| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
| 2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
| 3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
| 4 |
|
oemapval.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
| 5 |
|
oemapval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 6 |
|
oemapval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |
| 7 |
|
oemapvali.r |
⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) |
| 8 |
|
oemapvali.x |
⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } |
| 9 |
|
cantnflem1.o |
⊢ 𝑂 = OrdIso ( E , ( 𝐺 supp ∅ ) ) |
| 10 |
|
cantnflem1.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
| 11 |
|
ovex |
⊢ ( 𝐺 supp ∅ ) ∈ V |
| 12 |
9
|
oion |
⊢ ( ( 𝐺 supp ∅ ) ∈ V → dom 𝑂 ∈ On ) |
| 13 |
11 12
|
mp1i |
⊢ ( 𝜑 → dom 𝑂 ∈ On ) |
| 14 |
|
uniexg |
⊢ ( dom 𝑂 ∈ On → ∪ dom 𝑂 ∈ V ) |
| 15 |
|
sucidg |
⊢ ( ∪ dom 𝑂 ∈ V → ∪ dom 𝑂 ∈ suc ∪ dom 𝑂 ) |
| 16 |
13 14 15
|
3syl |
⊢ ( 𝜑 → ∪ dom 𝑂 ∈ suc ∪ dom 𝑂 ) |
| 17 |
1 2 3 4 5 6 7 8
|
cantnflem1a |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 supp ∅ ) ) |
| 18 |
|
n0i |
⊢ ( 𝑋 ∈ ( 𝐺 supp ∅ ) → ¬ ( 𝐺 supp ∅ ) = ∅ ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → ¬ ( 𝐺 supp ∅ ) = ∅ ) |
| 20 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ∈ V ) |
| 21 |
1 2 3 9 6
|
cantnfcl |
⊢ ( 𝜑 → ( E We ( 𝐺 supp ∅ ) ∧ dom 𝑂 ∈ ω ) ) |
| 22 |
21
|
simpld |
⊢ ( 𝜑 → E We ( 𝐺 supp ∅ ) ) |
| 23 |
9
|
oien |
⊢ ( ( ( 𝐺 supp ∅ ) ∈ V ∧ E We ( 𝐺 supp ∅ ) ) → dom 𝑂 ≈ ( 𝐺 supp ∅ ) ) |
| 24 |
20 22 23
|
syl2anc |
⊢ ( 𝜑 → dom 𝑂 ≈ ( 𝐺 supp ∅ ) ) |
| 25 |
|
breq1 |
⊢ ( dom 𝑂 = ∅ → ( dom 𝑂 ≈ ( 𝐺 supp ∅ ) ↔ ∅ ≈ ( 𝐺 supp ∅ ) ) ) |
| 26 |
|
ensymb |
⊢ ( ∅ ≈ ( 𝐺 supp ∅ ) ↔ ( 𝐺 supp ∅ ) ≈ ∅ ) |
| 27 |
|
en0 |
⊢ ( ( 𝐺 supp ∅ ) ≈ ∅ ↔ ( 𝐺 supp ∅ ) = ∅ ) |
| 28 |
26 27
|
bitri |
⊢ ( ∅ ≈ ( 𝐺 supp ∅ ) ↔ ( 𝐺 supp ∅ ) = ∅ ) |
| 29 |
25 28
|
bitrdi |
⊢ ( dom 𝑂 = ∅ → ( dom 𝑂 ≈ ( 𝐺 supp ∅ ) ↔ ( 𝐺 supp ∅ ) = ∅ ) ) |
| 30 |
24 29
|
syl5ibcom |
⊢ ( 𝜑 → ( dom 𝑂 = ∅ → ( 𝐺 supp ∅ ) = ∅ ) ) |
| 31 |
19 30
|
mtod |
⊢ ( 𝜑 → ¬ dom 𝑂 = ∅ ) |
| 32 |
21
|
simprd |
⊢ ( 𝜑 → dom 𝑂 ∈ ω ) |
| 33 |
|
nnlim |
⊢ ( dom 𝑂 ∈ ω → ¬ Lim dom 𝑂 ) |
| 34 |
32 33
|
syl |
⊢ ( 𝜑 → ¬ Lim dom 𝑂 ) |
| 35 |
|
ioran |
⊢ ( ¬ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ↔ ( ¬ dom 𝑂 = ∅ ∧ ¬ Lim dom 𝑂 ) ) |
| 36 |
31 34 35
|
sylanbrc |
⊢ ( 𝜑 → ¬ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) |
| 37 |
9
|
oicl |
⊢ Ord dom 𝑂 |
| 38 |
|
unizlim |
⊢ ( Ord dom 𝑂 → ( dom 𝑂 = ∪ dom 𝑂 ↔ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) ) |
| 39 |
37 38
|
mp1i |
⊢ ( 𝜑 → ( dom 𝑂 = ∪ dom 𝑂 ↔ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) ) |
| 40 |
36 39
|
mtbird |
⊢ ( 𝜑 → ¬ dom 𝑂 = ∪ dom 𝑂 ) |
| 41 |
|
orduniorsuc |
⊢ ( Ord dom 𝑂 → ( dom 𝑂 = ∪ dom 𝑂 ∨ dom 𝑂 = suc ∪ dom 𝑂 ) ) |
| 42 |
37 41
|
mp1i |
⊢ ( 𝜑 → ( dom 𝑂 = ∪ dom 𝑂 ∨ dom 𝑂 = suc ∪ dom 𝑂 ) ) |
| 43 |
42
|
ord |
⊢ ( 𝜑 → ( ¬ dom 𝑂 = ∪ dom 𝑂 → dom 𝑂 = suc ∪ dom 𝑂 ) ) |
| 44 |
40 43
|
mpd |
⊢ ( 𝜑 → dom 𝑂 = suc ∪ dom 𝑂 ) |
| 45 |
16 44
|
eleqtrrd |
⊢ ( 𝜑 → ∪ dom 𝑂 ∈ dom 𝑂 ) |
| 46 |
9
|
oiiso |
⊢ ( ( ( 𝐺 supp ∅ ) ∈ V ∧ E We ( 𝐺 supp ∅ ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 47 |
20 22 46
|
syl2anc |
⊢ ( 𝜑 → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 48 |
|
isof1o |
⊢ ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
| 49 |
47 48
|
syl |
⊢ ( 𝜑 → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
| 50 |
|
f1ocnv |
⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) → ◡ 𝑂 : ( 𝐺 supp ∅ ) –1-1-onto→ dom 𝑂 ) |
| 51 |
|
f1of |
⊢ ( ◡ 𝑂 : ( 𝐺 supp ∅ ) –1-1-onto→ dom 𝑂 → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
| 52 |
49 50 51
|
3syl |
⊢ ( 𝜑 → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
| 53 |
52 17
|
ffvelcdmd |
⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) |
| 54 |
|
elssuni |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) |
| 55 |
53 54
|
syl |
⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) |
| 56 |
44 32
|
eqeltrrd |
⊢ ( 𝜑 → suc ∪ dom 𝑂 ∈ ω ) |
| 57 |
|
peano2b |
⊢ ( ∪ dom 𝑂 ∈ ω ↔ suc ∪ dom 𝑂 ∈ ω ) |
| 58 |
56 57
|
sylibr |
⊢ ( 𝜑 → ∪ dom 𝑂 ∈ ω ) |
| 59 |
|
eleq1 |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝑦 ∈ dom 𝑂 ↔ ∪ dom 𝑂 ∈ dom 𝑂 ) ) |
| 60 |
|
sseq2 |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) ) |
| 61 |
59 60
|
anbi12d |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) ↔ ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) ) ) |
| 62 |
|
fveq2 |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ ∪ dom 𝑂 ) ) |
| 63 |
62
|
sseq2d |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) ↔ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
| 64 |
63
|
ifbid |
⊢ ( 𝑦 = ∪ dom 𝑂 → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 65 |
64
|
mpteq2dv |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 66 |
65
|
fveq2d |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 67 |
|
suceq |
⊢ ( 𝑦 = ∪ dom 𝑂 → suc 𝑦 = suc ∪ dom 𝑂 ) |
| 68 |
67
|
fveq2d |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) |
| 69 |
66 68
|
eleq12d |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) |
| 70 |
61 69
|
imbi12d |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ↔ ( ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) ) |
| 71 |
70
|
imbi2d |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( 𝜑 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ) ↔ ( 𝜑 → ( ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) ) ) |
| 72 |
|
eleq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ dom 𝑂 ↔ ∅ ∈ dom 𝑂 ) ) |
| 73 |
|
sseq2 |
⊢ ( 𝑦 = ∅ → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) ) |
| 74 |
72 73
|
anbi12d |
⊢ ( 𝑦 = ∅ → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) ↔ ( ∅ ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) ) ) |
| 75 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ ∅ ) ) |
| 76 |
75
|
sseq2d |
⊢ ( 𝑦 = ∅ → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) ↔ 𝑥 ⊆ ( 𝑂 ‘ ∅ ) ) ) |
