Metamath Proof Explorer


Theorem pntlemj

Description: Lemma for pnt . The induction step. Using pntibnd , we find an interval in K ^ J ... K ^ ( J + 1 ) which is sufficiently large and has a much smaller value, R ( z ) / z <_ E (instead of our original bound R ( z ) / z <_ U ). (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R=a+ψaa
pntlem1.a φA+
pntlem1.b φB+
pntlem1.l φL01
pntlem1.d D=A+1
pntlem1.f F=11DL32BD2
pntlem1.u φU+
pntlem1.u2 φUA
pntlem1.e E=UD
pntlem1.k K=eBE
pntlem1.y φY+1Y
pntlem1.x φX+Y<X
pntlem1.c φC+
pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
pntlem1.z φZW+∞
pntlem1.m M=logXlogK+1
pntlem1.n N=logZlogK2
pntlem1.U φzY+∞RzzU
pntlem1.K φyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
pntlem1.o O=ZKJ+1+1ZKJ
pntlem1.v φV+
pntlem1.V φKJ<V1+LEV<KKJuV1+LEVRuuE
pntlem1.j φJM..^N
pntlem1.i I=Z1+LEV+1ZV
Assertion pntlemj φUELE8logZnOUnRZnZlogn

Proof

Step Hyp Ref Expression
1 pntlem1.r R=a+ψaa
2 pntlem1.a φA+
3 pntlem1.b φB+
4 pntlem1.l φL01
5 pntlem1.d D=A+1
6 pntlem1.f F=11DL32BD2
7 pntlem1.u φU+
8 pntlem1.u2 φUA
9 pntlem1.e E=UD
10 pntlem1.k K=eBE
11 pntlem1.y φY+1Y
12 pntlem1.x φX+Y<X
13 pntlem1.c φC+
14 pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
15 pntlem1.z φZW+∞
16 pntlem1.m M=logXlogK+1
17 pntlem1.n N=logZlogK2
18 pntlem1.U φzY+∞RzzU
19 pntlem1.K φyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
20 pntlem1.o O=ZKJ+1+1ZKJ
21 pntlem1.v φV+
22 pntlem1.V φKJ<V1+LEV<KKJuV1+LEVRuuE
23 pntlem1.j φJM..^N
24 pntlem1.i I=Z1+LEV+1ZV
25 1 2 3 4 5 6 7 8 9 10 pntlemc φE+K+E011<KUE+
26 25 simp3d φE011<KUE+
27 26 simp3d φUE+
28 1 2 3 4 5 6 pntlemd φL+D+F+
29 28 simp1d φL+
30 25 simp1d φE+
31 29 30 rpmulcld φLE+
32 8nn 8
33 nnrp 88+
34 32 33 ax-mp 8+
35 rpdivcl LE+8+LE8+
36 31 34 35 sylancl φLE8+
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb φZ+1<ZeZZZY4LEZlogXlogK+2logZlogK4U3+CUELE232BlogZ
38 37 simp1d φZ+
39 38 rpred φZ
40 37 simp2d φ1<ZeZZZY
41 40 simp1d φ1<Z
42 39 41 rplogcld φlogZ+
43 36 42 rpmulcld φLE8logZ+
44 27 43 rpmulcld φUELE8logZ+
45 44 rpred φUELE8logZ
46 fzfid φZ1+LEV+1ZVFin
47 24 46 eqeltrid φIFin
48 hashcl IFinI0
49 47 48 syl φI0
50 49 nn0red φI
51 27 rpred φUE
52 38 21 rpdivcld φZV+
53 52 relogcld φlogZV
54 53 52 rerpdivcld φlogZVZV
55 51 54 remulcld φUElogZVZV
56 50 55 remulcld φIUElogZVZV
57 fzfid φZKJ+1+1ZKJFin
58 20 57 eqeltrid φOFin
59 7 rpred φU
60 59 adantr φnOU
61 25 simp2d φK+
62 elfzoelz JM..^NJ
63 23 62 syl φJ
64 63 peano2zd φJ+1
65 61 64 rpexpcld φKJ+1+
66 38 65 rpdivcld φZKJ+1+
67 66 rprege0d φZKJ+10ZKJ+1
