Step |
Hyp |
Ref |
Expression |
1 |
|
imasdsf1o.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
2 |
|
imasdsf1o.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
3 |
|
imasdsf1o.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
4 |
|
imasdsf1o.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) |
5 |
|
imasdsf1o.e |
⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) |
6 |
|
imasdsf1o.d |
⊢ 𝐷 = ( dist ‘ 𝑈 ) |
7 |
|
imasdsf1o.m |
⊢ ( 𝜑 → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
8 |
|
imasdsf1o.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
9 |
|
imasdsf1o.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
10 |
|
imasdsf1o.w |
⊢ 𝑊 = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) |
11 |
|
imasdsf1o.s |
⊢ 𝑆 = { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } |
12 |
|
imasdsf1o.t |
⊢ 𝑇 = ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
13 |
|
f1ofo |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
15 |
|
eqid |
⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 ) |
16 |
|
f1of |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
17 |
3 16
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
18 |
17 8
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
19 |
17 9
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ 𝐵 ) |
20 |
1 2 14 4 15 6 18 19 11 5
|
imasdsval2 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) ) = inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) |
21 |
12
|
infeq1i |
⊢ inf ( 𝑇 , ℝ* , < ) = inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) |
22 |
20 21
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) ) = inf ( 𝑇 , ℝ* , < ) ) |
23 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
24 |
|
xrsadd |
⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) |
25 |
|
xrsex |
⊢ ℝ*𝑠 ∈ V |
26 |
25
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ℝ*𝑠 ∈ V ) |
27 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1 ... 𝑛 ) ∈ Fin ) |
28 |
|
difss |
⊢ ( ℝ* ∖ { -∞ } ) ⊆ ℝ* |
29 |
28
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ* ∖ { -∞ } ) ⊆ ℝ* ) |
30 |
|
xmetf |
⊢ ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* ) |
31 |
|
ffn |
⊢ ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* → 𝐸 Fn ( 𝑉 × 𝑉 ) ) |
32 |
7 30 31
|
3syl |
⊢ ( 𝜑 → 𝐸 Fn ( 𝑉 × 𝑉 ) ) |
33 |
|
xmetcl |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) → ( 𝑓 𝐸 𝑔 ) ∈ ℝ* ) |
34 |
|
xmetge0 |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) → 0 ≤ ( 𝑓 𝐸 𝑔 ) ) |
35 |
|
ge0nemnf |
⊢ ( ( ( 𝑓 𝐸 𝑔 ) ∈ ℝ* ∧ 0 ≤ ( 𝑓 𝐸 𝑔 ) ) → ( 𝑓 𝐸 𝑔 ) ≠ -∞ ) |
36 |
33 34 35
|
syl2anc |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) → ( 𝑓 𝐸 𝑔 ) ≠ -∞ ) |
37 |
|
eldifsn |
⊢ ( ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ↔ ( ( 𝑓 𝐸 𝑔 ) ∈ ℝ* ∧ ( 𝑓 𝐸 𝑔 ) ≠ -∞ ) ) |
38 |
33 36 37
|
sylanbrc |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) → ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
39 |
38
|
3expb |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) ) → ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
40 |
7 39
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) ) → ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
41 |
40
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝑉 ∀ 𝑔 ∈ 𝑉 ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
42 |
|
ffnov |
⊢ ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ↔ ( 𝐸 Fn ( 𝑉 × 𝑉 ) ∧ ∀ 𝑓 ∈ 𝑉 ∀ 𝑔 ∈ 𝑉 ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) ) |
43 |
32 41 42
|
sylanbrc |
⊢ ( 𝜑 → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
44 |
43
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
45 |
11
|
ssrab3 |
⊢ 𝑆 ⊆ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) |
46 |
45
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑆 ⊆ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ) |
47 |
46
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ) |
48 |
|
elmapi |
⊢ ( 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) |
49 |
47 48
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) |
50 |
|
fco |
⊢ ( ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ∧ 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) → ( 𝐸 ∘ 𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
51 |
44 49 50
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ∘ 𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
52 |
|
0re |
⊢ 0 ∈ ℝ |
53 |
|
rexr |
⊢ ( 0 ∈ ℝ → 0 ∈ ℝ* ) |
54 |
|
renemnf |
⊢ ( 0 ∈ ℝ → 0 ≠ -∞ ) |
55 |
|
eldifsn |
⊢ ( 0 ∈ ( ℝ* ∖ { -∞ } ) ↔ ( 0 ∈ ℝ* ∧ 0 ≠ -∞ ) ) |
56 |
53 54 55
|
sylanbrc |
⊢ ( 0 ∈ ℝ → 0 ∈ ( ℝ* ∖ { -∞ } ) ) |
57 |
52 56
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 0 ∈ ( ℝ* ∖ { -∞ } ) ) |
58 |
|
xaddid2 |
⊢ ( 𝑥 ∈ ℝ* → ( 0 +𝑒 𝑥 ) = 𝑥 ) |
59 |
|
xaddid1 |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 +𝑒 0 ) = 𝑥 ) |
60 |
58 59
|
jca |
⊢ ( 𝑥 ∈ ℝ* → ( ( 0 +𝑒 𝑥 ) = 𝑥 ∧ ( 𝑥 +𝑒 0 ) = 𝑥 ) ) |
61 |
60
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑥 ∈ ℝ* ) → ( ( 0 +𝑒 𝑥 ) = 𝑥 ∧ ( 𝑥 +𝑒 0 ) = 𝑥 ) ) |