| 77 |
76
|
ifbid |
⊢ ( 𝑦 = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 78 |
77
|
mpteq2dv |
⊢ ( 𝑦 = ∅ → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 79 |
78
|
fveq2d |
⊢ ( 𝑦 = ∅ → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 80 |
|
suceq |
⊢ ( 𝑦 = ∅ → suc 𝑦 = suc ∅ ) |
| 81 |
80
|
fveq2d |
⊢ ( 𝑦 = ∅ → ( 𝐻 ‘ suc 𝑦 ) = ( 𝐻 ‘ suc ∅ ) ) |
| 82 |
79 81
|
eleq12d |
⊢ ( 𝑦 = ∅ → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) |
| 83 |
74 82
|
imbi12d |
⊢ ( 𝑦 = ∅ → ( ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ↔ ( ( ∅ ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) ) |
| 84 |
|
eleq1 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 ∈ dom 𝑂 ↔ 𝑢 ∈ dom 𝑂 ) ) |
| 85 |
|
sseq2 |
⊢ ( 𝑦 = 𝑢 → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) |
| 86 |
84 85
|
anbi12d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) ↔ ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ) |
| 87 |
|
fveq2 |
⊢ ( 𝑦 = 𝑢 → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ 𝑢 ) ) |
| 88 |
87
|
sseq2d |
⊢ ( 𝑦 = 𝑢 → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) ↔ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) |
| 89 |
88
|
ifbid |
⊢ ( 𝑦 = 𝑢 → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 90 |
89
|
mpteq2dv |
⊢ ( 𝑦 = 𝑢 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 91 |
90
|
fveq2d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 92 |
|
suceq |
⊢ ( 𝑦 = 𝑢 → suc 𝑦 = suc 𝑢 ) |
| 93 |
92
|
fveq2d |
⊢ ( 𝑦 = 𝑢 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝐻 ‘ suc 𝑢 ) ) |
| 94 |
91 93
|
eleq12d |
⊢ ( 𝑦 = 𝑢 → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) ) |
| 95 |
86 94
|
imbi12d |
⊢ ( 𝑦 = 𝑢 → ( ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ↔ ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) ) ) |
| 96 |
|
eleq1 |
⊢ ( 𝑦 = suc 𝑢 → ( 𝑦 ∈ dom 𝑂 ↔ suc 𝑢 ∈ dom 𝑂 ) ) |
| 97 |
|
sseq2 |
⊢ ( 𝑦 = suc 𝑢 → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) ) |
| 98 |
96 97
|
anbi12d |
⊢ ( 𝑦 = suc 𝑢 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) ↔ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) ) ) |
| 99 |
|
fveq2 |
⊢ ( 𝑦 = suc 𝑢 → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ suc 𝑢 ) ) |
| 100 |
99
|
sseq2d |
⊢ ( 𝑦 = suc 𝑢 → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) ↔ 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 101 |
100
|
ifbid |
⊢ ( 𝑦 = suc 𝑢 → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 102 |
101
|
mpteq2dv |
⊢ ( 𝑦 = suc 𝑢 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 103 |
102
|
fveq2d |
⊢ ( 𝑦 = suc 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 104 |
|
suceq |
⊢ ( 𝑦 = suc 𝑢 → suc 𝑦 = suc suc 𝑢 ) |
| 105 |
104
|
fveq2d |
⊢ ( 𝑦 = suc 𝑢 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝐻 ‘ suc suc 𝑢 ) ) |
| 106 |
103 105
|
eleq12d |
⊢ ( 𝑦 = suc 𝑢 → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
| 107 |
98 106
|
imbi12d |
⊢ ( 𝑦 = suc 𝑢 → ( ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ↔ ( ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 108 |
|
f1ocnvfv2 |
⊢ ( ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ∧ 𝑋 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
| 109 |
49 17 108
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
| 110 |
109
|
sseq2d |
⊢ ( 𝜑 → ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ 𝑥 ⊆ 𝑋 ) ) |
| 111 |
110
|
ifbid |
⊢ ( 𝜑 → if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 112 |
111
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 113 |
112
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 114 |
1 2 3 4 5 6 7 8 9 10
|
cantnflem1d |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| 115 |
113 114
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| 116 |
|
ss0 |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( ◡ 𝑂 ‘ 𝑋 ) = ∅ ) |
| 117 |
116
|
fveq2d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = ( 𝑂 ‘ ∅ ) ) |
| 118 |
117
|
sseq2d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ 𝑥 ⊆ ( 𝑂 ‘ ∅ ) ) ) |
| 119 |
118
|
ifbid |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 120 |
119
|
mpteq2dv |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 121 |
120
|
fveq2d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 122 |
|
suceq |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = ∅ → suc ( ◡ 𝑂 ‘ 𝑋 ) = suc ∅ ) |
| 123 |
116 122
|
syl |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → suc ( ◡ 𝑂 ‘ 𝑋 ) = suc ∅ ) |
| 124 |
123
|
fveq2d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) = ( 𝐻 ‘ suc ∅ ) ) |
| 125 |
121 124
|
eleq12d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) |
| 126 |
125
|
adantl |
⊢ ( ( ∅ ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) |
| 127 |
115 126
|
syl5ibcom |
⊢ ( 𝜑 → ( ( ∅ ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) |
| 128 |
|
ordelon |
⊢ ( ( Ord dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ) |
| 129 |
37 53 128
|
sylancr |
⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ) |
| 130 |
37
|
a1i |
⊢ ( 𝜑 → Ord dom 𝑂 ) |
| 131 |
|
ordelon |
⊢ ( ( Ord dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) → suc 𝑢 ∈ On ) |
| 132 |
130 131
|
sylan |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → suc 𝑢 ∈ On ) |
| 133 |
|
onsseleq |
⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ∧ suc 𝑢 ∈ On ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ↔ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ∨ ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 ) ) ) |
| 134 |
129 132 133
|
syl2an2r |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ↔ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ∨ ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 ) ) ) |
| 135 |
|
onsucb |
⊢ ( 𝑢 ∈ On ↔ suc 𝑢 ∈ On ) |
| 136 |
132 135
|
sylibr |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → 𝑢 ∈ On ) |
| 137 |
|
eloni |
⊢ ( 𝑢 ∈ On → Ord 𝑢 ) |
| 138 |
136 137
|
syl |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → Ord 𝑢 ) |
