| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elrspunidl.n |
⊢ 𝑁 = ( RSpan ‘ 𝑅 ) |
| 2 |
|
elrspunidl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
elrspunidl.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
elrspunidl.x |
⊢ · = ( .r ‘ 𝑅 ) |
| 5 |
|
elrspunidl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
elrspunidl.i |
⊢ ( 𝜑 → 𝑆 ⊆ ( LIdeal ‘ 𝑅 ) ) |
| 7 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑆 ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 8 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 9 |
2 8
|
lidlss |
⊢ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) → 𝑖 ⊆ 𝐵 ) |
| 10 |
7 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑆 ) → 𝑖 ⊆ 𝐵 ) |
| 11 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑆 𝑖 ⊆ 𝐵 ) |
| 12 |
|
unissb |
⊢ ( ∪ 𝑆 ⊆ 𝐵 ↔ ∀ 𝑖 ∈ 𝑆 𝑖 ⊆ 𝐵 ) |
| 13 |
11 12
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑆 ⊆ 𝐵 ) |
| 14 |
1 2 3 4 5 13
|
elrsp |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ ∪ 𝑆 ) ↔ ∃ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ( 𝑏 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) ) |
| 15 |
|
fvexd |
⊢ ( 𝜑 → ( LIdeal ‘ 𝑅 ) ∈ V ) |
| 16 |
15 6
|
ssexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 17 |
16
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑆 ∈ V ) |
| 18 |
|
eluni2 |
⊢ ( 𝑗 ∈ ∪ 𝑆 ↔ ∃ 𝑖 ∈ 𝑆 𝑗 ∈ 𝑖 ) |
| 19 |
18
|
biimpi |
⊢ ( 𝑗 ∈ ∪ 𝑆 → ∃ 𝑖 ∈ 𝑆 𝑗 ∈ 𝑖 ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ∪ 𝑆 ) → ∃ 𝑖 ∈ 𝑆 𝑗 ∈ 𝑖 ) |
| 21 |
20
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ∪ 𝑆 ∃ 𝑖 ∈ 𝑆 𝑗 ∈ 𝑖 ) |
| 22 |
|
eleq2 |
⊢ ( 𝑖 = ( 𝑓 ‘ 𝑗 ) → ( 𝑗 ∈ 𝑖 ↔ 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ) |
| 23 |
22
|
ac6sg |
⊢ ( ∪ 𝑆 ∈ V → ( ∀ 𝑗 ∈ ∪ 𝑆 ∃ 𝑖 ∈ 𝑆 𝑗 ∈ 𝑖 → ∃ 𝑓 ( 𝑓 : ∪ 𝑆 ⟶ 𝑆 ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ) ) |
| 24 |
17 21 23
|
sylc |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ∪ 𝑆 ⟶ 𝑆 ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ) |
| 25 |
24
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) → ∃ 𝑓 ( 𝑓 : ∪ 𝑆 ⟶ 𝑆 ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ) |
| 26 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → 𝜑 ) |
| 27 |
26
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) → 𝜑 ) |
| 28 |
|
ringcmn |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) |
| 29 |
27 5 28
|
3syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) → 𝑅 ∈ CMnd ) |
| 30 |
|
vex |
⊢ 𝑓 ∈ V |
| 31 |
|
cnvexg |
⊢ ( 𝑓 ∈ V → ◡ 𝑓 ∈ V ) |
| 32 |
|
imaexg |
⊢ ( ◡ 𝑓 ∈ V → ( ◡ 𝑓 “ { 𝑖 } ) ∈ V ) |
| 33 |
30 31 32
|
mp2b |
⊢ ( ◡ 𝑓 “ { 𝑖 } ) ∈ V |
| 34 |
33
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) → ( ◡ 𝑓 “ { 𝑖 } ) ∈ V ) |
| 35 |
5
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → 𝑅 ∈ Ring ) |
| 36 |
|
elmapi |
⊢ ( 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) → 𝑏 : ∪ 𝑆 ⟶ 𝐵 ) |
| 37 |
36
|
ad7antlr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → 𝑏 : ∪ 𝑆 ⟶ 𝐵 ) |
| 38 |
|
cnvimass |
⊢ ( ◡ 𝑓 “ { 𝑖 } ) ⊆ dom 𝑓 |
| 39 |
|
fdm |
⊢ ( 𝑓 : ∪ 𝑆 ⟶ 𝑆 → dom 𝑓 = ∪ 𝑆 ) |
| 40 |
38 39
|
sseqtrid |
⊢ ( 𝑓 : ∪ 𝑆 ⟶ 𝑆 → ( ◡ 𝑓 “ { 𝑖 } ) ⊆ ∪ 𝑆 ) |
| 41 |
40
|
ad3antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) → ( ◡ 𝑓 “ { 𝑖 } ) ⊆ ∪ 𝑆 ) |
| 42 |
41
|
sselda |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → 𝑙 ∈ ∪ 𝑆 ) |
| 43 |
37 42
|
ffvelcdmd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → ( 𝑏 ‘ 𝑙 ) ∈ 𝐵 ) |
| 44 |
13
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → ∪ 𝑆 ⊆ 𝐵 ) |
| 45 |
44 42
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → 𝑙 ∈ 𝐵 ) |
| 46 |
2 4
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑏 ‘ 𝑙 ) ∈ 𝐵 ∧ 𝑙 ∈ 𝐵 ) → ( ( 𝑏 ‘ 𝑙 ) · 𝑙 ) ∈ 𝐵 ) |
| 47 |
35 43 45 46
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → ( ( 𝑏 ‘ 𝑙 ) · 𝑙 ) ∈ 𝐵 ) |
| 48 |
|
fveq2 |
⊢ ( 𝑗 = 𝑙 → ( 𝑏 ‘ 𝑗 ) = ( 𝑏 ‘ 𝑙 ) ) |
| 49 |
|
id |
⊢ ( 𝑗 = 𝑙 → 𝑗 = 𝑙 ) |
| 50 |
48 49
|
oveq12d |
⊢ ( 𝑗 = 𝑙 → ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) = ( ( 𝑏 ‘ 𝑙 ) · 𝑙 ) ) |
| 51 |
50
|
cbvmptv |
⊢ ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) = ( 𝑙 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑙 ) · 𝑙 ) ) |
| 52 |
47 51
|
fmptd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) : ( ◡ 𝑓 “ { 𝑖 } ) ⟶ 𝐵 ) |
| 53 |
34
|
mptexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ∈ V ) |
| 54 |
52
|
ffund |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) → Fun ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) |
| 55 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) → 𝑏 finSupp 0 ) |
| 56 |
|
nfv |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) |
| 57 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑅 |
| 58 |
|
nfcv |
⊢ Ⅎ 𝑗 Σg |
| 59 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) |
| 60 |
57 58 59
|
nfov |
⊢ Ⅎ 𝑗 ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) |
| 61 |
60
|
nfeq2 |
⊢ Ⅎ 𝑗 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) |
| 62 |
56 61
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) |
| 63 |
|
nfv |
⊢ Ⅎ 𝑗 𝑓 : ∪ 𝑆 ⟶ 𝑆 |
| 64 |
62 63
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) |
| 65 |
|
nfra1 |
⊢ Ⅎ 𝑗 ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) |
| 66 |
64 65
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) |
| 67 |
|
nfv |
⊢ Ⅎ 𝑗 𝑖 ∈ 𝑆 |
| 68 |
66 67
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) |
| 69 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ◡ 𝑓 “ { 𝑖 } ) |
| 70 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝑏 supp 0 ) |
| 71 |
36
|
ad7antlr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑖 } ) ∖ ( 𝑏 supp 0 ) ) ) → 𝑏 : ∪ 𝑆 ⟶ 𝐵 ) |
| 72 |
71
|
ffnd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑖 } ) ∖ ( 𝑏 supp 0 ) ) ) → 𝑏 Fn ∪ 𝑆 ) |
| 73 |
26 17
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ∪ 𝑆 ∈ V ) |
| 74 |
73
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑖 } ) ∖ ( 𝑏 supp 0 ) ) ) → ∪ 𝑆 ∈ V ) |
| 75 |
3
|
fvexi |
⊢ 0 ∈ V |
| 76 |
75
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑖 } ) ∖ ( 𝑏 supp 0 ) ) ) → 0 ∈ V ) |
| 77 |
41
|
ssdifd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) → ( ( ◡ 𝑓 “ { 𝑖 } ) ∖ ( 𝑏 supp 0 ) ) ⊆ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) |
| 78 |
77
|
sselda |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑖 } ) ∖ ( 𝑏 supp 0 ) ) ) → 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) |
| 79 |
72 74 76 78
|
fvdifsupp |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑖 } ) ∖ ( 𝑏 supp 0 ) ) ) → ( 𝑏 ‘ 𝑗 ) = 0 ) |
| 80 |
79