62 |
23 24 10 26 27 29 51 57 61
|
gsumress |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) = ( 𝑊 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
63 |
10 23
|
ressbas2 |
⊢ ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑊 ) ) |
64 |
28 63
|
ax-mp |
⊢ ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑊 ) |
65 |
10
|
xrs10 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
66 |
10
|
xrs1cmn |
⊢ 𝑊 ∈ CMnd |
67 |
66
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑊 ∈ CMnd ) |
68 |
|
c0ex |
⊢ 0 ∈ V |
69 |
68
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 0 ∈ V ) |
70 |
51 27 69
|
fdmfifsupp |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ∘ 𝑔 ) finSupp 0 ) |
71 |
64 65 67 27 51 70
|
gsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( 𝐸 ∘ 𝑔 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
72 |
62 71
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
73 |
72
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ∈ ℝ* ) |
74 |
73
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) : 𝑆 ⟶ ℝ* ) |
75 |
74
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ) |
76 |
75
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ) |
77 |
|
iunss |
⊢ ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ↔ ∀ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ) |
78 |
76 77
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ) |
79 |
12 78
|
eqsstrid |
⊢ ( 𝜑 → 𝑇 ⊆ ℝ* ) |
80 |
|
infxrcl |
⊢ ( 𝑇 ⊆ ℝ* → inf ( 𝑇 , ℝ* , < ) ∈ ℝ* ) |
81 |
79 80
|
syl |
⊢ ( 𝜑 → inf ( 𝑇 , ℝ* , < ) ∈ ℝ* ) |
82 |
|
xmetcl |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ) |
83 |
7 8 9 82
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ) |
84 |
|
1nn |
⊢ 1 ∈ ℕ |
85 |
|
1ex |
⊢ 1 ∈ V |
86 |
|
opex |
⊢ 〈 𝑋 , 𝑌 〉 ∈ V |
87 |
85 86
|
f1osn |
⊢ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } –1-1-onto→ { 〈 𝑋 , 𝑌 〉 } |
88 |
|
f1of |
⊢ ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } –1-1-onto→ { 〈 𝑋 , 𝑌 〉 } → { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ { 〈 𝑋 , 𝑌 〉 } ) |
89 |
87 88
|
ax-mp |
⊢ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ { 〈 𝑋 , 𝑌 〉 } |
90 |
8 9
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝑉 × 𝑉 ) ) |
91 |
90
|
snssd |
⊢ ( 𝜑 → { 〈 𝑋 , 𝑌 〉 } ⊆ ( 𝑉 × 𝑉 ) ) |
92 |
|
fss |
⊢ ( ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ { 〈 𝑋 , 𝑌 〉 } ∧ { 〈 𝑋 , 𝑌 〉 } ⊆ ( 𝑉 × 𝑉 ) ) → { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉 × 𝑉 ) ) |
93 |
89 91 92
|
sylancr |
⊢ ( 𝜑 → { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉 × 𝑉 ) ) |
94 |
7
|
elfvexd |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
95 |
94 94
|
xpexd |
⊢ ( 𝜑 → ( 𝑉 × 𝑉 ) ∈ V ) |
96 |
|
snex |
⊢ { 1 } ∈ V |
97 |
|
elmapg |
⊢ ( ( ( 𝑉 × 𝑉 ) ∈ V ∧ { 1 } ∈ V ) → ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ↔ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉 × 𝑉 ) ) ) |
98 |
95 96 97
|
sylancl |
⊢ ( 𝜑 → ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ↔ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉 × 𝑉 ) ) ) |
99 |
93 98
|
mpbird |
⊢ ( 𝜑 → { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ) |
100 |
|
op1stg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑋 ) |
101 |
8 9 100
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑋 ) |
102 |
101
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
103 |
|
op2ndg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
104 |
8 9 103
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
105 |
104
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) |
106 |
102 105
|
jca |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ) |
107 |
25
|
a1i |
⊢ ( 𝜑 → ℝ*𝑠 ∈ V ) |
108 |
|
snfi |
⊢ { 1 } ∈ Fin |
109 |
108
|
a1i |
⊢ ( 𝜑 → { 1 } ∈ Fin ) |
110 |
28
|
a1i |
⊢ ( 𝜑 → ( ℝ* ∖ { -∞ } ) ⊆ ℝ* ) |
111 |
|
xmetge0 |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 0 ≤ ( 𝑋 𝐸 𝑌 ) ) |
112 |
7 8 9 111
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ( 𝑋 𝐸 𝑌 ) ) |
113 |
|
ge0nemnf |
⊢ ( ( ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ∧ 0 ≤ ( 𝑋 𝐸 𝑌 ) ) → ( 𝑋 𝐸 𝑌 ) ≠ -∞ ) |
114 |
83 112 113
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ≠ -∞ ) |
115 |
|
eldifsn |
⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) ↔ ( ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ∧ ( 𝑋 𝐸 𝑌 ) ≠ -∞ ) ) |
116 |
83 114 115
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
117 |
|
fconst6g |
⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) → ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ) |
118 |
116 117
|
syl |
⊢ ( 𝜑 → ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ) |
119 |
|
fcoconst |
⊢ ( ( 𝐸 Fn ( 𝑉 × 𝑉 ) ∧ 〈 𝑋 , 𝑌 〉 ∈ ( 𝑉 × 𝑉 ) ) → ( 𝐸 ∘ ( { 1 } × { 〈 𝑋 , 𝑌 〉 } ) ) = ( { 1 } × { ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) } ) ) |
120 |
32 90 119
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ∘ ( { 1 } × { 〈 𝑋 , 𝑌 〉 } ) ) = ( { 1 } × { ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) } ) ) |
121 |
85 86
|
xpsn |
