Metamath Proof Explorer


Theorem pntlemj

Description: Lemma for pnt . The induction step. Using pntibnd , we find an interval in K ^ J ... K ^ ( J + 1 ) which is sufficiently large and has a much smaller value, R ( z ) / z <_ E (instead of our original bound R ( z ) / z <_ U ). (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R = a + ψ a a
pntlem1.a φ A +
pntlem1.b φ B +
pntlem1.l φ L 0 1
pntlem1.d D = A + 1
pntlem1.f F = 1 1 D L 32 B D 2
pntlem1.u φ U +
pntlem1.u2 φ U A
pntlem1.e E = U D
pntlem1.k K = e B E
pntlem1.y φ Y + 1 Y
pntlem1.x φ X + Y < X
pntlem1.c φ C +
pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
pntlem1.z φ Z W +∞
pntlem1.m M = log X log K + 1
pntlem1.n N = log Z log K 2
pntlem1.U φ z Y +∞ R z z U
pntlem1.K φ y X +∞ z + y < z 1 + L E z < K y u z 1 + L E z R u u E
pntlem1.o O = Z K J + 1 + 1 Z K J
pntlem1.v φ V +
pntlem1.V φ K J < V 1 + L E V < K K J u V 1 + L E V R u u E
pntlem1.j φ J M ..^ N
pntlem1.i I = Z 1 + L E V + 1 Z V
Assertion pntlemj φ U E L E 8 log Z n O U n R Z n Z log n

Proof

Step Hyp Ref Expression
1 pntlem1.r R = a + ψ a a
2 pntlem1.a φ A +
3 pntlem1.b φ B +
4 pntlem1.l φ L 0 1
5 pntlem1.d D = A + 1
6 pntlem1.f F = 1 1 D L 32 B D 2
7 pntlem1.u φ U +
8 pntlem1.u2 φ U A
9 pntlem1.e E = U D
10 pntlem1.k K = e B E
11 pntlem1.y φ Y + 1 Y
12 pntlem1.x φ X + Y < X
13 pntlem1.c φ C +
14 pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
15 pntlem1.z φ Z W +∞
16 pntlem1.m M = log X log K + 1
17 pntlem1.n N = log Z log K 2
18 pntlem1.U φ z Y +∞ R z z U
19 pntlem1.K φ y X +∞ z + y < z 1 + L E z < K y u z 1 + L E z R u u E
20 pntlem1.o O = Z K J + 1 + 1 Z K J
21 pntlem1.v φ V +
22 pntlem1.V φ K J < V 1 + L E V < K K J u V 1 + L E V R u u E
23 pntlem1.j φ J M ..^ N
24 pntlem1.i I = Z 1 + L E V + 1 Z V
25 1 2 3 4 5 6 7 8 9 10 pntlemc φ E + K + E 0 1 1 < K U E +
26 25 simp3d φ E 0 1 1 < K U E +
27 26 simp3d φ U E +
28 1 2 3 4 5 6 pntlemd φ L + D + F +
29 28 simp1d φ L +
30 25 simp1d φ E +
31 29 30 rpmulcld φ L E +
32 8nn 8
33 nnrp 8 8 +
34 32 33 ax-mp 8 +
35 rpdivcl L E + 8 + L E 8 +
36 31 34 35 sylancl φ L E 8 +
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb φ Z + 1 < Z e Z Z Z Y 4 L E Z log X log K + 2 log Z log K 4 U 3 + C U E L E 2 32 B log Z
38 37 simp1d φ Z +
39 38 rpred φ Z
40 37 simp2d φ 1 < Z e Z Z Z Y
41 40 simp1d φ 1 < Z
42 39 41 rplogcld φ log Z +
43 36 42 rpmulcld φ L E 8 log Z +
44 27 43 rpmulcld φ U E L E 8 log Z +
45 44 rpred φ U E L E 8 log Z
46 fzfid φ Z 1 + L E V + 1 Z V Fin
47 24 46 eqeltrid φ I Fin
48 hashcl I Fin I 0
49 47 48 syl φ I 0
50 49 nn0red φ I
51 27 rpred φ U E