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑖 } ) ∖ ( 𝑏 supp 0 ) ) ) → ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) = ( 0 · 𝑗 ) ) |
| 81 |
5
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑖 } ) ∖ ( 𝑏 supp 0 ) ) ) → 𝑅 ∈ Ring ) |
| 82 |
13
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑖 } ) ∖ ( 𝑏 supp 0 ) ) ) → ∪ 𝑆 ⊆ 𝐵 ) |
| 83 |
78
|
eldifad |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑖 } ) ∖ ( 𝑏 supp 0 ) ) ) → 𝑗 ∈ ∪ 𝑆 ) |
| 84 |
82 83
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑖 } ) ∖ ( 𝑏 supp 0 ) ) ) → 𝑗 ∈ 𝐵 ) |
| 85 |
2 4 3
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑗 ∈ 𝐵 ) → ( 0 · 𝑗 ) = 0 ) |
| 86 |
81 84 85
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑖 } ) ∖ ( 𝑏 supp 0 ) ) ) → ( 0 · 𝑗 ) = 0 ) |
| 87 |
80 86
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑖 } ) ∖ ( 𝑏 supp 0 ) ) ) → ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) = 0 ) |
| 88 |
68 69 70 87 34
|
suppss2f |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) → ( ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) supp 0 ) ⊆ ( 𝑏 supp 0 ) ) |
| 89 |
|
fsuppsssupp |
⊢ ( ( ( ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ∈ V ∧ Fun ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ∧ ( 𝑏 finSupp 0 ∧ ( ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) supp 0 ) ⊆ ( 𝑏 supp 0 ) ) ) → ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) finSupp 0 ) |
| 90 |
53 54 55 88 89
|
syl22anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) finSupp 0 ) |
| 91 |
2 3 29 34 52 90
|
gsumcl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ∈ 𝐵 ) |
| 92 |
91
|
fmpttd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) : 𝑆 ⟶ 𝐵 ) |
| 93 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 94 |
93
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 95 |
94 16
|
elmapd |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∈ ( 𝐵 ↑m 𝑆 ) ↔ ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) : 𝑆 ⟶ 𝐵 ) ) |
| 96 |
95
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) : 𝑆 ⟶ 𝐵 ) → ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∈ ( 𝐵 ↑m 𝑆 ) ) |
| 97 |
26 92 96
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∈ ( 𝐵 ↑m 𝑆 ) ) |
| 98 |
|
breq1 |
⊢ ( 𝑎 = ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) → ( 𝑎 finSupp 0 ↔ ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) finSupp 0 ) ) |
| 99 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) → ( 𝑅 Σg 𝑎 ) = ( 𝑅 Σg ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) ) |
| 100 |
99
|
eqeq2d |
⊢ ( 𝑎 = ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) → ( 𝑋 = ( 𝑅 Σg 𝑎 ) ↔ 𝑋 = ( 𝑅 Σg ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) ) ) |
| 101 |
|
fveq1 |
⊢ ( 𝑎 = ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) → ( 𝑎 ‘ 𝑘 ) = ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ‘ 𝑘 ) ) |
| 102 |
101
|
eleq1d |
⊢ ( 𝑎 = ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) → ( ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ↔ ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ‘ 𝑘 ) ∈ 𝑘 ) ) |
| 103 |
102
|
ralbidv |
⊢ ( 𝑎 = ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) → ( ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ↔ ∀ 𝑘 ∈ 𝑆 ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ‘ 𝑘 ) ∈ 𝑘 ) ) |
| 104 |
98 100 103
|
3anbi123d |
⊢ ( 𝑎 = ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) → ( ( 𝑎 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ↔ ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ‘ 𝑘 ) ∈ 𝑘 ) ) ) |
| 105 |
104
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑎 = ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) → ( ( 𝑎 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ↔ ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ‘ 𝑘 ) ∈ 𝑘 ) ) ) |
| 106 |
26 16
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → 𝑆 ∈ V ) |
| 107 |
106
|
mptexd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∈ V ) |
| 108 |
75
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → 0 ∈ V ) |
| 109 |
|
funmpt |
⊢ Fun ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) |
| 110 |
109
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → Fun ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) |
| 111 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) |
| 112 |
111
|
ffund |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → Fun 𝑓 ) |
| 113 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → 𝑏 finSupp 0 ) |
| 114 |
113
|
fsuppimpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( 𝑏 supp 0 ) ∈ Fin ) |
| 115 |
|
imafi |
⊢ ( ( Fun 𝑓 ∧ ( 𝑏 supp 0 ) ∈ Fin ) → ( 𝑓 “ ( 𝑏 supp 0 ) ) ∈ Fin ) |
| 116 |
112 114 115
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( 𝑓 “ ( 𝑏 supp 0 ) ) ∈ Fin ) |
| 117 |
|
nfv |
⊢ Ⅎ 𝑗 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) |
| 118 |
66 117
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) |
| 119 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) |
| 120 |
119
|
ffund |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → Fun 𝑓 ) |
| 121 |
|
snssi |
⊢ ( 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) → { 𝑖 } ⊆ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) |
| 122 |
121
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → { 𝑖 } ⊆ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) |
| 123 |
|
sspreima |
⊢ ( ( Fun 𝑓 ∧ { 𝑖 } ⊆ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( ◡ 𝑓 “ { 𝑖 } ) ⊆ ( ◡ 𝑓 “ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ) |
| 124 |
120 122 123
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( ◡ 𝑓 “ { 𝑖 } ) ⊆ ( ◡ 𝑓 “ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ) |
| 125 |
|
difpreima |
⊢ ( Fun 𝑓 → ( ◡ 𝑓 “ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) = ( ( ◡ 𝑓 “ 𝑆 ) ∖ ( ◡ 𝑓 “ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ) |
| 126 |
120 125
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( ◡ 𝑓 “ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) = ( ( ◡ 𝑓 “ 𝑆 ) ∖ ( ◡ 𝑓 “ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ) |
| 127 |
124 126
|
sseqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( ◡ 𝑓 “ { 𝑖 } ) ⊆ ( ( ◡ 𝑓 “ 𝑆 ) ∖ ( ◡ 𝑓 “ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ) |
| 128 |
|
suppssdm |
⊢ ( 𝑏 supp 0 ) ⊆ dom 𝑏 |
| 129 |
36
|
ad6antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → 𝑏 : ∪ 𝑆 ⟶ 𝐵 ) |
| 130 |
128 129
|
fssdm |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( 𝑏 supp 0 ) ⊆ ∪ 𝑆 ) |
| 131 |
119
|