⊢ ( { 1 } × { 〈 𝑋 , 𝑌 〉 } ) = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } |
122 |
121
|
coeq2i |
⊢ ( 𝐸 ∘ ( { 1 } × { 〈 𝑋 , 𝑌 〉 } ) ) = ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) |
123 |
|
df-ov |
⊢ ( 𝑋 𝐸 𝑌 ) = ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) |
124 |
123
|
eqcomi |
⊢ ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) = ( 𝑋 𝐸 𝑌 ) |
125 |
124
|
sneqi |
⊢ { ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) } = { ( 𝑋 𝐸 𝑌 ) } |
126 |
125
|
xpeq2i |
⊢ ( { 1 } × { ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) } ) = ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) |
127 |
120 122 126
|
3eqtr3g |
⊢ ( 𝜑 → ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) = ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) ) |
128 |
127
|
feq1d |
⊢ ( 𝜑 → ( ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ↔ ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ) ) |
129 |
118 128
|
mpbird |
⊢ ( 𝜑 → ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ) |
130 |
52 56
|
mp1i |
⊢ ( 𝜑 → 0 ∈ ( ℝ* ∖ { -∞ } ) ) |
131 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ( 0 +𝑒 𝑥 ) = 𝑥 ∧ ( 𝑥 +𝑒 0 ) = 𝑥 ) ) |
132 |
23 24 10 107 109 110 129 130 131
|
gsumress |
⊢ ( 𝜑 → ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) = ( 𝑊 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) |
133 |
|
fconstmpt |
⊢ ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) |
134 |
127 133
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) |
135 |
134
|
oveq2d |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) = ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) ) |
136 |
|
cmnmnd |
⊢ ( 𝑊 ∈ CMnd → 𝑊 ∈ Mnd ) |
137 |
66 136
|
mp1i |
⊢ ( 𝜑 → 𝑊 ∈ Mnd ) |
138 |
84
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
139 |
|
eqidd |
⊢ ( 𝑗 = 1 → ( 𝑋 𝐸 𝑌 ) = ( 𝑋 𝐸 𝑌 ) ) |
140 |
64 139
|
gsumsn |
⊢ ( ( 𝑊 ∈ Mnd ∧ 1 ∈ ℕ ∧ ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) ) → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) = ( 𝑋 𝐸 𝑌 ) ) |
141 |
137 138 116 140
|
syl3anc |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) = ( 𝑋 𝐸 𝑌 ) ) |
142 |
132 135 141
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) |
143 |
|
fveq1 |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 𝑔 ‘ 1 ) = ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ‘ 1 ) ) |
144 |
85 86
|
fvsn |
⊢ ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ‘ 1 ) = 〈 𝑋 , 𝑌 〉 |
145 |
143 144
|
eqtrdi |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 𝑔 ‘ 1 ) = 〈 𝑋 , 𝑌 〉 ) |
146 |
145
|
fveq2d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 1st ‘ ( 𝑔 ‘ 1 ) ) = ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) |
147 |
146
|
fveqeq2d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ) ) |
148 |
145
|
fveq2d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 2nd ‘ ( 𝑔 ‘ 1 ) ) = ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) |
149 |
148
|
fveqeq2d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ) |
150 |
147 149
|
anbi12d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ) ) |
151 |
|
coeq2 |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 𝐸 ∘ 𝑔 ) = ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) |
152 |
151
|
oveq2d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) |
153 |
152
|
eqeq2d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) ) |
154 |
150 153
|
anbi12d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) ) ) |
155 |
154
|
rspcev |
⊢ ( ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ∧ ( ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) ) → ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
156 |
99 106 142 155
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
157 |
|
ovex |
⊢ ( 𝑋 𝐸 𝑌 ) ∈ V |
158 |
|
eqid |
⊢ ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) = ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
159 |
158
|
elrnmpt |
⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ V → ( ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
160 |
157 159
|
ax-mp |
⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
161 |
11
|
rexeqi |
⊢ ( ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
162 |
|
fveq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ‘ 1 ) = ( 𝑔 ‘ 1 ) ) |
163 |
162
|
fveq2d |
⊢ ( ℎ = 𝑔 → ( 1st ‘ ( ℎ ‘ 1 ) ) = ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) |
164 |
163
|
fveqeq2d |
⊢ ( ℎ = 𝑔 → ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ) |
165 |
|
fveq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ‘ 𝑛 ) = ( 𝑔 ‘ 𝑛 ) ) |
166 |
165
|
fveq2d |
⊢ ( ℎ = 𝑔 → ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
167 |
166
|
fveqeq2d |
⊢ ( ℎ = 𝑔 → ( ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) |
168 |
|
fveq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ‘ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) |
169 |
168
|
fveq2d |
⊢ ( ℎ = 𝑔 → ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
170 |
169
|
fveq2d |