68 flge0nn0 ZKJ+10ZKJ+1ZKJ+10
69 nn0p1nn ZKJ+10ZKJ+1+1
70 67 68 69 3syl φZKJ+1+1
71 elfzuz nZKJ+1+1ZKJnZKJ+1+1
72 71 20 eleq2s nOnZKJ+1+1
73 eluznn ZKJ+1+1nZKJ+1+1n
74 70 72 73 syl2an φnOn
75 60 74 nndivred φnOUn
76 38 adantr φnOZ+
77 74 nnrpd φnOn+
78 76 77 rpdivcld φnOZn+
79 1 pntrf R:+
80 79 ffvelcdmi Zn+RZn
81 78 80 syl φnORZn
82 81 76 rerpdivcld φnORZnZ
83 82 recnd φnORZnZ
84 83 abscld φnORZnZ
85 75 84 resubcld φnOUnRZnZ
86 77 relogcld φnOlogn
87 85 86 remulcld φnOUnRZnZlogn
88 58 87 fsumrecl φnOUnRZnZlogn
89 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 pntlemr φUELE8logZIUElogZVZV
90 55 recnd φUElogZVZV
91 fsumconst IFinUElogZVZVnIUElogZVZV=IUElogZVZV
92 47 90 91 syl2anc φnIUElogZVZV=IUElogZVZV
93 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 pntlemq φIO
94 90 ralrimivw φnIUElogZVZV
95 58 olcd φO1OFin
96 sumss2 IOnIUElogZVZVO1OFinnIUElogZVZV=nOifnIUElogZVZV0
97 93 94 95 96 syl21anc φnIUElogZVZV=nOifnIUElogZVZV0
98 92 97 eqtr3d φIUElogZVZV=nOifnIUElogZVZV0
99 55 adantr φnIUElogZVZV
100 99 adantlr φnOnIUElogZVZV
101 0red φnO¬nI0
102 100 101 ifclda φnOifnIUElogZVZV0
103 breq1 UElogZVZV=ifnIUElogZVZV0UElogZVZVUnRZnZlognifnIUElogZVZV0UnRZnZlogn
104 breq1 0=ifnIUElogZVZV00UnRZnZlognifnIUElogZVZV0UnRZnZlogn
105 27 rpregt0d φUE0<UE
106 105 adantr φnIUE0<UE
107 106 simpld φnIUE
108 1rp 1+
109 rpaddcl 1+LE+1+LE+
110 108 31 109 sylancr φ1+LE+
111 110 21 rpmulcld φ1+LEV+
112 38 111 rpdivcld φZ1+LEV+
113 112 rprege0d φZ1+LEV0Z1+LEV
114 flge0nn0 Z1+LEV0Z1+LEVZ1+LEV0
115 nn0p1nn Z1+LEV0Z1+LEV+1
116 113 114 115 3syl φZ1+LEV+1
117 elfzuz nZ1+LEV+1ZVnZ1+LEV+1
118 117 24 eleq2s nInZ1+LEV+1
119 eluznn Z1+LEV+1nZ1+LEV+1n
120 116 118 119 syl2an φnIn
121 120 nnrpd φnIn+
122 121 relogcld φnIlogn
123 122 120 nndivred φnIlognn
124 107 123 remulcld φnIUElognn
125 93 sselda φnInO
126 125 87 syldan φnIUnRZnZlogn
127 simpr φnInI
128 127 24 eleqtrdi φnInZ1+LEV+1ZV
129 elfzle2 nZ1+LEV+1ZVnZV
130 128 129 syl φnInZV
131 52 rpred φZV
132 131 adantr φnIZV
133 128 elfzelzd φnIn
134 flge ZVnnZVnZV
135 132 133 134 syl2anc φnInZVnZV
136 130 135 mpbird φnInZV
137 120 nnred φnIn
138 ere e
139 138 a1i φnIe
140 112 rpred φZ1+LEV
141 140 adantr φnIZ1+LEV
142 138 a1i φe
143 38 rpsqrtcld φZ+
144 143 rpred φZ
145 40 simp2d φeZ
146 111 rpred φ1+LEV
147 65 rpred φKJ+1
148 22 simpld φKJ<V1+LEV<KKJ
149 148 simprd φ1+LEV<KKJ
150 61 rpcnd φK
151 61 63 rpexpcld φKJ+
152 151 rpcnd φKJ
153 150 152 mulcomd φKKJ=KJK
154 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemg φMNMlogZlogK4NM
155 154 simp1d φM
156 elfzouz JM..^NJM
157 23 156 syl φJM