| 139 |
|
ordsssuc |
⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ∧ Ord 𝑢 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) ) |
| 140 |
129 138 139
|
syl2an2r |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) ) |
| 141 |
|
ordtr |
⊢ ( Ord dom 𝑂 → Tr dom 𝑂 ) |
| 142 |
37 141
|
mp1i |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → Tr dom 𝑂 ) |
| 143 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → suc 𝑢 ∈ dom 𝑂 ) |
| 144 |
|
trsuc |
⊢ ( ( Tr dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) → 𝑢 ∈ dom 𝑂 ) |
| 145 |
142 143 144
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑢 ∈ dom 𝑂 ) |
| 146 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) |
| 147 |
145 146
|
jca |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) |
| 148 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝐵 ∈ On ) |
| 149 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 150 |
2 148 149
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 151 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝐴 ∈ On ) |
| 152 |
1 151 148
|
cantnff |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴 ↑o 𝐵 ) ) |
| 153 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
| 154 |
5 153
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) |
| 155 |
154
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 156 |
155
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) |
| 157 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
| 158 |
6 157
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
| 159 |
158
|
simpld |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 160 |
1 2 3 4 5 6 7 8
|
oemapvali |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 161 |
160
|
simp1d |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 162 |
159 161
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) |
| 163 |
162
|
ne0d |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 164 |
|
on0eln0 |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 165 |
2 164
|
syl |
⊢ ( 𝜑 → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 166 |
163 165
|
mpbird |
⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
| 167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∅ ∈ 𝐴 ) |
| 168 |
156 167
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ 𝐴 ) |
| 169 |
168
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) : 𝐵 ⟶ 𝐴 ) |
| 170 |
3
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ V ) |
| 171 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 172 |
171
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 173 |
154
|
simprd |
⊢ ( 𝜑 → 𝐹 finSupp ∅ ) |
| 174 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ ( 𝐹 supp ∅ ) ) |
| 175 |
|
0ex |
⊢ ∅ ∈ V |
| 176 |
175
|
a1i |
⊢ ( 𝜑 → ∅ ∈ V ) |
| 177 |
155 174 3 176
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 178 |
177
|
ifeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ∅ , ∅ ) ) |
| 179 |
|
ifid |
⊢ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ∅ , ∅ ) = ∅ |
| 180 |
178 179
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) |
| 181 |
180 3
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) ⊆ ( 𝐹 supp ∅ ) ) |
| 182 |
|
fsuppsssupp |
⊢ ( ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ V ∧ Fun ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∧ ( 𝐹 finSupp ∅ ∧ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) ⊆ ( 𝐹 supp ∅ ) ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) finSupp ∅ ) |
| 183 |
170 172 173 181 182
|
syl22anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) finSupp ∅ ) |
| 184 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ 𝑆 ↔ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) : 𝐵 ⟶ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) finSupp ∅ ) ) ) |
| 185 |
169 183 184
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ 𝑆 ) |
| 186 |
185
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ 𝑆 ) |
| 187 |
152 186
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 188 |
|
onelon |
⊢ ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐴 ↑o 𝐵 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ On ) |
| 189 |
150 187 188
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ On ) |
| 190 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → dom 𝑂 ∈ ω ) |
| 191 |
|
elnn |
⊢ ( ( suc 𝑢 ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω ) → suc 𝑢 ∈ ω ) |
| 192 |
143 190 191
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → suc 𝑢 ∈ ω ) |
| 193 |
10
|
cantnfvalf |
⊢ 𝐻 : ω ⟶ On |
| 194 |
193
|
ffvelcdmi |
⊢ ( suc 𝑢 ∈ ω → ( 𝐻 ‘ suc 𝑢 ) ∈ On ) |
| 195 |
192 194
|
syl |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐻 ‘ suc 𝑢 ) ∈ On ) |
| 196 |
|
suppssdm |
⊢ ( 𝐺 supp ∅ ) ⊆ dom 𝐺 |
| 197 |
196 159
|
fssdm |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
| 198 |
197
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
| 199 |
9
|
oif |
⊢ 𝑂 : dom 𝑂 ⟶ ( 𝐺 supp ∅ ) |
| 200 |
199
|
ffvelcdmi |
⊢ ( suc 𝑢 ∈ dom 𝑂 → ( 𝑂 ‘ suc 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
| 201 |
143 200
|
syl |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ suc 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
| 202 |
198 201
|
sseldd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ suc 𝑢 ) ∈ 𝐵 ) |
| 203 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑂 ‘ suc 𝑢 ) ∈ 𝐵 ) → ( 𝑂 ‘ suc 𝑢 ) ∈ On ) |
| 204 |
3 202 203
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ suc 𝑢 ) ∈ On ) |
| 205 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑂 ‘ suc 𝑢 ) ∈ On ) → ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) |
| 206 |
2 204 205
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) |
| 207 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 208 |
207 202
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ 𝐴 ) |
| 209 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) |
| 210 |
2 208 209