fdmd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → dom 𝑓 = ∪ 𝑆 ) |
| 132 |
130 131
|
sseqtrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( 𝑏 supp 0 ) ⊆ dom 𝑓 ) |
| 133 |
|
sseqin2 |
⊢ ( ( 𝑏 supp 0 ) ⊆ dom 𝑓 ↔ ( dom 𝑓 ∩ ( 𝑏 supp 0 ) ) = ( 𝑏 supp 0 ) ) |
| 134 |
133
|
biimpi |
⊢ ( ( 𝑏 supp 0 ) ⊆ dom 𝑓 → ( dom 𝑓 ∩ ( 𝑏 supp 0 ) ) = ( 𝑏 supp 0 ) ) |
| 135 |
|
dminss |
⊢ ( dom 𝑓 ∩ ( 𝑏 supp 0 ) ) ⊆ ( ◡ 𝑓 “ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) |
| 136 |
134 135
|
eqsstrrdi |
⊢ ( ( 𝑏 supp 0 ) ⊆ dom 𝑓 → ( 𝑏 supp 0 ) ⊆ ( ◡ 𝑓 “ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) |
| 137 |
132 136
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( 𝑏 supp 0 ) ⊆ ( ◡ 𝑓 “ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) |
| 138 |
137
|
sscond |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( ( ◡ 𝑓 “ 𝑆 ) ∖ ( ◡ 𝑓 “ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ⊆ ( ( ◡ 𝑓 “ 𝑆 ) ∖ ( 𝑏 supp 0 ) ) ) |
| 139 |
127 138
|
sstrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( ◡ 𝑓 “ { 𝑖 } ) ⊆ ( ( ◡ 𝑓 “ 𝑆 ) ∖ ( 𝑏 supp 0 ) ) ) |
| 140 |
|
fimacnv |
⊢ ( 𝑓 : ∪ 𝑆 ⟶ 𝑆 → ( ◡ 𝑓 “ 𝑆 ) = ∪ 𝑆 ) |
| 141 |
119 140
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( ◡ 𝑓 “ 𝑆 ) = ∪ 𝑆 ) |
| 142 |
141
|
difeq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( ( ◡ 𝑓 “ 𝑆 ) ∖ ( 𝑏 supp 0 ) ) = ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) |
| 143 |
139 142
|
sseqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( ◡ 𝑓 “ { 𝑖 } ) ⊆ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) |
| 144 |
143
|
sselda |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ∧ 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) |
| 145 |
|
ssidd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( 𝑏 supp 0 ) ⊆ ( 𝑏 supp 0 ) ) |
| 146 |
73
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ∪ 𝑆 ∈ V ) |
| 147 |
75
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → 0 ∈ V ) |
| 148 |
129 145 146 147
|
suppssr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) → ( 𝑏 ‘ 𝑗 ) = 0 ) |
| 149 |
144 148
|
syldan |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ∧ 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → ( 𝑏 ‘ 𝑗 ) = 0 ) |
| 150 |
149
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ∧ 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) = ( 0 · 𝑗 ) ) |
| 151 |
5
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ∧ 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → 𝑅 ∈ Ring ) |
| 152 |
13
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ∧ 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → ∪ 𝑆 ⊆ 𝐵 ) |
| 153 |
40
|
ad3antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( ◡ 𝑓 “ { 𝑖 } ) ⊆ ∪ 𝑆 ) |
| 154 |
153
|
sselda |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ∧ 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → 𝑗 ∈ ∪ 𝑆 ) |
| 155 |
152 154
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ∧ 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → 𝑗 ∈ 𝐵 ) |
| 156 |
151 155 85
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ∧ 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → ( 0 · 𝑗 ) = 0 ) |
| 157 |
150 156
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) ∧ 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ) → ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) = 0 ) |
| 158 |
118 157
|
mpteq2da |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) = ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ 0 ) ) |
| 159 |
158
|
oveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ 0 ) ) ) |
| 160 |
5 28
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 161 |
160
|
cmnmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 162 |
161
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → 𝑅 ∈ Mnd ) |
| 163 |
3
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ◡ 𝑓 “ { 𝑖 } ) ∈ V ) → ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ 0 ) ) = 0 ) |
| 164 |
162 33 163
|
sylancl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ 0 ) ) = 0 ) |
| 165 |
159 164
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ ( 𝑆 ∖ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) ) → ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) = 0 ) |
| 166 |
165 106
|
suppss2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) supp 0 ) ⊆ ( 𝑓 “ ( 𝑏 supp 0 ) ) ) |
| 167 |
116 166
|
ssfid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) supp 0 ) ∈ Fin ) |
| 168 |
|
isfsupp |
⊢ ( ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) finSupp 0 ↔ ( Fun ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) supp 0 ) ∈ Fin ) ) ) |
| 169 |
168
|
biimpar |
⊢ ( ( ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∈ V ∧ 0 ∈ V ) ∧ ( Fun ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) supp 0 ) ∈ Fin ) ) → ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) finSupp 0 ) |
| 170 |
107 108 110 167 169
|
syl22anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) finSupp 0 ) |
| 171 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) |
| 172 |
26 160
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → 𝑅 ∈ CMnd ) |
| 173 |
5
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ∪ 𝑆 ) → 𝑅 ∈ Ring ) |
| 174 |
36
|
ad5antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → 𝑏 : ∪ 𝑆 ⟶ 𝐵 ) |
| 175 |
174
|
ffvelcdmda |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ∪ 𝑆 ) → ( 𝑏 ‘ 𝑗 ) ∈ 𝐵 ) |
| 176 |
26 13
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ∪ 𝑆 ⊆ 𝐵 ) |
| 177 |
176
|
sselda |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ∪ 𝑆 ) → 𝑗 ∈ 𝐵 ) |
| 178 |
2 4
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑏 ‘ 𝑗 ) ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ∈ 𝐵 ) |
| 179 |
173 175 177 178
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ∪ 𝑆 ) → ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ∈ 𝐵 ) |
| 180 |
|
eqid |
⊢ ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) = ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) |
| 181 |
66 179 180
|
fmptdf |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) : ∪ 𝑆 ⟶ 𝐵 ) |
| 182 |
73
|
mptexd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ∈ V ) |
| 183 |
|
funmpt |
⊢ Fun ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) |
| 184 |
183
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → Fun ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) |
| 185 |
|
nfcv |
⊢ Ⅎ 𝑗 ∪ 𝑆 |
| 186 |
174
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) → 𝑏 : ∪ 𝑆 ⟶ 𝐵 ) |
| 187 |
186
|
ffnd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) → 𝑏 Fn ∪ 𝑆 ) |
