| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitgval.b |
|
| 2 |
|
sitgval.j |
|
| 3 |
|
sitgval.s |
|
| 4 |
|
sitgval.0 |
|
| 5 |
|
sitgval.x |
|
| 6 |
|
sitgval.h |
|
| 7 |
|
sitgval.1 |
|
| 8 |
|
sitgval.2 |
|
| 9 |
|
sibfmbl.1 |
|
| 10 |
|
sibfof.c |
|
| 11 |
|
sibfof.0 |
|
| 12 |
|
sibfof.1 |
|
| 13 |
|
sibfof.2 |
|
| 14 |
|
sibfof.3 |
|
| 15 |
|
sibfof.4 |
|
| 16 |
|
sibfof.5 |
|
| 17 |
1 2
|
tpsuni |
|
| 18 |
11 17
|
syl |
|
| 19 |
18
|
sqxpeqd |
|
| 20 |
19
|
feq2d |
|
| 21 |
12 20
|
mpbid |
|
| 22 |
21
|
fovcdmda |
|
| 23 |
1 2 3 4 5 6 7 8 9
|
sibff |
|
| 24 |
1 2 3 4 5 6 7 8 13
|
sibff |
|
| 25 |
|
dmexg |
|
| 26 |
|
uniexg |
|
| 27 |
8 25 26
|
3syl |
|
| 28 |
|
inidm |
|
| 29 |
22 23 24 27 27 28
|
off |
|
| 30 |
|
eqid |
|
| 31 |
10 30
|
tpsuni |
|
| 32 |
14 31
|
syl |
|
| 33 |
|
fvex |
|
| 34 |
|
unisg |
|
| 35 |
33 34
|
ax-mp |
|
| 36 |
32 35
|
eqtr4di |
|
| 37 |
36
|
feq3d |
|
| 38 |
29 37
|
mpbid |
|
| 39 |
33
|
a1i |
|
| 40 |
39
|
sgsiga |
|
| 41 |
40
|
uniexd |
|
| 42 |
41 27
|
elmapd |
|
| 43 |
38 42
|
mpbird |
|
| 44 |
|
inundif |
|
| 45 |
44
|
imaeq2i |
|
| 46 |
|
ffun |
|
| 47 |
|
unpreima |
|
| 48 |
29 46 47
|
3syl |
|
| 49 |
48
|
adantr |
|
| 50 |
45 49
|
eqtr3id |
|
| 51 |
|
dmmeas |
|
| 52 |
8 51
|
syl |
|
| 53 |
52
|
adantr |
|
| 54 |
|
imaiun |
|
| 55 |
|
iunid |
|
| 56 |
55
|
imaeq2i |
|
| 57 |
54 56
|
eqtr3i |
|
| 58 |
|
inss2 |
|
| 59 |
18
|
feq3d |
|
| 60 |
23 59
|
mpbird |
|
| 61 |
18
|
feq3d |
|
| 62 |
24 61
|
mpbird |
|
| 63 |
12
|
ffnd |
|
| 64 |
60 62 27 63
|
ofpreima2 |
|
| 65 |
64
|
adantr |
|
| 66 |
52
|
adantr |
|
| 67 |
52
|
ad2antrr |
|
| 68 |
|
simpll |
|
| 69 |
|
inss1 |
|
| 70 |
|
cnvimass |
|
| 71 |
70 12
|
fssdm |
|
| 72 |
71
|
adantr |
|
| 73 |
69 72
|
sstrid |
|
| 74 |
73
|
sselda |
|
| 75 |
52
|
adantr |
|
| 76 |
15
|
sgsiga |
|
| 77 |
3 76
|
eqeltrid |
|
| 78 |
77
|
adantr |
|
| 79 |
1 2 3 4 5 6 7 8 9
|
sibfmbl |
|
| 80 |
79
|
adantr |
|
| 81 |
2
|
tpstop |
|
| 82 |
|
cldssbrsiga |
|
| 83 |
11 81 82
|
3syl |
|
| 84 |
83
|
adantr |
|
| 85 |
15
|
adantr |
|
| 86 |
|
xp1st |
|
| 87 |
86
|
adantl |
|
| 88 |
18
|
adantr |
|
| 89 |
87 88
|
eleqtrd |
|
| 90 |
|
eqid |
|
| 91 |
90
|
t1sncld |
|
| 92 |
85 89 91
|
syl2anc |
|
| 93 |
84 92
|
sseldd |
|
| 94 |
93 3
|
eleqtrrdi |
|
| 95 |
75 78 80 94
|
mbfmcnvima |
|
| 96 |
68 74 95
|
syl2anc |
|
| 97 |
1 2 3 4 5 6 7 8 13
|
sibfmbl |
|