⊢ ( ℎ = 𝑔 → ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
171 |
|
fveq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ‘ ( 𝑖 + 1 ) ) = ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) |
172 |
171
|
fveq2d |
⊢ ( ℎ = 𝑔 → ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) |
173 |
172
|
fveq2d |
⊢ ( ℎ = 𝑔 → ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) |
174 |
170 173
|
eqeq12d |
⊢ ( ℎ = 𝑔 → ( ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
175 |
174
|
ralbidv |
⊢ ( ℎ = 𝑔 → ( ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
176 |
164 167 175
|
3anbi123d |
⊢ ( ℎ = 𝑔 → ( ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
177 |
176
|
rexrab |
⊢ ( ∃ 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
178 |
161 177
|
bitri |
⊢ ( ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
179 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = ( 1 ... 1 ) ) |
180 |
|
1z |
⊢ 1 ∈ ℤ |
181 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
182 |
180 181
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
183 |
179 182
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = { 1 } ) |
184 |
183
|
oveq2d |
⊢ ( 𝑛 = 1 → ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) = ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ) |
185 |
|
df-3an |
⊢ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
186 |
|
ral0 |
⊢ ∀ 𝑖 ∈ ∅ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) |
187 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 − 1 ) = ( 1 − 1 ) ) |
188 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
189 |
187 188
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 𝑛 − 1 ) = 0 ) |
190 |
189
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 1 ... ( 𝑛 − 1 ) ) = ( 1 ... 0 ) ) |
191 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
192 |
190 191
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 1 ... ( 𝑛 − 1 ) ) = ∅ ) |
193 |
192
|
raleqdv |
⊢ ( 𝑛 = 1 → ( ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑖 ∈ ∅ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
194 |
186 193
|
mpbiri |
⊢ ( 𝑛 = 1 → ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) |
195 |
194
|
biantrud |
⊢ ( 𝑛 = 1 → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
196 |
|
2fveq3 |
⊢ ( 𝑛 = 1 → ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) = ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) |
197 |
196
|
fveqeq2d |
⊢ ( 𝑛 = 1 → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) |
198 |
197
|
anbi2d |
⊢ ( 𝑛 = 1 → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) ) |
199 |
195 198
|
bitr3d |
⊢ ( 𝑛 = 1 → ( ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) ) |
200 |
185 199
|
syl5bb |
⊢ ( 𝑛 = 1 → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) ) |
201 |
200
|
anbi1d |
⊢ ( 𝑛 = 1 → ( ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) ) |
202 |
184 201
|
rexeqbidv |
⊢ ( 𝑛 = 1 → ( ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) ) |
203 |
178 202
|
syl5bb |
⊢ ( 𝑛 = 1 → ( ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) ) |
204 |
160 203
|
syl5bb |
⊢ ( 𝑛 = 1 → ( ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) ) |
205 |
204
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
206 |
84 156 205
|
sylancr |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
207 |
|
eliun |
⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑛 ∈ ℕ ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
208 |
206 207
|
sylibr |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
209 |
208 12
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ 𝑇 ) |
210 |
|
infxrlb |
⊢ ( ( 𝑇 ⊆ ℝ* ∧ ( 𝑋 𝐸 𝑌 ) ∈ 𝑇 ) → inf ( 𝑇 , ℝ* , < ) ≤ ( 𝑋 𝐸 𝑌 ) ) |
211 |
79 209 210
|
syl2anc |
⊢ ( 𝜑 → inf ( 𝑇 , ℝ* , < ) ≤ ( 𝑋 𝐸 𝑌 ) ) |
212 |
12
|
eleq2i |
⊢ ( 𝑝 ∈ 𝑇 ↔ 𝑝 ∈ ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
213 |
|
eliun |
⊢ ( 𝑝 ∈ ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
214 |
212 213
|
bitri |
⊢ ( 𝑝 ∈ 𝑇 ↔ ∃ 𝑛 ∈ ℕ 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
215 |
158
|
elrnmpt |
⊢ ( 𝑝 ∈ V → ( 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ 𝑆 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
216 |
215
|
elv |
⊢ ( 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ 𝑆 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
217 |
176 11
|
elrab2 |
⊢ ( 𝑔 ∈ 𝑆 ↔ ( 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∧ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
218 |
217
|
simprbi |
⊢ ( 𝑔 ∈ 𝑆 → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
219 |
218
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
220 |
219
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) |
221 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
222 |
|
f1of1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –1-1→ 𝐵 ) |
223 |
221 222
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐹 : 𝑉 –1-1→ 𝐵 ) |
224 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑛 ∈ ℕ ) |
225 |
|
elfz1end |
⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( 1 ... 𝑛 ) ) |