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) |
| 211 |
|
omcl |
⊢ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) → ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ∈ On ) |
| 212 |
206 210 211
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ∈ On ) |
| 213 |
|
oaord |
⊢ ( ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ On ∧ ( 𝐻 ‘ suc 𝑢 ) ∈ On ∧ ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ∈ On ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ↔ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) ) |
| 214 |
189 195 212 213
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ↔ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) ) |
| 215 |
|
ifeq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ∅ , ∅ ) ) |
| 216 |
|
ifid |
⊢ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ∅ , ∅ ) = ∅ |
| 217 |
215 216
|
eqtrdi |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) |
| 218 |
|
ifeq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ∅ , ∅ ) ) |
| 219 |
|
ifid |
⊢ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ∅ , ∅ ) = ∅ |
| 220 |
218 219
|
eqtrdi |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) |
| 221 |
217 220
|
eqeq12d |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → ( if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ↔ ∅ = ∅ ) ) |
| 222 |
|
onss |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) |
| 223 |
3 222
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ On ) |
| 224 |
223
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
| 225 |
224
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
| 226 |
204
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑂 ‘ suc 𝑢 ) ∈ On ) |
| 227 |
|
onsseleq |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑂 ‘ suc 𝑢 ) ∈ On ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
| 228 |
225 226 227
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
| 229 |
228
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
| 230 |
199
|
ffvelcdmi |
⊢ ( 𝑢 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
| 231 |
145 230
|
syl |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
| 232 |
198 231
|
sseldd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ 𝐵 ) |
| 233 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝐵 ) → ( 𝑂 ‘ 𝑢 ) ∈ On ) |
| 234 |
3 232 233
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ On ) |
| 235 |
234
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑂 ‘ 𝑢 ) ∈ On ) |
| 236 |
|
onsssuc |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑂 ‘ 𝑢 ) ∈ On ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ 𝑥 ∈ suc ( 𝑂 ‘ 𝑢 ) ) ) |
| 237 |
225 235 236
|
syl2an2r |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ 𝑥 ∈ suc ( 𝑂 ‘ 𝑢 ) ) ) |
| 238 |
|
vex |
⊢ 𝑢 ∈ V |
| 239 |
238
|
sucid |
⊢ 𝑢 ∈ suc 𝑢 |
| 240 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 241 |
|
isorel |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( 𝑢 ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) ) → ( 𝑢 E suc 𝑢 ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 242 |
240 145 143 241
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 E suc 𝑢 ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 243 |
238
|
sucex |
⊢ suc 𝑢 ∈ V |
| 244 |
243
|
epeli |
⊢ ( 𝑢 E suc 𝑢 ↔ 𝑢 ∈ suc 𝑢 ) |
| 245 |
|
fvex |
⊢ ( 𝑂 ‘ suc 𝑢 ) ∈ V |
| 246 |
245
|
epeli |
⊢ ( ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 247 |
242 244 246
|
3bitr3g |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 ∈ suc 𝑢 ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 248 |
239 247
|
mpbii |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 249 |
|
eloni |
⊢ ( ( 𝑂 ‘ suc 𝑢 ) ∈ On → Ord ( 𝑂 ‘ suc 𝑢 ) ) |
| 250 |
204 249
|
syl |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → Ord ( 𝑂 ‘ suc 𝑢 ) ) |
| 251 |
|
ordelsuc |
⊢ ( ( ( 𝑂 ‘ 𝑢 ) ∈ On ∧ Ord ( 𝑂 ‘ suc 𝑢 ) ) → ( ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ↔ suc ( 𝑂 ‘ 𝑢 ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 252 |
234 250 251
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ↔ suc ( 𝑂 ‘ 𝑢 ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 253 |
248 252
|
mpbid |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → suc ( 𝑂 ‘ 𝑢 ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) |
| 254 |
253
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → suc ( 𝑂 ‘ 𝑢 ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) |
| 255 |
254
|
sseld |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∈ suc ( 𝑂 ‘ 𝑢 ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 256 |
237 255
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 257 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) |
| 258 |
240
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 259 |
258 48
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
| 260 |
1 2 3 4 5 6 7 8 9
|
cantnflem1c |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑥 ∈ ( 𝐺 supp ∅ ) ) |
| 261 |
|
f1ocnvfv2 |
⊢ ( ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) = 𝑥 ) |
| 262 |
259 260 261
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) = 𝑥 ) |
| 263 |
257 262
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
| 264 |
145
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑢 ∈ dom 𝑂 ) |
| 265 |
259 50 51
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
| 266 |
265 260
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) |
| 267 |
|
isorel |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) ) → ( 𝑢 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
| 268 |
258 264 266 267
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑢 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
| 269 |
|
fvex |
⊢ ( ◡ 𝑂 ‘ 𝑥 ) ∈ V |
| 270 |
269
|
epeli |
⊢ ( 𝑢 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 271 |
|
fvex |
⊢ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ∈ V |
| 272 |
271
|
epeli |
⊢ ( ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
| 273 |