158 eluznn MJMJ
159 155 157 158 syl2anc φJ
160 159 nnnn0d φJ0
161 150 160 expp1d φKJ+1=KJK
162 153 161 eqtr4d φKKJ=KJ+1
163 149 162 breqtrd φ1+LEV<KJ+1
164 146 147 163 ltled φ1+LEVKJ+1
165 fzofzp1 JM..^NJ+1MN
166 23 165 syl φJ+1MN
167 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemh φJ+1MNX<KJ+1KJ+1Z
168 166 167 mpdan φX<KJ+1KJ+1Z
169 168 simprd φKJ+1Z
170 146 147 144 164 169 letrd φ1+LEVZ
171 146 144 143 lemul2d φ1+LEVZZ1+LEVZZ
172 170 171 mpbid φZ1+LEVZZ
173 38 rprege0d φZ0Z
174 remsqsqrt Z0ZZZ=Z
175 173 174 syl φZZ=Z
176 172 175 breqtrd φZ1+LEVZ
177 144 39 111 lemuldivd φZ1+LEVZZZ1+LEV
178 176 177 mpbid φZZ1+LEV
179 142 144 140 145 178 letrd φeZ1+LEV
180 179 adantr φnIeZ1+LEV
181 reflcl Z1+LEVZ1+LEV
182 peano2re Z1+LEVZ1+LEV+1
183 140 181 182 3syl φZ1+LEV+1
184 183 adantr φnIZ1+LEV+1
185 fllep1 Z1+LEVZ1+LEVZ1+LEV+1
186 141 185 syl φnIZ1+LEVZ1+LEV+1
187 elfzle1 nZ1+LEV+1ZVZ1+LEV+1n
188 128 187 syl φnIZ1+LEV+1n
189 141 184 137 186 188 letrd φnIZ1+LEVn
190 139 141 137 180 189 letrd φnIen
191 139 137 132 190 136 letrd φnIeZV
192 logdivle nenZVeZVnZVlogZVZVlognn
193 137 190 132 191 192 syl22anc φnInZVlogZVZVlognn
194 136 193 mpbid φnIlogZVZVlognn
195 54 adantr φnIlogZVZV
196 lemul2 logZVZVlognnUE0<UElogZVZVlognnUElogZVZVUElognn
197 195 123 106 196 syl3anc φnIlogZVZVlognnUElogZVZVUElognn
198 194 197 mpbid φnIUElogZVZVUElognn
199 27 rpcnd φUE
200 199 adantr φnIUE
201 122 recnd φnIlogn
202 121 rpcnne0d φnInn0
203 div23 UElognnn0UElognn=UEnlogn
204 200 201 202 203 syl3anc φnIUElognn=UEnlogn
205 divass UElognnn0UElognn=UElognn
206 200 201 202 205 syl3anc φnIUElognn=UElognn
207 204 206 eqtr3d φnIUEnlogn=UElognn
208 51 adantr φnIUE
209 208 120 nndivred φnIUEn
210 125 85 syldan φnIUnRZnZ
211 log1 log1=0
212 120 nnge1d φnI1n
213 logleb 1+n+1nlog1logn
214 108 121 213 sylancr φnI1nlog1logn
215 212 214 mpbid φnIlog1logn
216 211 215 eqbrtrrid φnI0logn
217 7 rpcnd φU
218 217 adantr φnIU
219 30 rpred φE
220 219 adantr φnIE
221 220 recnd φnIE
222 divsubdir UEnn0UEn=UnEn
223 218 221 202 222 syl3anc φnIUEn=UnEn
224 125 84 syldan φnIRZnZ
225 220 120 nndivred φnIEn
226 125 75 syldan φnIUn
227 125 81 syldan φnIRZn
228 227 recnd φnIRZn
229 38 adantr φnIZ+
230 229 rpcnne0d φnIZZ0
231 divdiv2 RZnZZ0nn0RZnZn=RZnnZ
232 228 230 202 231 syl3anc φnIRZnZn=RZnnZ
233 121 rpcnd φnIn
234 div23 RZnnZZ0RZnnZ=RZnZn
235 228 233 230 234 syl3anc φnIRZnnZ=RZnZn
236 232 235 eqtrd φnIRZnZn=RZnZn
237 236 fveq2d φnIRZnZn=RZnZn
238 125 83 syldan φnIRZnZ
239 238 233 absmuld φnIRZnZn=RZnZn
240 121 rprege0d φnIn0n
241 absid n0nn=n