| 188 |
73
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) → ∪ 𝑆 ∈ V ) |
| 189 |
75
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) → 0 ∈ V ) |
| 190 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) → 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) |
| 191 |
187 188 189 190
|
fvdifsupp |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) → ( 𝑏 ‘ 𝑗 ) = 0 ) |
| 192 |
191
|
oveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) → ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) = ( 0 · 𝑗 ) ) |
| 193 |
5
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) → 𝑅 ∈ Ring ) |
| 194 |
176
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) → ∪ 𝑆 ⊆ 𝐵 ) |
| 195 |
190
|
eldifad |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) → 𝑗 ∈ ∪ 𝑆 ) |
| 196 |
194 195
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) → 𝑗 ∈ 𝐵 ) |
| 197 |
193 196 85
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) → ( 0 · 𝑗 ) = 0 ) |
| 198 |
192 197
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) → ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) = 0 ) |
| 199 |
66 185 70 198 73
|
suppss2f |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) supp 0 ) ⊆ ( 𝑏 supp 0 ) ) |
| 200 |
|
fsuppsssupp |
⊢ ( ( ( ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ∈ V ∧ Fun ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ∧ ( 𝑏 finSupp 0 ∧ ( ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) supp 0 ) ⊆ ( 𝑏 supp 0 ) ) ) → ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) finSupp 0 ) |
| 201 |
182 184 113 199 200
|
syl22anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) finSupp 0 ) |
| 202 |
|
sndisj |
⊢ Disj 𝑖 ∈ 𝑆 { 𝑖 } |
| 203 |
|
disjpreima |
⊢ ( ( Fun 𝑓 ∧ Disj 𝑖 ∈ 𝑆 { 𝑖 } ) → Disj 𝑖 ∈ 𝑆 ( ◡ 𝑓 “ { 𝑖 } ) ) |
| 204 |
112 202 203
|
sylancl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → Disj 𝑖 ∈ 𝑆 ( ◡ 𝑓 “ { 𝑖 } ) ) |
| 205 |
|
iunid |
⊢ ∪ 𝑖 ∈ 𝑆 { 𝑖 } = 𝑆 |
| 206 |
205
|
imaeq2i |
⊢ ( ◡ 𝑓 “ ∪ 𝑖 ∈ 𝑆 { 𝑖 } ) = ( ◡ 𝑓 “ 𝑆 ) |
| 207 |
|
iunpreima |
⊢ ( Fun 𝑓 → ( ◡ 𝑓 “ ∪ 𝑖 ∈ 𝑆 { 𝑖 } ) = ∪ 𝑖 ∈ 𝑆 ( ◡ 𝑓 “ { 𝑖 } ) ) |
| 208 |
112 207
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( ◡ 𝑓 “ ∪ 𝑖 ∈ 𝑆 { 𝑖 } ) = ∪ 𝑖 ∈ 𝑆 ( ◡ 𝑓 “ { 𝑖 } ) ) |
| 209 |
140
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( ◡ 𝑓 “ 𝑆 ) = ∪ 𝑆 ) |
| 210 |
206 208 209
|
3eqtr3a |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ∪ 𝑖 ∈ 𝑆 ( ◡ 𝑓 “ { 𝑖 } ) = ∪ 𝑆 ) |
| 211 |
2 3 172 73 106 181 201 204 210
|
gsumpart |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) = ( 𝑅 Σg ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ↾ ( ◡ 𝑓 “ { 𝑖 } ) ) ) ) ) ) |
| 212 |
41
|
resmptd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) → ( ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ↾ ( ◡ 𝑓 “ { 𝑖 } ) ) = ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) |
| 213 |
212
|
oveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑅 Σg ( ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ↾ ( ◡ 𝑓 “ { 𝑖 } ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) |
| 214 |
213
|
mpteq2dva |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ↾ ( ◡ 𝑓 “ { 𝑖 } ) ) ) ) = ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) |
| 215 |
214
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( 𝑅 Σg ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ↾ ( ◡ 𝑓 “ { 𝑖 } ) ) ) ) ) = ( 𝑅 Σg ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) ) |
| 216 |
171 211 215
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → 𝑋 = ( 𝑅 Σg ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) ) |
| 217 |
|
eqid |
⊢ ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) = ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) |
| 218 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑖 = 𝑘 ) → 𝑖 = 𝑘 ) |
| 219 |
218
|
sneqd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑖 = 𝑘 ) → { 𝑖 } = { 𝑘 } ) |
| 220 |
219
|
imaeq2d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑖 = 𝑘 ) → ( ◡ 𝑓 “ { 𝑖 } ) = ( ◡ 𝑓 “ { 𝑘 } ) ) |
| 221 |
220
|
mpteq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑖 = 𝑘 ) → ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) = ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) |
| 222 |
221
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑖 = 𝑘 ) → ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) |
| 223 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → 𝑘 ∈ 𝑆 ) |
| 224 |
|
ovexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ∈ V ) |
| 225 |
217 222 223 224
|
fvmptd2 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ‘ 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) |
| 226 |
160
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → 𝑅 ∈ CMnd ) |
| 227 |
30
|
cnvex |
⊢ ◡ 𝑓 ∈ V |
| 228 |
227
|
imaex |
⊢ ( ◡ 𝑓 “ { 𝑘 } ) ∈ V |
| 229 |
228
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → ( ◡ 𝑓 “ { 𝑘 } ) ∈ V ) |
| 230 |
5
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → 𝑅 ∈ Ring ) |
| 231 |
26 6
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → 𝑆 ⊆ ( LIdeal ‘ 𝑅 ) ) |
| 232 |
231
|
sselda |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 233 |
8
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑘 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 234 |
|
subgsubm |
⊢ ( 𝑘 ∈ ( SubGrp ‘ 𝑅 ) → 𝑘 ∈ ( SubMnd ‘ 𝑅 ) ) |
| 235 |
233 234
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑘 ∈ ( SubMnd ‘ 𝑅 ) ) |
| 236 |
230 232 235
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → 𝑘 ∈ ( SubMnd ‘ 𝑅 ) ) |
| 237 |
230
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ) → 𝑅 ∈ Ring ) |
| 238 |
232
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ) → 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 239 |
36
|
ad7antlr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ) → 𝑏 : ∪ 𝑆 ⟶ 𝐵 ) |
| 240 |
|
cnvimass |
⊢ ( ◡ 𝑓 “ { 𝑘 } ) ⊆ dom 𝑓 |
| 241 |
240 39
|
sseqtrid |
⊢ ( 𝑓 : ∪ 𝑆 ⟶ 𝑆 → ( ◡ 𝑓 “ { 𝑘 } ) ⊆ ∪ 𝑆 ) |
| 242 |
241
|
ad3antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → ( ◡ 𝑓 “ { 𝑘 } ) ⊆ ∪ 𝑆 ) |
| 243 |
242
|
sselda |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ) → 𝑙 ∈ ∪ 𝑆 ) |
| 244 |
239 243
|
ffvelcdmd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ) → ( 𝑏 ‘ 𝑙 ) ∈ 𝐵 ) |
| 245 |
|
fveq2 |
⊢ ( 𝑗 = 𝑙 → ( 𝑓 ‘ 𝑗 ) = ( 𝑓 ‘ 𝑙 ) ) |
| 246 |
49 245
|
eleq12d |
⊢ ( 𝑗 = 𝑙 → ( 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ↔ 𝑙 ∈ ( 𝑓 ‘ 𝑙 ) ) ) |
| 247 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ) → ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) |