268 270 272
|
3bitr3g |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
| 274 |
263 273
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 275 |
|
ordelon |
⊢ ( ( Ord dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ On ) |
| 276 |
37 266 275
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ On ) |
| 277 |
|
eloni |
⊢ ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ On → Ord ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 278 |
276 277
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → Ord ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 279 |
|
ordelsuc |
⊢ ( ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ∧ Ord ( ◡ 𝑂 ‘ 𝑥 ) ) → ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
| 280 |
274 278 279
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
| 281 |
274 280
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 282 |
143
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → suc 𝑢 ∈ dom 𝑂 ) |
| 283 |
37 282 131
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → suc 𝑢 ∈ On ) |
| 284 |
|
ontri1 |
⊢ ( ( suc 𝑢 ∈ On ∧ ( ◡ 𝑂 ‘ 𝑥 ) ∈ On ) → ( suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ¬ ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ) ) |
| 285 |
283 276 284
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ¬ ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ) ) |
| 286 |
281 285
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ¬ ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ) |
| 287 |
|
isorel |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) E suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 288 |
258 266 282 287
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) E suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 289 |
243
|
epeli |
⊢ ( ( ◡ 𝑂 ‘ 𝑥 ) E suc 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ) |
| 290 |
245
|
epeli |
⊢ ( ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) E ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 291 |
288 289 290
|
3bitr3g |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 292 |
262
|
eleq1d |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ↔ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 293 |
291 292
|
bitrd |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ↔ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 294 |
286 293
|
mtbid |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ¬ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 295 |
294
|
expr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 → ¬ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 296 |
295
|
con2d |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) → ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) |
| 297 |
|
ontri1 |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑂 ‘ 𝑢 ) ∈ On ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) |
| 298 |
225 235 297
|
syl2an2r |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) |
| 299 |
296 298
|
sylibrd |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) → 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) |
| 300 |
256 299
|
impbid |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 301 |
300
|
orbi1d |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ↔ ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
| 302 |
229 301
|
bitr4d |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
| 303 |
|
orcom |
⊢ ( ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ↔ ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) |
| 304 |
302 303
|
bitrdi |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) ) |
| 305 |
304
|
ifbid |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 306 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ∅ = ∅ ) |
| 307 |
221 305 306
|
pm2.61ne |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 308 |
307
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 309 |
308
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 310 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
| 311 |
310 175
|
ifex |
⊢ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V |
| 312 |
311
|
a1i |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ) |
| 313 |
312
|
ralrimivw |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ∀ 𝑥 ∈ 𝐵 if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ) |
| 314 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 315 |
314
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐵 if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) Fn 𝐵 ) |
| 316 |
313 315
|
syl |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) Fn 𝐵 ) |
| 317 |
175
|
a1i |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ∅ ∈ V ) |
| 318 |
|
suppvalfn |
⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) = { 𝑦 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ≠ ∅ } ) |
| 319 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 320 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
| 321 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) |
| 322 |
|
nfcv |
⊢ Ⅎ 𝑥 ∅ |
| 323 |
321 322
|
nfne |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ≠ ∅ |
| 324 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ |
| 325 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ) |
| 326 |
325
|
neeq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ≠ ∅ ↔ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ ) ) |
| 327 |
319 320 323 324 326
|
cbvrabw |
⊢ { 𝑦 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ≠ ∅ } = { 𝑥 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ } |
| 328 |
318 327
|
eqtrdi |
⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) = { 𝑥 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ } ) |
| 329 |
316 148 317 328
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) = { 𝑥 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ } ) |
| 330 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 331 |
311