| 98 |
97
|
adantr |
|
| 99 |
|
xp2nd |
|
| 100 |
99
|
adantl |
|
| 101 |
100 88
|
eleqtrd |
|
| 102 |
90
|
t1sncld |
|
| 103 |
85 101 102
|
syl2anc |
|
| 104 |
84 103
|
sseldd |
|
| 105 |
104 3
|
eleqtrrdi |
|
| 106 |
75 78 98 105
|
mbfmcnvima |
|
| 107 |
68 74 106
|
syl2anc |
|
| 108 |
|
inelsiga |
|
| 109 |
67 96 107 108
|
syl3anc |
|
| 110 |
109
|
ralrimiva |
|
| 111 |
1 2 3 4 5 6 7 8 9
|
sibfrn |
|
| 112 |
1 2 3 4 5 6 7 8 13
|
sibfrn |
|
| 113 |
|
xpfi |
|
| 114 |
111 112 113
|
syl2anc |
|
| 115 |
|
inss2 |
|
| 116 |
|
ssdomg |
|
| 117 |
114 115 116
|
mpisyl |
|
| 118 |
|
isfinite |
|
| 119 |
118
|
biimpi |
|
| 120 |
|
sdomdom |
|
| 121 |
114 119 120
|
3syl |
|
| 122 |
|
domtr |
|
| 123 |
117 121 122
|
syl2anc |
|
| 124 |
123
|
adantr |
|
| 125 |
|
nfcv |
|
| 126 |
125
|
sigaclcuni |
|
| 127 |
66 110 124 126
|
syl3anc |
|
| 128 |
65 127
|
eqeltrd |
|
| 129 |
128
|
ralrimiva |
|
| 130 |
|
ssralv |
|
| 131 |
58 129 130
|
mpsyl |
|
| 132 |
131
|
adantr |
|
| 133 |
12
|
ffund |
|
| 134 |
|
imafi |
|
| 135 |
133 114 134
|
syl2anc |
|
| 136 |
23 24 21 27
|
ofrn2 |
|
| 137 |
|
ssfi |
|
| 138 |
135 136 137
|
syl2anc |
|
| 139 |
|
ssdomg |
|
| 140 |
138 58 139
|
mpisyl |
|
| 141 |
|
isfinite |
|
| 142 |
138 141
|
sylib |
|
| 143 |
|
sdomdom |
|
| 144 |
142 143
|
syl |
|
| 145 |
|
domtr |
|
| 146 |
140 144 145
|
syl2anc |
|
| 147 |
146
|
adantr |
|
| 148 |
|
nfcv |
|
| 149 |
148
|
sigaclcuni |
|
| 150 |
53 132 147 149
|
syl3anc |
|
| 151 |
57 150
|
eqeltrrid |
|
| 152 |
|
difpreima |
|
| 153 |
29 46 152
|
3syl |
|
| 154 |
|
cnvimarndm |
|
| 155 |
154
|
difeq2i |
|
| 156 |
|
cnvimass |
|
| 157 |
|
ssdif0 |
|
| 158 |
156 157
|
mpbi |
|
| 159 |
155 158
|
eqtri |
|
| 160 |
153 159
|
eqtrdi |
|
| 161 |
|
0elsiga |
|
| 162 |
8 51 161
|
3syl |
|
| 163 |
160 162
|
eqeltrd |
|
| 164 |
163
|
adantr |
|
| 165 |
|
unelsiga |
|
| 166 |
53 151 164 165
|
syl3anc |
|
| 167 |
50 166
|
eqeltrd |
|
| 168 |
167
|
ralrimiva |
|
| 169 |
52 40
|
ismbfm |
|
| 170 |
43 168 169
|
mpbir2and |
|
| 171 |
64
|
adantr |
|
| 172 |
171
|
fveq2d |
|
| 173 |
|
measbasedom |
|
| 174 |
8 173
|
sylib |
|
| 175 |
174
|
adantr |
|
| 176 |
|
eldifi |
|
| 177 |
176 110
|
sylan2 |
|
| 178 |
123
|
adantr |
|
| 179 |
|
sneq |
|
| 180 |
179
|
imaeq2d |
|
| 181 |
|
sneq |
|
| 182 |
181
|
imaeq2d |
|
| 183 |
23
|
ffund |
|
| 184 |
|
sndisj |
|
| 185 |
|
disjpreima |
|
| 186 |