226 |
224 225
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑛 ∈ ( 1 ... 𝑛 ) ) |
227 |
49 226
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑔 ‘ 𝑛 ) ∈ ( 𝑉 × 𝑉 ) ) |
228 |
|
xp2nd |
⊢ ( ( 𝑔 ‘ 𝑛 ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ 𝑉 ) |
229 |
227 228
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ 𝑉 ) |
230 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑌 ∈ 𝑉 ) |
231 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ ( ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) = 𝑌 ) ) |
232 |
223 229 230 231
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) = 𝑌 ) ) |
233 |
220 232
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) = 𝑌 ) |
234 |
233
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝑋 𝐸 𝑌 ) ) |
235 |
|
eleq1 |
⊢ ( 𝑚 = 1 → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ 1 ∈ ( 1 ... 𝑛 ) ) ) |
236 |
|
2fveq3 |
⊢ ( 𝑚 = 1 → ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) |
237 |
236
|
oveq2d |
⊢ ( 𝑚 = 1 → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ) |
238 |
|
oveq2 |
⊢ ( 𝑚 = 1 → ( 1 ... 𝑚 ) = ( 1 ... 1 ) ) |
239 |
238 182
|
eqtrdi |
⊢ ( 𝑚 = 1 → ( 1 ... 𝑚 ) = { 1 } ) |
240 |
239
|
reseq2d |
⊢ ( 𝑚 = 1 → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) |
241 |
240
|
oveq2d |
⊢ ( 𝑚 = 1 → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) |
242 |
237 241
|
breq12d |
⊢ ( 𝑚 = 1 → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) ) |
243 |
235 242
|
imbi12d |
⊢ ( 𝑚 = 1 → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( 1 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) ) ) |
244 |
243
|
imbi2d |
⊢ ( 𝑚 = 1 → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) ) ) ) |
245 |
|
eleq1 |
⊢ ( 𝑚 = 𝑥 → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ 𝑥 ∈ ( 1 ... 𝑛 ) ) ) |
246 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑥 → ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
247 |
246
|
oveq2d |
⊢ ( 𝑚 = 𝑥 → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ) |
248 |
|
oveq2 |
⊢ ( 𝑚 = 𝑥 → ( 1 ... 𝑚 ) = ( 1 ... 𝑥 ) ) |
249 |
248
|
reseq2d |
⊢ ( 𝑚 = 𝑥 → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) |
250 |
249
|
oveq2d |
⊢ ( 𝑚 = 𝑥 → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) |
251 |
247 250
|
breq12d |
⊢ ( 𝑚 = 𝑥 → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) |
252 |
245 251
|
imbi12d |
⊢ ( 𝑚 = 𝑥 → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) ) |
253 |
252
|
imbi2d |
⊢ ( 𝑚 = 𝑥 → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) ) ) |
254 |
|
eleq1 |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) |
255 |
|
2fveq3 |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) |
256 |
255
|
oveq2d |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
257 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 1 ... 𝑚 ) = ( 1 ... ( 𝑥 + 1 ) ) ) |
258 |
257
|
reseq2d |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) |
259 |
258
|
oveq2d |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) |
260 |
256 259
|
breq12d |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) |
261 |
254 260
|
imbi12d |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) ) |
262 |
261
|
imbi2d |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) ) ) |
263 |
|
eleq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ 𝑛 ∈ ( 1 ... 𝑛 ) ) ) |
264 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
265 |
264
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
266 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 1 ... 𝑚 ) = ( 1 ... 𝑛 ) ) |
267 |
266
|
reseq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) |
268 |
267
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) |
269 |
265 268
|
breq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) |
270 |
263 269
|
imbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) ) |
271 |
270
|
imbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) ) ) |
272 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
273 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑋 ∈ 𝑉 ) |
274 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
275 |
224 274
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
276 |
|
eluzfz1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑛 ) ) |
277 |
275 276
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 1 ∈ ( 1 ... 𝑛 ) ) |
278 |
49 277
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) ) |
279 |
|
xp2nd |
⊢ ( ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) |
280 |
278 279
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) |
281 |
|
xmetcl |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ∈ ℝ* ) |
282 |
272 273 280 281
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ∈ ℝ* ) |
283 |
282
|
xrleidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ) |
284 |
137
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑊 ∈ Mnd ) |
285 |
84
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 1 ∈ ℕ ) |
286 |
44 278