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ) |
| 332 |
330 331
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 333 |
332
|
neeq1d |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ ↔ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ) ) |
| 334 |
331
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ↔ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ∧ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ) ) ) |
| 335 |
|
dif1o |
⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ↔ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ∧ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ) ) |
| 336 |
334 335
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ↔ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ) ) |
| 337 |
333 336
|
bitrd |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ ↔ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ) ) |
| 338 |
337
|
rabbidva |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → { 𝑥 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ } = { 𝑥 ∈ 𝐵 ∣ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) } ) |
| 339 |
329 338
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) = { 𝑥 ∈ 𝐵 ∣ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) } ) |
| 340 |
311 335
|
mpbiran |
⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ↔ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ) |
| 341 |
|
ifeq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ∅ , ∅ ) ) |
| 342 |
341 179
|
eqtrdi |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) |
| 343 |
342
|
necon3i |
⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ → ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
| 344 |
|
iffalse |
⊢ ( ¬ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) |
| 345 |
344
|
necon1ai |
⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ → 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) |
| 346 |
343 345
|
jca |
⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ → ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) |
| 347 |
256
|
expimpd |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 348 |
346 347
|
syl5 |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 349 |
340 348
|
biimtrid |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 350 |
349
|
3impia |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ∧ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 351 |
350
|
rabssdv |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → { 𝑥 ∈ 𝐵 ∣ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) } ⊆ ( 𝑂 ‘ suc 𝑢 ) ) |
| 352 |
339 351
|
eqsstrd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) |
| 353 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ↔ 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 354 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) |
| 355 |
353 354
|
orbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ↔ ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) ) |
| 356 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 357 |
355 356
|
ifbieq1d |
⊢ ( 𝑥 = 𝑦 → if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 358 |
357
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 359 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 360 |
359
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 361 |
360
|
ifeq1da |
⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) = if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) ) |
| 362 |
354 356
|
ifbieq1d |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 363 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
| 364 |
363 175
|
ifex |
⊢ if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ∈ V |
| 365 |
362 314 364
|
fvmpt |
⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) = if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 366 |
365
|
ifeq2d |
⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) = if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) |
| 367 |
|
ifor |
⊢ if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) = if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 368 |
366 367
|
eqtr4di |
⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) = if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 369 |
361 368
|
eqtr3d |
⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) = if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 370 |
369
|
mpteq2ia |
⊢ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 371 |
358 370
|
eqtr4i |
⊢ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) ) |
| 372 |
1 151 148 186 202 208 352 371
|
cantnfp1 |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ 𝑆 ∧ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ) ) |
| 373 |
372
|
simprd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ) |
| 374 |
309 373
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ) |
| 375 |
1 2 3 9 6 10
|
cantnfsuc |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ ω ) → ( 𝐻 ‘ suc suc 𝑢 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) |
| 376 |
192 375
|
syldan |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐻 ‘ suc suc 𝑢 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) |
| 377 |
160
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 378 |
377
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 379 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
| 380 |
136
|
adantrr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑢 ∈ On ) |
| 381 |
|
onsssuc |
⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ∧ 𝑢 ∈ On ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) ) |
| 382 |
129 380 381
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) ) |
| 383 |
146 382
|
mpbid |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) |
| 384 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) |
| 385 |
|
isorel |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) ) → ( ( ◡ 𝑂 ‘ 𝑋 ) E suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 386 |