242 240 241 syl φnIn=n
243 242 oveq2d φnIRZnZn=RZnZn
244 237 239 243 3eqtrd φnIRZnZn=RZnZn
245 fveq2 u=ZnRu=RZn
246 id u=Znu=Zn
247 245 246 oveq12d u=ZnRuu=RZnZn
248 247 fveq2d u=ZnRuu=RZnZn
249 248 breq1d u=ZnRuuERZnZnE
250 22 simprd φuV1+LEVRuuE
251 250 adantr φnIuV1+LEVRuuE
252 39 adantr φnIZ
253 252 120 nndivred φnIZn
254 21 rpregt0d φV0<V
255 254 adantr φnIV0<V
256 lemuldiv2 nZV0<VVnZnZV
257 137 252 255 256 syl3anc φnIVnZnZV
258 136 257 mpbird φnIVnZ
259 255 simpld φnIV
260 259 252 121 lemuldivd φnIVnZVZn
261 258 260 mpbid φnIVZn
262 111 rpregt0d φ1+LEV0<1+LEV
263 262 adantr φnI1+LEV0<1+LEV
264 121 rpregt0d φnIn0<n
265 lediv23 Z1+LEV0<1+LEVn0<nZ1+LEVnZn1+LEV
266 252 263 264 265 syl3anc φnIZ1+LEVnZn1+LEV
267 189 266 mpbid φnIZn1+LEV
268 21 rpred φV
269 268 adantr φnIV
270 146 adantr φnI1+LEV
271 elicc2 V1+LEVZnV1+LEVZnVZnZn1+LEV
272 269 270 271 syl2anc φnIZnV1+LEVZnVZnZn1+LEV
273 253 261 267 272 mpbir3and φnIZnV1+LEV
274 249 251 273 rspcdva φnIRZnZnE
275 244 274 eqbrtrrd φnIRZnZnE
276 224 220 121 lemuldivd φnIRZnZnERZnZEn
277 275 276 mpbid φnIRZnZEn
278 224 225 226 277 lesub2dd φnIUnEnUnRZnZ
279 223 278 eqbrtrd φnIUEnUnRZnZ
280 209 210 122 216 279 lemul1ad φnIUEnlognUnRZnZlogn
281 207 280 eqbrtrrd φnIUElognnUnRZnZlogn
282 99 124 126 198 281 letrd φnIUElogZVZVUnRZnZlogn
283 282 adantlr φnOnIUElogZVZVUnRZnZlogn
284 74 nnred φnOn
285 38 151 rpdivcld φZKJ+
286 285 rpred φZKJ
287 286 adantr φnOZKJ
288 11 simpld φY+
289 38 288 rpdivcld φZY+
290 289 rpred φZY
291 290 adantr φnOZY
292 simpr φnOnO
293 292 20 eleqtrdi φnOnZKJ+1+1ZKJ
294 elfzle2 nZKJ+1+1ZKJnZKJ
295 293 294 syl φnOnZKJ
296 74 nnzd φnOn
297 flge ZKJnnZKJnZKJ
298 287 296 297 syl2anc φnOnZKJnZKJ
299 295 298 mpbird φnOnZKJ
300 288 rpred φY
301 12 simpld φX+
302 301 rpred φX
303 151 rpred φKJ
304 12 simprd φY<X
305 300 302 304 ltled φYX
306 elfzofz JM..^NJMN
307 23 306 syl φJMN
308 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemh φJMNX<KJKJZ
309 307 308 mpdan φX<KJKJZ
310 309 simpld φX<KJ
311 302 303 310 ltled φXKJ
312 300 302 303 305 311 letrd φYKJ
313 288 151 38 lediv2d φYKJZKJZY
314 312 313 mpbid φZKJZY
315 314 adantr φnOZKJZY
316 284 287 291 299 315 letrd φnOnZY
317 74 316 jca φnOnnZY
318 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 pntlemn φnnZY0UnRZnZlogn
319 317 318 syldan φnO0UnRZnZlogn
320 319 adantr φnO¬nI0UnRZnZlogn
321 103 104 283 320 ifbothda φnOifnIUElogZVZV0UnRZnZlogn
322 58 102 87 321 fsumle φnOifnIUElogZVZV0nOUnRZnZlogn
323 98 322 eqbrtrd φIUElogZVZVnOUnRZnZlogn
324 45 56 88 89 323 letrd φUELE8logZnOUnRZnZlogn