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
287 |
|
2fveq3 |
⊢ ( 𝑗 = 1 → ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) |
288 |
64 287
|
gsumsn |
⊢ ( ( 𝑊 ∈ Mnd ∧ 1 ∈ ℕ ∧ ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) |
289 |
284 285 286 288
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) |
290 |
272 30
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* ) |
291 |
|
fcompt |
⊢ ( ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* ∧ 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) → ( 𝐸 ∘ 𝑔 ) = ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
292 |
290 49 291
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ∘ 𝑔 ) = ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
293 |
292
|
reseq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) = ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ { 1 } ) ) |
294 |
277
|
snssd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → { 1 } ⊆ ( 1 ... 𝑛 ) ) |
295 |
294
|
resmptd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ { 1 } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
296 |
293 295
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
297 |
296
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) = ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) ) |
298 |
|
df-ov |
⊢ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐸 ‘ 〈 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) |
299 |
|
1st2nd2 |
⊢ ( ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) → ( 𝑔 ‘ 1 ) = 〈 ( 1st ‘ ( 𝑔 ‘ 1 ) ) , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) |
300 |
278 299
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑔 ‘ 1 ) = 〈 ( 1st ‘ ( 𝑔 ‘ 1 ) ) , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) |
301 |
219
|
simp1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
302 |
|
xp1st |
⊢ ( ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) → ( 1st ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) |
303 |
278 302
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1st ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) |
304 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ ( ( 1st ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 1st ‘ ( 𝑔 ‘ 1 ) ) = 𝑋 ) ) |
305 |
223 303 273 304
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 1st ‘ ( 𝑔 ‘ 1 ) ) = 𝑋 ) ) |
306 |
301 305
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1st ‘ ( 𝑔 ‘ 1 ) ) = 𝑋 ) |
307 |
306
|
opeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 〈 ( 1st ‘ ( 𝑔 ‘ 1 ) ) , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 = 〈 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) |
308 |
300 307
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 〈 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 = ( 𝑔 ‘ 1 ) ) |
309 |
308
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ‘ 〈 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) |
310 |
298 309
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) |
311 |
289 297 310
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ) |
312 |
283 311
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) |
313 |
312
|
a1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) ) |
314 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ℕ ) |
315 |
314 274
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) |
316 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) |
317 |
|
peano2fzr |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) → 𝑥 ∈ ( 1 ... 𝑛 ) ) |
318 |
315 316 317
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ( 1 ... 𝑛 ) ) |
319 |
318
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → 𝑥 ∈ ( 1 ... 𝑛 ) ) ) |
320 |
319
|
imim1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) ) |
321 |
272
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
322 |
273
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑋 ∈ 𝑉 ) |
323 |
49
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) |
324 |
323 318
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑉 × 𝑉 ) ) |
325 |
|
xp2nd |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ) |
326 |
324 325
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ) |
327 |
|
xmetcl |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ* ) |
328 |
321 322 326 327
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ* ) |
329 |
66
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑊 ∈ CMnd ) |
330 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... 𝑥 ) ∈ Fin ) |
331 |
51
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ∘ 𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
332 |
|
fzsuc |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑥 + 1 ) ) = ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ) |
333 |
315 332
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... ( 𝑥 + 1 ) ) = ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ) |
334 |
|
elfzuz3 |
⊢ ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑥 + 1 ) ) ) |
335 |
334