240 384 143 385
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ◡ 𝑂 ‘ 𝑋 ) E suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 387 |
243
|
epeli |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) E suc 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) |
| 388 |
245
|
epeli |
⊢ ( ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) E ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 389 |
386 387 388
|
3bitr3g |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 390 |
383 389
|
mpbid |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 391 |
379 390
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑋 ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 392 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( 𝑋 ∈ 𝑤 ↔ 𝑋 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 393 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 394 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 395 |
393 394
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
| 396 |
392 395
|
imbi12d |
⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ( 𝑋 ∈ ( 𝑂 ‘ suc 𝑢 ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ) ) |
| 397 |
396
|
rspcv |
⊢ ( ( 𝑂 ‘ suc 𝑢 ) ∈ 𝐵 → ( ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝑋 ∈ ( 𝑂 ‘ suc 𝑢 ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ) ) |
| 398 |
202 378 391 397
|
syl3c |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 399 |
398
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) = ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
| 400 |
399
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) |
| 401 |
376 400
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐻 ‘ suc suc 𝑢 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) |
| 402 |
374 401
|
eleq12d |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ↔ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) ) |
| 403 |
214 402
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
| 404 |
403
|
biimpd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
| 405 |
147 404
|
embantd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
| 406 |
405
|
expr |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 407 |
140 406
|
sylbird |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 408 |
|
fveq2 |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = ( 𝑂 ‘ suc 𝑢 ) ) |
| 409 |
408
|
sseq2d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 410 |
409
|
ifbid |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 411 |
410
|
mpteq2dv |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 412 |
411
|
fveq2d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 413 |
|
suceq |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → suc ( ◡ 𝑂 ‘ 𝑋 ) = suc suc 𝑢 ) |
| 414 |
413
|
fveq2d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) = ( 𝐻 ‘ suc suc 𝑢 ) ) |
| 415 |
412 414
|
eleq12d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
| 416 |
115 415
|
syl5ibcom |
⊢ ( 𝜑 → ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
| 417 |
416
|
adantr |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
| 418 |
417
|
a1dd |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 419 |
407 418
|
jaod |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ∨ ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 ) → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 420 |
134 419
|
sylbid |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 421 |
420
|
expimpd |
⊢ ( 𝜑 → ( ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 422 |
421
|
com23 |
⊢ ( 𝜑 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 423 |
422
|
a1i |
⊢ ( 𝑢 ∈ ω → ( 𝜑 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) ) |
| 424 |
83 95 107 127 423
|
finds2 |
⊢ ( 𝑦 ∈ ω → ( 𝜑 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
| 425 |
71 424
|
vtoclga |
⊢ ( ∪ dom 𝑂 ∈ ω → ( 𝜑 → ( ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) ) |
| 426 |
58 425
|
mpcom |
⊢ ( 𝜑 → ( ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) |
| 427 |
45 55 426
|
mp2and |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) |
| 428 |
155
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 429 |
|
eqeq2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 430 |
|
eqeq2 |
⊢ ( ∅ = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) → ( ( 𝐹 ‘ 𝑥 ) = ∅ ↔ ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 431 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 432 |
199
|
ffvelcdmi |
⊢ ( ∪ dom 𝑂 ∈ dom 𝑂 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐺 supp ∅ ) ) |
| 433 |
45 432
|
syl |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐺 supp ∅ ) ) |
| 434 |
197 433
|
sseldd |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝐵 ) |
| 435 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝐵 ) → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) |
| 436 |
3 434 435
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) |
| 437 |
436
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) |
| 438 |
|
ontri1 |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) → ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) |
| 439 |
224 437 438
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) |
| 440 |
439
|
con2bid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ↔ ¬ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
| 441 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑥 ∈ 𝐵 ) |
| 442 |
377
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 443 |
|
eloni |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On → Ord ( ◡ 𝑂 ‘ 𝑋 ) ) |
| 444 |
129 443
|
syl |
⊢ ( 𝜑 → Ord ( ◡ 𝑂 ‘ 𝑋 ) ) |
| 445 |
|
orduni |
⊢ ( Ord dom 𝑂 → Ord ∪ dom 𝑂 ) |
| 446 |
37 445
|
ax-mp |
⊢ Ord ∪ dom 𝑂 |
| 447 |
|
ordtri1 |
⊢ ( ( Ord ( ◡ 𝑂 ‘ 𝑋 ) ∧ Ord ∪ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| 448 |
444 446 447
|
sylancl |
⊢ ( 𝜑 → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| 449 |