52 38 21 rpdivcld φ Z V +
53 52 relogcld φ log Z V
54 53 52 rerpdivcld φ log Z V Z V
55 51 54 remulcld φ U E log Z V Z V
56 50 55 remulcld φ I U E log Z V Z V
57 fzfid φ Z K J + 1 + 1 Z K J Fin
58 20 57 eqeltrid φ O Fin
59 7 rpred φ U
60 59 adantr φ n O U
61 25 simp2d φ K +
62 elfzoelz J M ..^ N J
63 23 62 syl φ J
64 63 peano2zd φ J + 1
65 61 64 rpexpcld φ K J + 1 +
66 38 65 rpdivcld φ Z K J + 1 +
67 66 rprege0d φ Z K J + 1 0 Z K J + 1
68 flge0nn0 Z K J + 1 0 Z K J + 1 Z K J + 1 0
69 nn0p1nn Z K J + 1 0 Z K J + 1 + 1
70 67 68 69 3syl φ Z K J + 1 + 1
71 elfzuz n Z K J + 1 + 1 Z K J n Z K J + 1 + 1
72 71 20 eleq2s n O n Z K J + 1 + 1
73 eluznn Z K J + 1 + 1 n Z K J + 1 + 1 n
74 70 72 73 syl2an φ n O n
75 60 74 nndivred φ n O U n
76 38 adantr φ n O Z +
77 74 nnrpd φ n O n +
78 76 77 rpdivcld φ n O Z n +
79 1 pntrf R : +
80 79 ffvelrni Z n + R Z n
81 78 80 syl φ n O R Z n
82 81 76 rerpdivcld φ n O R Z n Z
83 82 recnd φ n O R Z n Z
84 83 abscld φ n O R Z n Z
85 75 84 resubcld φ n O U n R Z n Z
86 77 relogcld φ n O log n
87 85 86 remulcld φ n O U n R Z n Z log n
88 58 87 fsumrecl φ n O U n R Z n Z log n
89 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 pntlemr φ U E L E 8 log Z I U E log Z V Z V
90 55 recnd φ U E log Z V Z V
91 fsumconst I Fin U E log Z V Z V n I U E log Z V Z V = I U E log Z V Z V
92 47 90 91 syl2anc φ n I U E log Z V Z V = I U E log Z V Z V
93 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 pntlemq φ I O
94 90 ralrimivw φ n I U E log Z V Z V
95 58 olcd φ O 1 O Fin
96 sumss2 I O n I U E log Z V Z V O 1 O Fin n I U E log Z V Z V = n O if n I U E log Z V Z V 0
97 93 94 95 96 syl21anc φ n I U E log Z V Z V = n O if n I U E log Z V Z V 0
98 92 97 eqtr3d φ I U E log Z V Z V = n O if n I U E log Z V Z V 0
99 55 adantr φ n I U E log Z V Z V
100 99 adantlr φ n O n I U E log Z V Z V
101 0red φ n O ¬ n I 0
102 100 101 ifclda φ n O if n I U E log Z V Z V 0
103 breq1 U E log Z V Z V = if n I U E log Z V Z V 0 U E log Z V Z V U n R Z n Z log n if n I U E log Z V Z V 0 U n R Z n Z log n
104 breq1 0 = if n I U E log Z V Z V 0 0 U n R Z n Z log n if n I U E log Z V Z V 0 U n R Z n Z log n
105 27 rpregt0d φ U E 0 < U E
106 105 adantr φ n I U E 0 < U E
107 106 simpld φ n I U E
108 1rp 1 +
109 rpaddcl 1 + L E + 1 + L E +
110 108 31 109 sylancr φ 1 + L E +
111 110 21 rpmulcld φ 1 + L E V +
112 38 111 rpdivcld φ Z 1 + L E V +
113 112 rprege0d φ Z 1 + L E V 0 Z 1 + L E V
114 flge0nn0 Z 1 + L E V 0 Z 1 + L E V Z 1 + L E V 0
115 nn0p1nn Z 1 + L E V 0 Z 1 + L E V + 1
116 113 114 115 3syl φ Z 1 + L E V + 1
117 elfzuz n Z 1 + L E V + 1 Z V n Z 1 + L E V + 1