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑥 + 1 ) ) ) |
336 |
|
fzss2 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑥 + 1 ) ) → ( 1 ... ( 𝑥 + 1 ) ) ⊆ ( 1 ... 𝑛 ) ) |
337 |
335 336
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... ( 𝑥 + 1 ) ) ⊆ ( 1 ... 𝑛 ) ) |
338 |
333 337
|
eqsstrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ⊆ ( 1 ... 𝑛 ) ) |
339 |
338
|
unssad |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... 𝑥 ) ⊆ ( 1 ... 𝑛 ) ) |
340 |
331 339
|
fssresd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) : ( 1 ... 𝑥 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
341 |
68
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 0 ∈ V ) |
342 |
340 330 341
|
fdmfifsupp |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) finSupp 0 ) |
343 |
64 65 329 330 340 342
|
gsumcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
344 |
343
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ℝ* ) |
345 |
321 30
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* ) |
346 |
323 316
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) ) |
347 |
345 346
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ℝ* ) |
348 |
|
xleadd1a |
⊢ ( ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ* ∧ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ℝ* ∧ ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ℝ* ) ∧ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
349 |
348
|
ex |
⊢ ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ* ∧ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ℝ* ∧ ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ℝ* ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
350 |
328 344 347 349
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
351 |
|
xp2nd |
⊢ ( ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) |
352 |
346 351
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) |
353 |
|
xmettri |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
354 |
321 322 352 326 353
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
355 |
|
1st2nd2 |
⊢ ( ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) = 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
356 |
346 355
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) = 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
357 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑥 → ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
358 |
357
|
fveq2d |
⊢ ( 𝑖 = 𝑥 → ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ) |
359 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝑥 → ( 𝑔 ‘ ( 𝑖 + 1 ) ) = ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) |
360 |
359
|
fveq2d |
⊢ ( 𝑖 = 𝑥 → ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) |
361 |
360
|
fveq2d |
⊢ ( 𝑖 = 𝑥 → ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
362 |
358 361
|
eqeq12d |
⊢ ( 𝑖 = 𝑥 → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
363 |
219
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) |
364 |
363
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) |
365 |
|
nnz |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ ) |
366 |
365
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ℤ ) |
367 |
|
eluzp1m1 |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑥 + 1 ) ) ) → ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) |
368 |
366 335 367
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) |
369 |
|
elfzuzb |
⊢ ( 𝑥 ∈ ( 1 ... ( 𝑛 − 1 ) ) ↔ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) ) |
370 |
315 368 369
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) |
371 |
362 364 370
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
372 |
223
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐹 : 𝑉 –1-1→ 𝐵 ) |
373 |
|
xp1st |
⊢ ( ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) → ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) |
374 |
346 373
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) |
375 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ∧ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ↔ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
376 |
372 326 374 375
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ↔ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
377 |
371 376
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) |
378 |
377
|
opeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 〈 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 = 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
379 |
356 378
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) = 〈 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
380 |
379
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) = ( 𝐸 ‘ 〈 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) ) |
381 |
|
df-ov |
⊢ ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) = ( 𝐸 ‘ 〈 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
382 |
380 381
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
383 |
382