55 448
|
mpbid |
⊢ ( 𝜑 → ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) |
| 450 |
|
isorel |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) ) → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
| 451 |
47 45 53 450
|
syl12anc |
⊢ ( 𝜑 → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
| 452 |
|
fvex |
⊢ ( ◡ 𝑂 ‘ 𝑋 ) ∈ V |
| 453 |
452
|
epeli |
⊢ ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) |
| 454 |
|
fvex |
⊢ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ V |
| 455 |
454
|
epeli |
⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| 456 |
451 453 455
|
3bitr3g |
⊢ ( 𝜑 → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
| 457 |
109
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
| 458 |
456 457
|
bitrd |
⊢ ( 𝜑 → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
| 459 |
449 458
|
mtbid |
⊢ ( 𝜑 → ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) |
| 460 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ On ) |
| 461 |
3 161 460
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ On ) |
| 462 |
|
ontri1 |
⊢ ( ( 𝑋 ∈ On ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) → ( 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
| 463 |
461 436 462
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
| 464 |
459 463
|
mpbird |
⊢ ( 𝜑 → 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) |
| 465 |
464
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) |
| 466 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) |
| 467 |
224
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑥 ∈ On ) |
| 468 |
|
ontr2 |
⊢ ( ( 𝑋 ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) → 𝑋 ∈ 𝑥 ) ) |
| 469 |
461 467 468
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( ( 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) → 𝑋 ∈ 𝑥 ) ) |
| 470 |
465 466 469
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑋 ∈ 𝑥 ) |
| 471 |
|
eleq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑋 ∈ 𝑤 ↔ 𝑋 ∈ 𝑥 ) ) |
| 472 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 473 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 474 |
472 473
|
eqeq12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 475 |
471 474
|
imbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ( 𝑋 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 476 |
475
|
rspcv |
⊢ ( 𝑥 ∈ 𝐵 → ( ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝑋 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 477 |
441 442 470 476
|
syl3c |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 478 |
466
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) |
| 479 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 480 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ∪ dom 𝑂 ∈ dom 𝑂 ) |
| 481 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
| 482 |
|
ffvelcdm |
⊢ ( ( ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) |
| 483 |
481 482
|
sylancom |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) |
| 484 |
|
isorel |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) ) → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
| 485 |
479 480 483 484
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
| 486 |
269
|
epeli |
⊢ ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 487 |
271
|
epeli |
⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
| 488 |
485 486 487
|
3bitr3g |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
| 489 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
| 490 |
489 261
|
sylancom |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) = 𝑥 ) |
| 491 |
490
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) |
| 492 |
488 491
|
bitrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) |
| 493 |
478 492
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 494 |
|
elssuni |
⊢ ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 → ( ◡ 𝑂 ‘ 𝑥 ) ⊆ ∪ dom 𝑂 ) |
| 495 |
483 494
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ⊆ ∪ dom 𝑂 ) |
| 496 |
37 483 275
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ On ) |
| 497 |
496 277
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → Ord ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 498 |
|
ordtri1 |
⊢ ( ( Ord ( ◡ 𝑂 ‘ 𝑥 ) ∧ Ord ∪ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑥 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
| 499 |
497 446 498
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
| 500 |
495 499
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 501 |
493 500
|
pm2.65da |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ¬ 𝑥 ∈ ( 𝐺 supp ∅ ) ) |
| 502 |
441 501
|
eldifd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑥 ∈ ( 𝐵 ∖ ( 𝐺 supp ∅ ) ) ) |
| 503 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ ( 𝐺 supp ∅ ) ) |
| 504 |
159 503 3 176
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐺 supp ∅ ) ) ) → ( 𝐺 ‘ 𝑥 ) = ∅ ) |
| 505 |
502 504
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) = ∅ ) |
| 506 |
477 505
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 507 |
506
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 508 |
440 507
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 509 |
508
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 510 |
429 430 431 509
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 511 |
510
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 512 |
428 511
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 513 |
512
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 514 |
1 2 3 9 6 10
|
cantnfval |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) = ( 𝐻 ‘ dom 𝑂 ) ) |
| 515 |
44
|
fveq2d |
⊢ ( 𝜑 → ( 𝐻 ‘ dom 𝑂 ) = ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) |
| 516 |
514 515
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) = ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) |
| 517 |
427 513 516
|
3eltr4d |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) |