118 117 24 eleq2s n I n Z 1 + L E V + 1
119 eluznn Z 1 + L E V + 1 n Z 1 + L E V + 1 n
120 116 118 119 syl2an φ n I n
121 120 nnrpd φ n I n +
122 121 relogcld φ n I log n
123 122 120 nndivred φ n I log n n
124 107 123 remulcld φ n I U E log n n
125 93 sselda φ n I n O
126 125 87 syldan φ n I U n R Z n Z log n
127 simpr φ n I n I
128 127 24 eleqtrdi φ n I n Z 1 + L E V + 1 Z V
129 elfzle2 n Z 1 + L E V + 1 Z V n Z V
130 128 129 syl φ n I n Z V
131 52 rpred φ Z V
132 131 adantr φ n I Z V
133 elfzelz n Z 1 + L E V + 1 Z V n
134 128 133 syl φ n I n
135 flge Z V n n Z V n Z V
136 132 134 135 syl2anc φ n I n Z V n Z V
137 130 136 mpbird φ n I n Z V
138 120 nnred φ n I n
139 ere e
140 139 a1i φ n I e
141 112 rpred φ Z 1 + L E V
142 141 adantr φ n I Z 1 + L E V
143 139 a1i φ e
144 38 rpsqrtcld φ Z +
145 144 rpred φ Z
146 40 simp2d φ e Z
147 111 rpred φ 1 + L E V
148 65 rpred φ K J + 1
149 22 simpld φ K J < V 1 + L E V < K K J
150 149 simprd φ 1 + L E V < K K J
151 61 rpcnd φ K
152 61 63 rpexpcld φ K J +
153 152 rpcnd φ K J
154 151 153 mulcomd φ K K J = K J K
155 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemg φ M N M log Z log K 4 N M
156 155 simp1d φ M
157 elfzouz J M ..^ N J M
158 23 157 syl φ J M
159 eluznn M J M J
160 156 158 159 syl2anc φ J
161 160 nnnn0d φ J 0
162 151 161 expp1d φ K J + 1 = K J K
163 154 162 eqtr4d φ K K J = K J + 1
164 150 163 breqtrd φ 1 + L E V < K J + 1
165 147 148 164 ltled φ 1 + L E V K J + 1
166 fzofzp1 J M ..^ N J + 1 M N
167 23 166 syl φ J + 1 M N
168 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemh φ J + 1 M N X < K J + 1 K J + 1 Z
169 167 168 mpdan φ X < K J + 1 K J + 1 Z
170 169 simprd φ K J + 1 Z
171 147 148 145 165 170 letrd φ 1 + L E V Z
172 147 145 144 lemul2d φ 1 + L E V Z Z 1 + L E V Z Z
173 171 172 mpbid φ Z 1 + L E V Z Z
174 38 rprege0d φ Z 0 Z
175 remsqsqrt Z 0 Z Z Z = Z
176 174 175 syl φ Z Z = Z
177 173 176 breqtrd φ Z 1 + L E V Z
178 145 39 111 lemuldivd φ Z 1 + L E V Z Z Z 1 + L E V
179 177 178 mpbid φ Z Z 1 + L E V
180 143 145 141 146 179 letrd φ e Z 1 + L E V
181 180 adantr φ n I e Z 1 + L E V
182 reflcl Z 1 + L E V Z 1 + L E V
183 peano2re Z 1 + L E V Z 1 + L E V + 1
184 141 182 183 3syl φ Z 1 + L E V + 1
185 184 adantr φ n I Z 1 + L E V + 1
186 fllep1 Z 1 + L E V Z 1 + L E V Z 1 + L E V + 1
187 142 186 syl φ n I Z 1 + L E V Z 1 + L E V + 1
188 elfzle1 n Z 1 + L E V + 1 Z V Z 1 + L E V + 1 n
189 128 188 syl φ n I Z 1 + L E V + 1 n
190 142 185 138 187 189 letrd φ n I Z 1 + L E V n
191 140 142 138 181 190 letrd φ n I e n
192 140 138 132 191 137 letrd φ n I e Z V