| 248 |
246 247 243
|
rspcdva |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ) → 𝑙 ∈ ( 𝑓 ‘ 𝑙 ) ) |
| 249 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ) → 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) |
| 250 |
249
|
ffnd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ) → 𝑓 Fn ∪ 𝑆 ) |
| 251 |
|
elpreima |
⊢ ( 𝑓 Fn ∪ 𝑆 → ( 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↔ ( 𝑙 ∈ ∪ 𝑆 ∧ ( 𝑓 ‘ 𝑙 ) ∈ { 𝑘 } ) ) ) |
| 252 |
251
|
biimpa |
⊢ ( ( 𝑓 Fn ∪ 𝑆 ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ) → ( 𝑙 ∈ ∪ 𝑆 ∧ ( 𝑓 ‘ 𝑙 ) ∈ { 𝑘 } ) ) |
| 253 |
|
elsni |
⊢ ( ( 𝑓 ‘ 𝑙 ) ∈ { 𝑘 } → ( 𝑓 ‘ 𝑙 ) = 𝑘 ) |
| 254 |
252 253
|
simpl2im |
⊢ ( ( 𝑓 Fn ∪ 𝑆 ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ) → ( 𝑓 ‘ 𝑙 ) = 𝑘 ) |
| 255 |
250 254
|
sylancom |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ) → ( 𝑓 ‘ 𝑙 ) = 𝑘 ) |
| 256 |
248 255
|
eleqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ) → 𝑙 ∈ 𝑘 ) |
| 257 |
8 2 4
|
lidlmcl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑏 ‘ 𝑙 ) ∈ 𝐵 ∧ 𝑙 ∈ 𝑘 ) ) → ( ( 𝑏 ‘ 𝑙 ) · 𝑙 ) ∈ 𝑘 ) |
| 258 |
237 238 244 256 257
|
syl22anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ) → ( ( 𝑏 ‘ 𝑙 ) · 𝑙 ) ∈ 𝑘 ) |
| 259 |
50
|
cbvmptv |
⊢ ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) = ( 𝑙 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑙 ) · 𝑙 ) ) |
| 260 |
258 259
|
fmptd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) : ( ◡ 𝑓 “ { 𝑘 } ) ⟶ 𝑘 ) |
| 261 |
229
|
mptexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ∈ V ) |
| 262 |
260
|
ffund |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → Fun ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) |
| 263 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → 𝑏 finSupp 0 ) |
| 264 |
|
nfv |
⊢ Ⅎ 𝑗 𝑘 ∈ 𝑆 |
| 265 |
66 264
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) |
| 266 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ◡ 𝑓 “ { 𝑘 } ) |
| 267 |
36
|
ad7antlr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑘 } ) ∖ ( 𝑏 supp 0 ) ) ) → 𝑏 : ∪ 𝑆 ⟶ 𝐵 ) |
| 268 |
267
|
ffnd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑘 } ) ∖ ( 𝑏 supp 0 ) ) ) → 𝑏 Fn ∪ 𝑆 ) |
| 269 |
73
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑘 } ) ∖ ( 𝑏 supp 0 ) ) ) → ∪ 𝑆 ∈ V ) |
| 270 |
75
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑘 } ) ∖ ( 𝑏 supp 0 ) ) ) → 0 ∈ V ) |
| 271 |
242
|
ssdifd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → ( ( ◡ 𝑓 “ { 𝑘 } ) ∖ ( 𝑏 supp 0 ) ) ⊆ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) |
| 272 |
271
|
sselda |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑘 } ) ∖ ( 𝑏 supp 0 ) ) ) → 𝑗 ∈ ( ∪ 𝑆 ∖ ( 𝑏 supp 0 ) ) ) |
| 273 |
268 269 270 272
|
fvdifsupp |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑘 } ) ∖ ( 𝑏 supp 0 ) ) ) → ( 𝑏 ‘ 𝑗 ) = 0 ) |
| 274 |
273
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑘 } ) ∖ ( 𝑏 supp 0 ) ) ) → ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) = ( 0 · 𝑗 ) ) |
| 275 |
13
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑘 } ) ∖ ( 𝑏 supp 0 ) ) ) → ∪ 𝑆 ⊆ 𝐵 ) |
| 276 |
272
|
eldifad |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑘 } ) ∖ ( 𝑏 supp 0 ) ) ) → 𝑗 ∈ ∪ 𝑆 ) |
| 277 |
275 276
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑘 } ) ∖ ( 𝑏 supp 0 ) ) ) → 𝑗 ∈ 𝐵 ) |
| 278 |
230 277 85
|
syl2an2r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑘 } ) ∖ ( 𝑏 supp 0 ) ) ) → ( 0 · 𝑗 ) = 0 ) |
| 279 |
274 278
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) ∧ 𝑗 ∈ ( ( ◡ 𝑓 “ { 𝑘 } ) ∖ ( 𝑏 supp 0 ) ) ) → ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) = 0 ) |
| 280 |
265 266 70 279 229
|
suppss2f |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) supp 0 ) ⊆ ( 𝑏 supp 0 ) ) |
| 281 |
|
fsuppsssupp |
⊢ ( ( ( ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ∈ V ∧ Fun ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ∧ ( 𝑏 finSupp 0 ∧ ( ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) supp 0 ) ⊆ ( 𝑏 supp 0 ) ) ) → ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) finSupp 0 ) |
| 282 |
261 262 263 280 281
|
syl22anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) finSupp 0 ) |
| 283 |
3 226 229 236 260 282
|
gsumsubmcl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑘 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ∈ 𝑘 ) |
| 284 |
225 283
|
eqeltrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ‘ 𝑘 ) ∈ 𝑘 ) |
| 285 |
284
|
ralrimiva |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ∀ 𝑘 ∈ 𝑆 ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ‘ 𝑘 ) ∈ 𝑘 ) |
| 286 |
170 216 285
|
3jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( ( 𝑖 ∈ 𝑆 ↦ ( 𝑅 Σg ( 𝑗 ∈ ( ◡ 𝑓 “ { 𝑖 } ) ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ‘ 𝑘 ) ∈ 𝑘 ) ) |
| 287 |
97 105 286
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ 𝑓 : ∪ 𝑆 ⟶ 𝑆 ) ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) → ∃ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ( 𝑎 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ) |
| 288 |
287
|
anasss |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ∧ ( 𝑓 : ∪ 𝑆 ⟶ 𝑆 ∧ ∀ 𝑗 ∈ ∪ 𝑆 𝑗 ∈ ( 𝑓 ‘ 𝑗 ) ) ) → ∃ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ( 𝑎 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ) |
| 289 |
25 288
|
exlimddv |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ 𝑏 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) → ∃ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ( 𝑎 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ) |
| 290 |
289
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) ∧ ( 𝑏 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) → ∃ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ( 𝑎 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ) |
| 291 |
290
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ( 𝑏 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) → ∃ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ( 𝑎 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ) |
| 292 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → 𝑅 ∈ Ring ) |
| 293 |
292
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ) → 𝑅 ∈ Ring ) |
| 294 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
| 295 |
294
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) |
| 296 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 297 |
296 2
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ 𝐵 ) |
| 298 |
293 295 297
|
3syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ 𝐵 ) |