183 184 185
|
sylancl |
|
| 187 |
24
|
ffund |
|
| 188 |
|
sndisj |
|
| 189 |
|
disjpreima |
|
| 190 |
187 188 189
|
sylancl |
|
| 191 |
180 182 186 190
|
disjxpin |
|
| 192 |
|
disjss1 |
|
| 193 |
115 191 192
|
mpsyl |
|
| 194 |
193
|
adantr |
|
| 195 |
|
measvuni |
|
| 196 |
175 177 178 194 195
|
syl112anc |
|
| 197 |
|
ssfi |
|
| 198 |
114 115 197
|
sylancl |
|
| 199 |
198
|
adantr |
|
| 200 |
|
simpll |
|
| 201 |
|
simpr |
|
| 202 |
115 201
|
sselid |
|
| 203 |
|
xp1st |
|
| 204 |
202 203
|
syl |
|
| 205 |
|
xp2nd |
|
| 206 |
202 205
|
syl |
|
| 207 |
|
oveq12 |
|
| 208 |
207 16
|
sylan9eqr |
|
| 209 |
208
|
ex |
|
| 210 |
209
|
necon3ad |
|
| 211 |
|
neorian |
|
| 212 |
210 211
|
imbitrrdi |
|
| 213 |
212
|
adantr |
|
| 214 |
213
|
ralrimivva |
|
| 215 |
200 214
|
syl |
|
| 216 |
69
|
a1i |
|
| 217 |
216
|
sselda |
|
| 218 |
|
fniniseg |
|
| 219 |
200 63 218
|
3syl |
|
| 220 |
217 219
|
mpbid |
|
| 221 |
|
simpr |
|
| 222 |
|
1st2nd2 |
|
| 223 |
222
|
fveq2d |
|
| 224 |
|
df-ov |
|
| 225 |
223 224
|
eqtr4di |
|
| 226 |
225
|
adantr |
|
| 227 |
221 226
|
eqtr3d |
|
| 228 |
220 227
|
syl |
|
| 229 |
|
simplr |
|
| 230 |
229
|
eldifbd |
|
| 231 |
|
velsn |
|
| 232 |
231
|
necon3bbii |
|
| 233 |
230 232
|
sylib |
|
| 234 |
228 233
|
eqnetrrd |
|
| 235 |
176 74
|
sylanl2 |
|
| 236 |
235 86
|
syl |
|
| 237 |
235 99
|
syl |
|
| 238 |
|
oveq1 |
|
| 239 |
238
|
neeq1d |
|
| 240 |
|
neeq1 |
|
| 241 |
240
|
orbi1d |
|
| 242 |
239 241
|
imbi12d |
|
| 243 |
|
oveq2 |
|
| 244 |
243
|
neeq1d |
|
| 245 |
|
neeq1 |
|
| 246 |
245
|
orbi2d |
|
| 247 |
244 246
|
imbi12d |
|
| 248 |
242 247
|
rspc2v |
|
| 249 |
236 237 248
|
syl2anc |
|
| 250 |
215 234 249
|
mp2d |
|
| 251 |
1 2 3 4 5 6 7 8 9 13 11 15
|
sibfinima |
|
| 252 |
200 204 206 250 251
|
syl31anc |
|
| 253 |
199 252
|
esumpfinval |
|
| 254 |
172 196 253
|
3eqtrd |
|
| 255 |
|
rge0ssre |
|
| 256 |
255 252
|
sselid |
|
| 257 |
199 256
|
fsumrecl |
|
| 258 |
254 257
|
eqeltrd |
|
| 259 |
175
|
adantr |
|
| 260 |
176 109
|
sylanl2 |
|
| 261 |
|
measge0 |
|
| 262 |
259 260 261
|
syl2anc |
|
| 263 |
199 256 262
|
fsumge0 |
|
| 264 |
263 254
|
breqtrrd |
|
| 265 |
|
elrege0 |
|
| 266 |
258 264 265
|
sylanbrc |
|
| 267 |
266
|
ralrimiva |
|
| 268 |
|
eqid |
|
| 269 |
|
eqid |
|
| 270 |
|
eqid |
|
| 271 |
|
eqid |
|
| 272 |
10 30 268 269 270 271 14 8
|
issibf |
|
| 273 |
170 138 267 272
|
mpbir3and |
|