193 logdivle n e n Z V e Z V n Z V log Z V Z V log n n
194 138 191 132 192 193 syl22anc φ n I n Z V log Z V Z V log n n
195 137 194 mpbid φ n I log Z V Z V log n n
196 54 adantr φ n I log Z V Z V
197 lemul2 log Z V Z V log n n U E 0 < U E log Z V Z V log n n U E log Z V Z V U E log n n
198 196 123 106 197 syl3anc φ n I log Z V Z V log n n U E log Z V Z V U E log n n
199 195 198 mpbid φ n I U E log Z V Z V U E log n n
200 27 rpcnd φ U E
201 200 adantr φ n I U E
202 122 recnd φ n I log n
203 121 rpcnne0d φ n I n n 0
204 div23 U E log n n n 0 U E log n n = U E n log n
205 201 202 203 204 syl3anc φ n I U E log n n = U E n log n
206 divass U E log n n n 0 U E log n n = U E log n n
207 201 202 203 206 syl3anc φ n I U E log n n = U E log n n
208 205 207 eqtr3d φ n I U E n log n = U E log n n
209 51 adantr φ n I U E
210 209 120 nndivred φ n I U E n
211 125 85 syldan φ n I U n R Z n Z
212 log1 log 1 = 0
213 120 nnge1d φ n I 1 n
214 logleb 1 + n + 1 n log 1 log n
215 108 121 214 sylancr φ n I 1 n log 1 log n
216 213 215 mpbid φ n I log 1 log n
217 212 216 eqbrtrrid φ n I 0 log n
218 7 rpcnd φ U
219 218 adantr φ n I U
220 30 rpred φ E
221 220 adantr φ n I E
222 221 recnd φ n I E
223 divsubdir U E n n 0 U E n = U n E n
224 219 222 203 223 syl3anc φ n I U E n = U n E n
225 125 84 syldan φ n I R Z n Z
226 221 120 nndivred φ n I E n
227 125 75 syldan φ n I U n
228 125 81 syldan φ n I R Z n
229 228 recnd φ n I R Z n
230 38 adantr φ n I Z +
231 230 rpcnne0d φ n I Z Z 0
232 divdiv2 R Z n Z Z 0 n n 0 R Z n Z n = R Z n n Z
233 229 231 203 232 syl3anc φ n I R Z n Z n = R Z n n Z
234 121 rpcnd φ n I n
235 div23 R Z n n Z Z 0 R Z n n Z = R Z n Z n
236 229 234 231 235 syl3anc φ n I R Z n n Z = R Z n Z n
237 233 236 eqtrd φ n I R Z n Z n = R Z n Z n
238 237 fveq2d φ n I R Z n Z n = R Z n Z n
239 125 83 syldan φ n I R Z n Z
240 239 234 absmuld φ n I R Z n Z n = R Z n Z n
241 121 rprege0d φ n I n 0 n
242 absid n 0 n n = n
243 241 242 syl φ n I n = n
244 243 oveq2d φ n I R Z n Z n = R Z n Z n
245 238 240 244 3eqtrd φ n I R Z n Z n = R Z n Z n
246 fveq2 u = Z n R u = R Z n
247 id u = Z n u = Z n
248 246 247 oveq12d u = Z n R u u = R Z n Z n
249 248 fveq2d u = Z n R u u = R Z n Z n
250 249 breq1d u = Z n R u u E R Z n Z n E
251 22 simprd φ u V 1 + L E V R u u E
252 251 adantr φ n I u V 1 + L E V R u u E
253 39 adantr φ n I Z
254 253 120 nndivred φ n I Z n
255 21 rpregt0d φ V 0 < V
256 255 adantr φ n I V 0 < V
257 lemuldiv2 n Z V 0 < V V n Z n Z V
258 138 253 256 257 syl3anc φ n I V n Z n Z V
259 137 258 mpbird φ n I V n Z
260 256 simpld φ n I V
261 260 253 121 lemuldivd φ n I V n Z V Z n