| 299 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ) → 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) |
| 300 |
75
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ) → 0 ∈ V ) |
| 301 |
|
ssv |
⊢ ran 𝑎 ⊆ V |
| 302 |
|
ssdif |
⊢ ( ran 𝑎 ⊆ V → ( ran 𝑎 ∖ { 0 } ) ⊆ ( V ∖ { 0 } ) ) |
| 303 |
301 302
|
ax-mp |
⊢ ( ran 𝑎 ∖ { 0 } ) ⊆ ( V ∖ { 0 } ) |
| 304 |
303
|
sseli |
⊢ ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) → 𝑚 ∈ ( V ∖ { 0 } ) ) |
| 305 |
304
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ) → 𝑚 ∈ ( V ∖ { 0 } ) ) |
| 306 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ) → 𝑎 finSupp 0 ) |
| 307 |
299 300 305 306
|
fsuppinisegfi |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ◡ 𝑎 “ { 𝑚 } ) ∈ Fin ) |
| 308 |
|
hashcl |
⊢ ( ( ◡ 𝑎 “ { 𝑚 } ) ∈ Fin → ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ∈ ℕ0 ) |
| 309 |
307 308
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ∈ ℕ0 ) |
| 310 |
309
|
nn0zd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ∈ ℤ ) |
| 311 |
298 310
|
ffvelcdmd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ∈ 𝐵 ) |
| 312 |
|
eqid |
⊢ ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) = ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) |
| 313 |
311 312
|
fmptd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) : ( ran 𝑎 ∖ { 0 } ) ⟶ 𝐵 ) |
| 314 |
2 3
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 315 |
|
fconst6g |
⊢ ( 0 ∈ 𝐵 → ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) : ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ⟶ 𝐵 ) |
| 316 |
292 314 315
|
3syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) : ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ⟶ 𝐵 ) |
| 317 |
|
disjdif |
⊢ ( ( ran 𝑎 ∖ { 0 } ) ∩ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) = ∅ |
| 318 |
317
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ( ran 𝑎 ∖ { 0 } ) ∩ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) = ∅ ) |
| 319 |
313 316 318
|
fun2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) : ( ( ran 𝑎 ∖ { 0 } ) ∪ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) ⟶ 𝐵 ) |
| 320 |
|
simplll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ) |
| 321 |
94 16
|
elmapd |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ↔ 𝑎 : 𝑆 ⟶ 𝐵 ) ) |
| 322 |
321
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) → 𝑎 : 𝑆 ⟶ 𝐵 ) |
| 323 |
320 322
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → 𝑎 : 𝑆 ⟶ 𝐵 ) |
| 324 |
323
|
ffnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → 𝑎 Fn 𝑆 ) |
| 325 |
|
elssuni |
⊢ ( 𝑘 ∈ 𝑆 → 𝑘 ⊆ ∪ 𝑆 ) |
| 326 |
325
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ 𝑘 ∈ 𝑆 ) → 𝑘 ⊆ ∪ 𝑆 ) |
| 327 |
326
|
sseld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 → ( 𝑎 ‘ 𝑘 ) ∈ ∪ 𝑆 ) ) |
| 328 |
327
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) → ( ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 → ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ ∪ 𝑆 ) ) |
| 329 |
328
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ ∪ 𝑆 ) |
| 330 |
|
fnfvrnss |
⊢ ( ( 𝑎 Fn 𝑆 ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ ∪ 𝑆 ) → ran 𝑎 ⊆ ∪ 𝑆 ) |
| 331 |
324 329 330
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ran 𝑎 ⊆ ∪ 𝑆 ) |
| 332 |
331
|
ssdifssd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ran 𝑎 ∖ { 0 } ) ⊆ ∪ 𝑆 ) |
| 333 |
|
undif |
⊢ ( ( ran 𝑎 ∖ { 0 } ) ⊆ ∪ 𝑆 ↔ ( ( ran 𝑎 ∖ { 0 } ) ∪ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) = ∪ 𝑆 ) |
| 334 |
332 333
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ( ran 𝑎 ∖ { 0 } ) ∪ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) = ∪ 𝑆 ) |
| 335 |
334
|
feq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) : ( ( ran 𝑎 ∖ { 0 } ) ∪ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) ⟶ 𝐵 ↔ ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) : ∪ 𝑆 ⟶ 𝐵 ) ) |
| 336 |
319 335
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) : ∪ 𝑆 ⟶ 𝐵 ) |
| 337 |
93
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → 𝐵 ∈ V ) |
| 338 |
17
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ∪ 𝑆 ∈ V ) |
| 339 |
337 338
|
elmapd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ∈ ( 𝐵 ↑m ∪ 𝑆 ) ↔ ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) : ∪ 𝑆 ⟶ 𝐵 ) ) |
| 340 |
336 339
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ∈ ( 𝐵 ↑m ∪ 𝑆 ) ) |
| 341 |
|
breq1 |
⊢ ( 𝑏 = ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) → ( 𝑏 finSupp 0 ↔ ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) finSupp 0 ) ) |
| 342 |
|
fveq1 |
⊢ ( 𝑏 = ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) → ( 𝑏 ‘ 𝑗 ) = ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) ) |
| 343 |
342
|
oveq1d |
⊢ ( 𝑏 = ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) → ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) = ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) ) |
| 344 |
343
|
mpteq2dv |
⊢ ( 𝑏 = ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) → ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) = ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) ) ) |
| 345 |
344
|
oveq2d |
⊢ ( 𝑏 = ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) → ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) ) ) ) |
| 346 |
345
|
eqeq2d |
⊢ ( 𝑏 = ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) → ( 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ↔ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) ) ) ) ) |
| 347 |
341 346
|
anbi12d |
⊢ ( 𝑏 = ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) → ( ( 𝑏 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ↔ ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) ) ) ) ) ) |
| 348 |
347
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑏 = ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ) → ( ( 𝑏 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ↔ ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) ) ) ) ) ) |
| 349 |
319
|
ffund |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → Fun ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ) |
| 350 |
340
|
elexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ∈ V ) |
| 351 |
75
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → 0 ∈ V ) |
| 352 |
323
|
ffund |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → Fun 𝑎 ) |
| 353 |
320
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) |
| 354 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → 𝑎 finSupp 0 ) |
| 355 |
|
fsupprnfi |
