divdird φnk1nA+k+1k+1=Ak+1+k+1k+1
252 225 250 dividd φnk1nk+1k+1=1
253 252 oveq2d φnk1nAk+1+k+1k+1=Ak+1+1
254 251 253 eqtr2d φnk1nAk+1+1=A+k+1k+1
255 254 fveq2d φnk1nlogAk+1+1=logA+k+1k+1
256 logdiv2 A+k+1A+k+10k+1+logA+k+1k+1=logA+k+1logk+1
257 226 229 184 256 syl3anc φnk1nlogA+k+1k+1=logA+k+1logk+1
258 255 257 eqtrd φnk1nlogAk+1+1=logA+k+1logk+1
259 235 249 258 3eqtr4d φnk1nlogA+1k+1logk+1k=logAk+1+1
260 259 oveq2d φnk1nlogAk+1logA+1k+1logk+1k=logAk+1logAk+1+1
261 224 260 eqtr3d φnk1nlogAk+1+logk+1k-logA+1k+1=logAk+1logAk+1+1
262 221 223 261 3eqtrd φnk1nlogk+1klogA+1k+1logAk+1=logAk+1logAk+1+1
263 214 220 262 3eqtrd φnk1nA+1logk+1k-logA+1k+1-Alogk+1klogAk+1=logAk+1logAk+1+1
264 263 sumeq2dv φnk=1nA+1logk+1k-logA+1k+1-Alogk+1klogAk+1=k=1nlogAk+1logAk+1+1
265 199 197 211 fsumsub φnk=1nA+1logk+1k-logA+1k+1-Alogk+1klogAk+1=k=1nA+1logk+1klogA+1k+1k=1nAlogk+1klogAk+1
266 oveq2 x=kAx=Ak
267 266 fvoveq1d x=klogAx+1=logAk+1
268 oveq2 x=k+1Ax=Ak+1
269 268 fvoveq1d x=k+1logAx+1=logAk+1+1
270 oveq2 x=1Ax=A1
271 270 fvoveq1d x=1logAx+1=logA1+1
272 oveq2 x=n+1Ax=An+1
273 272 fvoveq1d x=n+1logAx+1=logAn+1+1
274 92 nnzd φnn
275 96 3 eleqtrdi φnn+11
276 12 ad2antrr φnx1n+1A
277 elfznn x1n+1x
278 277 adantl φnx1n+1x
279 278 nncnd φnx1n+1x
280 278 nnne0d φnx1n+1x0
281 276 279 280 divcld φnx1n+1Ax
282 1cnd φnx1n+11
283 281 282 addcld φnx1n+1Ax+1
284 2 ad2antrr φnx1n+1A
285 284 278 dmgmdivn0 φnx1n+1Ax+10
286 283 285 logcld φnx1n+1logAx+1
287 267 269 271 273 274 275 286 telfsum φnk=1nlogAk+1logAk+1+1=logA1+1logAn+1+1
288 91 div1d φnA1=A
289 288 fvoveq1d φnlogA1+1=logA+1
290 289 oveq1d φnlogA1+1logAn+1+1=logA+1logAn+1+1
291 287 290 eqtrd φnk=1nlogAk+1logAk+1+1=logA+1logAn+1+1
292 264 265 291 3eqtr3d φnk=1nA+1logk+1klogA+1k+1k=1nAlogk+1klogAk+1=logA+1logAn+1+1
293 292 oveq2d φnk=1nA+1logk+1klogA+1k+1k=1nA+1logk+1klogA+1k+1k=1nAlogk+1klogAk+1=k=1nA+1logk+1klogA+1k+1logA+1logAn+1+1
294 213 293 eqtr3d φnk=1nAlogk+1klogAk+1=k=1nA+1logk+1klogA+1k+1logA+1logAn+1+1
295 171 oveq2d m=kAlogm+1m=Alogk+1k
296 oveq2 m=kAm=Ak
297 296 fvoveq1d m=klogAm+1=logAk+1
298 295 297 oveq12d m=kAlogm+1mlogAm+1=Alogk+1klogAk+1
299 ovex Alogk+1klogAk+1V
300 298 1 299 fvmpt kGk=Alogk+1klogAk+1
301 167 300 syl φnk1nGk=Alogk+1klogAk+1
302 301 179 211 fsumser φnk=1nAlogk+1klogAk+1=seq1+Gn
303 160 eqcomd φnlogA+1logAn+1+1=mlogA+1logAm+1+1n
304 198 303 oveq12d φnk=1nA+1logk+1klogA+1k+1logA+1logAn+1+1=seq1+mA+1logm+1mlogA+1m+1nmlogA+1logAm+1+1n
305 294 302 304 3eqtr3d φnseq1+Gn=seq1+mA+1logm+1mlogA+1m+1nmlogA+1logAm+1+1n
306 3 4 9 11 165 201 204 305 climsub φseq1+GlogΓA+1+logA+1-logA+1
307 lgamcl A+1logΓA+1
308 8 307 syl φlogΓA+1
309 308 143 pncand φlogΓA+1+logA+1-logA+1=logΓA+1
310 306 309 breqtrd φseq1+GlogΓA+1