262 259 261 mpbid φ n I V Z n
263 111 rpregt0d φ 1 + L E V 0 < 1 + L E V
264 263 adantr φ n I 1 + L E V 0 < 1 + L E V
265 121 rpregt0d φ n I n 0 < n
266 lediv23 Z 1 + L E V 0 < 1 + L E V n 0 < n Z 1 + L E V n Z n 1 + L E V
267 253 264 265 266 syl3anc φ n I Z 1 + L E V n Z n 1 + L E V
268 190 267 mpbid φ n I Z n 1 + L E V
269 21 rpred φ V
270 269 adantr φ n I V
271 147 adantr φ n I 1 + L E V
272 elicc2 V 1 + L E V Z n V 1 + L E V Z n V Z n Z n 1 + L E V
273 270 271 272 syl2anc φ n I Z n V 1 + L E V Z n V Z n Z n 1 + L E V
274 254 262 268 273 mpbir3and φ n I Z n V 1 + L E V
275 250 252 274 rspcdva φ n I R Z n Z n E
276 245 275 eqbrtrrd φ n I R Z n Z n E
277 225 221 121 lemuldivd φ n I R Z n Z n E R Z n Z E n
278 276 277 mpbid φ n I R Z n Z E n
279 225 226 227 278 lesub2dd φ n I U n E n U n R Z n Z
280 224 279 eqbrtrd φ n I U E n U n R Z n Z
281 210 211 122 217 280 lemul1ad φ n I U E n log n U n R Z n Z log n
282 208 281 eqbrtrrd φ n I U E log n n U n R Z n Z log n
283 99 124 126 199 282 letrd φ n I U E log Z V Z V U n R Z n Z log n
284 283 adantlr φ n O n I U E log Z V Z V U n R Z n Z log n
285 74 nnred φ n O n
286 38 152 rpdivcld φ Z K J +
287 286 rpred φ Z K J
288 287 adantr φ n O Z K J
289 11 simpld φ Y +
290 38 289 rpdivcld φ Z Y +
291 290 rpred φ Z Y
292 291 adantr φ n O Z Y
293 simpr φ n O n O
294 293 20 eleqtrdi φ n O n Z K J + 1 + 1 Z K J
295 elfzle2 n Z K J + 1 + 1 Z K J n Z K J
296 294 295 syl φ n O n Z K J
297 74 nnzd φ n O n
298 flge Z K J n n Z K J n Z K J
299 288 297 298 syl2anc φ n O n Z K J n Z K J
300 296 299 mpbird φ n O n Z K J
301 289 rpred φ Y
302 12 simpld φ X +
303 302 rpred φ X
304 152 rpred φ K J
305 12 simprd φ Y < X
306 301 303 305 ltled φ Y X
307 elfzofz J M ..^ N J M N
308 23 307 syl φ J M N
309 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemh φ J M N X < K J K J Z
310 308 309 mpdan φ X < K J K J Z
311 310 simpld φ X < K J
312 303 304 311 ltled φ X K J
313 301 303 304 306 312 letrd φ Y K J
314 289 152 38 lediv2d φ Y K J Z K J Z Y
315 313 314 mpbid φ Z K J Z Y
316 315 adantr φ n O Z K J Z Y
317 285 288 292 300 316 letrd φ n O n Z Y
318 74 317 jca φ n O n n Z Y
319 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 pntlemn φ n n Z Y 0 U n R Z n Z log n
320 318 319 syldan φ n O 0 U n R Z n Z log n
321 320 adantr φ n O ¬ n I 0 U n R Z n Z log n
322 103 104 284 321 ifbothda φ n O if n I U E log Z V Z V 0 U n R Z n Z log n
323 58 102 87 322 fsumle φ n O if n I U E log Z V Z V 0 n O U n R Z n Z log n
324 98 323 eqbrtrd φ I U E log Z V Z V n O U n R Z n Z log n
325 45 56 88 89 324 letrd φ U E L E 8 log Z n O U n R Z n Z log n