⊢ ( ( ( Fun 𝑎 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ ( 0 ∈ V ∧ 𝑎 finSupp 0 ) ) → ran 𝑎 ∈ Fin ) |
| 356 |
|
diffi |
⊢ ( ran 𝑎 ∈ Fin → ( ran 𝑎 ∖ { 0 } ) ∈ Fin ) |
| 357 |
355 356
|
syl |
⊢ ( ( ( Fun 𝑎 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ ( 0 ∈ V ∧ 𝑎 finSupp 0 ) ) → ( ran 𝑎 ∖ { 0 } ) ∈ Fin ) |
| 358 |
352 353 351 354 357
|
syl22anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ran 𝑎 ∖ { 0 } ) ∈ Fin ) |
| 359 |
313 358 351
|
fdmfifsupp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) finSupp 0 ) |
| 360 |
13
|
ssdifssd |
⊢ ( 𝜑 → ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ⊆ 𝐵 ) |
| 361 |
360
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ⊆ 𝐵 ) |
| 362 |
337 361
|
ssexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ∈ V ) |
| 363 |
362 351
|
fczfsuppd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) finSupp 0 ) |
| 364 |
359 363
|
fsuppun |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) supp 0 ) ∈ Fin ) |
| 365 |
|
funisfsupp |
⊢ ( ( Fun ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ∧ ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ∈ V ∧ 0 ∈ V ) → ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) finSupp 0 ↔ ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) supp 0 ) ∈ Fin ) ) |
| 366 |
365
|
biimpar |
⊢ ( ( ( Fun ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ∧ ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ∈ V ∧ 0 ∈ V ) ∧ ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) supp 0 ) ∈ Fin ) → ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) finSupp 0 ) |
| 367 |
349 350 351 364 366
|
syl31anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) finSupp 0 ) |
| 368 |
|
fvex |
⊢ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ∈ V |
| 369 |
368 312
|
fnmpti |
⊢ ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) Fn ( ran 𝑎 ∖ { 0 } ) |
| 370 |
369
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) Fn ( ran 𝑎 ∖ { 0 } ) ) |
| 371 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) Fn ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) |
| 372 |
75 371
|
ax-mp |
⊢ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) Fn ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) |
| 373 |
372
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) Fn ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) |
| 374 |
317
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ( ran 𝑎 ∖ { 0 } ) ∩ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) = ∅ ) |
| 375 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) |
| 376 |
370 373 374 375
|
fvun1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) = ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ‘ 𝑗 ) ) |
| 377 |
|
sneq |
⊢ ( 𝑚 = 𝑗 → { 𝑚 } = { 𝑗 } ) |
| 378 |
377
|
imaeq2d |
⊢ ( 𝑚 = 𝑗 → ( ◡ 𝑎 “ { 𝑚 } ) = ( ◡ 𝑎 “ { 𝑗 } ) ) |
| 379 |
378
|
fveq2d |
⊢ ( 𝑚 = 𝑗 → ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) = ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) |
| 380 |
379
|
fveq2d |
⊢ ( 𝑚 = 𝑗 → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) ) |
| 381 |
|
fvexd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) ∈ V ) |
| 382 |
312 380 375 381
|
fvmptd3 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ‘ 𝑗 ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) ) |
| 383 |
376 382
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) ) |
| 384 |
383
|
oveq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) = ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) · 𝑗 ) ) |
| 385 |
384
|
mpteq2dva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) ) = ( 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) · 𝑗 ) ) ) |
| 386 |
385
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( 𝑅 Σg ( 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) · 𝑗 ) ) ) ) |
| 387 |
292 28
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → 𝑅 ∈ CMnd ) |
| 388 |
317
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) → ( ( ran 𝑎 ∖ { 0 } ) ∩ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) = ∅ ) |
| 389 |
|
fvun2 |
⊢ ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) Fn ( ran 𝑎 ∖ { 0 } ) ∧ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) Fn ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ∧ ( ( ( ran 𝑎 ∖ { 0 } ) ∩ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) = ∅ ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) ) → ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) = ( ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ‘ 𝑗 ) ) |
| 390 |
369 372 389
|
mp3an12 |
⊢ ( ( ( ( ran 𝑎 ∖ { 0 } ) ∩ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) = ∅ ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) → ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) = ( ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ‘ 𝑗 ) ) |
| 391 |
388 390
|
sylancom |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) → ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) = ( ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ‘ 𝑗 ) ) |
| 392 |
75
|
fvconst2 |
⊢ ( 𝑗 ∈ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) → ( ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ‘ 𝑗 ) = 0 ) |
| 393 |
392
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) → ( ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ‘ 𝑗 ) = 0 ) |
| 394 |
391 393
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) → ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) = 0 ) |
| 395 |
394
|
oveq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) → ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) = ( 0 · 𝑗 ) ) |
| 396 |
361
|
sselda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) → 𝑗 ∈ 𝐵 ) |
| 397 |
292 396 85
|
syl2an2r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) → ( 0 · 𝑗 ) = 0 ) |
| 398 |
395 397
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) ) → ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) = 0 ) |
| 399 |
292
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ∪ 𝑆 ) → 𝑅 ∈ Ring ) |
| 400 |
336
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ∪ 𝑆 ) → ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) ∈ 𝐵 ) |
| 401 |
13
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ∪ 𝑆 ⊆ 𝐵 ) |
| 402 |
401
|
sselda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ∪ 𝑆 ) → 𝑗 ∈ 𝐵 ) |
| 403 |
2 4
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) → ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) ∈ 𝐵 ) |
| 404 |
399 400 402 403
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ∪ 𝑆 ) → ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) ∈ 𝐵 ) |
| 405 |
2 3 387 338 398 358 404 332
|
gsummptres2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) ) ) ) |
| 406 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
| 407 |
2 3 406 387 323 354
|
gsumhashmul |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( 𝑅 Σg 𝑎 ) = ( 𝑅 Σg ( 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ( .g ‘ 𝑅 ) 𝑗 ) ) ) ) |
| 408 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → 𝑋 = ( 𝑅 Σg 𝑎 ) ) |
| 409 |
292
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → 𝑅 ∈ Ring ) |
| 410 |
353
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) |
| 411 |
75
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → 0 ∈ V ) |
| 412 |
303 375
|
sselid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → 𝑗 ∈ ( V ∖ { 0 } ) ) |
| 413 |
354
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → 𝑎 finSupp 0 ) |
| 414 |
410 411 412 413
|
fsuppinisegfi |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ◡ 𝑎 “ { 𝑗 } ) ∈ Fin ) |
| 415 |
|
hashcl |
⊢ ( ( ◡ 𝑎 “ { 𝑗 } ) ∈ Fin → ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℕ0 ) |
| 416 |
414 415
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℕ0 ) |
| 417 |
416
|
nn0zd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℤ ) |
| 418 |
332 401
|
sstrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ran 𝑎 ∖ { 0 } ) ⊆ 𝐵 ) |
| 419 |
418
|
sselda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → 𝑗 ∈ 𝐵 ) |
| 420 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 421 |
294 406 420
|
zrhmulg |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℤ ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) = ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 422 |
421
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℤ ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) = ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 423 |
422
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℤ ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) · 𝑗 ) = ( ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) · 𝑗 ) ) |
| 424 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℤ ) ∧ 𝑗 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 425 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℤ ) ∧ 𝑗 ∈ 𝐵 ) → ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℤ ) |
| 426 |
2 420
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 427 |
426
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℤ ) ∧ 𝑗 ∈ 𝐵 ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 428 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℤ ) ∧ 𝑗 ∈ 𝐵 ) → 𝑗 ∈ 𝐵 ) |
| 429 |
2 406 4
|
mulgass2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℤ ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) · 𝑗 ) = ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ( .g ‘ 𝑅 ) ( ( 1r ‘ 𝑅 ) · 𝑗 ) ) ) |
| 430 |
424 425 427 428 429
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℤ ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) · 𝑗 ) = ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ( .g ‘ 𝑅 ) ( ( 1r ‘ 𝑅 ) · 𝑗 ) ) ) |
| 431 |
2 4 420
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑗 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) · 𝑗 ) = 𝑗 ) |
| 432 |
424 431
|
sylancom |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℤ ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) · 𝑗 ) = 𝑗 ) |
| 433 |
432
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℤ ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ( .g ‘ 𝑅 ) ( ( 1r ‘ 𝑅 ) · 𝑗 ) ) = ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ( .g ‘ 𝑅 ) 𝑗 ) ) |
| 434 |
423 430 433
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ∈ ℤ ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) · 𝑗 ) = ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ( .g ‘ 𝑅 ) 𝑗 ) ) |
| 435 |
409 417 419 434
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ∧ 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ) → ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) · 𝑗 ) = ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ( .g ‘ 𝑅 ) 𝑗 ) ) |
| 436 |
435
|
mpteq2dva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) · 𝑗 ) ) = ( 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ( .g ‘ 𝑅 ) 𝑗 ) ) ) |
| 437 |
436
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( 𝑅 Σg ( 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) · 𝑗 ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ( .g ‘ 𝑅 ) 𝑗 ) ) ) ) |
| 438 |
407 408 437
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑗 } ) ) ) · 𝑗 ) ) ) ) |
| 439 |
386 405 438
|
3eqtr4rd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) ) ) ) |
| 440 |
367 439
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( ( ( 𝑚 ∈ ( ran 𝑎 ∖ { 0 } ) ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ ( ♯ ‘ ( ◡ 𝑎 “ { 𝑚 } ) ) ) ) ∪ ( ( ∪ 𝑆 ∖ ( ran 𝑎 ∖ { 0 } ) ) × { 0 } ) ) ‘ 𝑗 ) · 𝑗 ) ) ) ) ) |
| 441 |
340 348 440
|
rspcedvd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ 𝑎 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) → ∃ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ( 𝑏 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) |
| 442 |
441
|
exp41 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) → ( 𝑎 finSupp 0 → ( 𝑋 = ( 𝑅 Σg 𝑎 ) → ( ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 → ∃ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ( 𝑏 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) ) ) ) |
| 443 |
442
|
3imp2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ) ∧ ( 𝑎 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ) → ∃ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ( 𝑏 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) |
| 444 |
443
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ( 𝑎 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ) → ∃ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ( 𝑏 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ) |
| 445 |
291 444
|
impbida |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ ( 𝐵 ↑m ∪ 𝑆 ) ( 𝑏 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑗 ∈ ∪ 𝑆 ↦ ( ( 𝑏 ‘ 𝑗 ) · 𝑗 ) ) ) ) ↔ ∃ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ( 𝑎 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ) ) |
| 446 |
14 445
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ ∪ 𝑆 ) ↔ ∃ 𝑎 ∈ ( 𝐵 ↑m 𝑆 ) ( 𝑎 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg 𝑎 ) ∧ ∀ 𝑘 ∈ 𝑆 ( 𝑎 ‘ 𝑘 ) ∈ 𝑘 ) ) ) |