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) = ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
384 |
354 383
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
385 |
|
xmetcl |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) |
386 |
321 322 352 385
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) |
387 |
328 347
|
xaddcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) |
388 |
344 347
|
xaddcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) |
389 |
|
xrletr |
⊢ ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ∧ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ∧ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) → ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∧ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
390 |
386 387 388 389
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∧ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
391 |
384 390
|
mpand |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
392 |
350 391
|
syld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
393 |
|
xrex |
⊢ ℝ* ∈ V |
394 |
393
|
difexi |
⊢ ( ℝ* ∖ { -∞ } ) ∈ V |
395 |
10 24
|
ressplusg |
⊢ ( ( ℝ* ∖ { -∞ } ) ∈ V → +𝑒 = ( +g ‘ 𝑊 ) ) |
396 |
394 395
|
ax-mp |
⊢ +𝑒 = ( +g ‘ 𝑊 ) |
397 |
44
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑥 ) ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
398 |
|
fzelp1 |
⊢ ( 𝑗 ∈ ( 1 ... 𝑥 ) → 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) |
399 |
49
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) |
400 |
337
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) → 𝑗 ∈ ( 1 ... 𝑛 ) ) |
401 |
399 400
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) → ( 𝑔 ‘ 𝑗 ) ∈ ( 𝑉 × 𝑉 ) ) |
402 |
398 401
|
sylan2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑥 ) ) → ( 𝑔 ‘ 𝑗 ) ∈ ( 𝑉 × 𝑉 ) ) |
403 |
397 402
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑥 ) ) → ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
404 |
|
fzp1disj |
⊢ ( ( 1 ... 𝑥 ) ∩ { ( 𝑥 + 1 ) } ) = ∅ |
405 |
404
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 1 ... 𝑥 ) ∩ { ( 𝑥 + 1 ) } ) = ∅ ) |
406 |
|
disjsn |
⊢ ( ( ( 1 ... 𝑥 ) ∩ { ( 𝑥 + 1 ) } ) = ∅ ↔ ¬ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑥 ) ) |
407 |
405 406
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ¬ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑥 ) ) |
408 |
44
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
409 |
408 346
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
410 |
|
2fveq3 |
⊢ ( 𝑗 = ( 𝑥 + 1 ) → ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) |
411 |
64 396 329 330 403 316 407 409 410
|
gsumunsn |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) = ( ( 𝑊 Σg ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
412 |
292
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ∘ 𝑔 ) = ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
413 |
412 333
|
reseq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) = ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ) ) |
414 |
338
|
resmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ) = ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
415 |
413 414
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) = ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
416 |
415
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) = ( 𝑊 Σg ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) ) |
417 |
412
|
reseq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) = ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ ( 1 ... 𝑥 ) ) ) |
418 |
339
|
resmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ ( 1 ... 𝑥 ) ) = ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
419 |
417 418
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) = ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
420 |
419
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) = ( 𝑊 Σg ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) ) |
421 |
420
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) = ( ( 𝑊 Σg ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
422 |
411 416 421
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) = ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
423 |
422
|
breq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
424 |
392 423
|
sylibrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) |
425 |
320 424
|
animpimp2impd |
⊢ ( 𝑥 ∈ ℕ → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) → ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) ) ) |
426 |
244 253 262 271 313 425
|
nnind |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) ) |
427 |
224 426
|
mpcom |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) |
428 |
226 427
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) |
429 |
234 428
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 𝑌 ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) |
430 |
|
ffn |
⊢ ( ( 𝐸 ∘ 𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) → ( 𝐸 ∘ 𝑔 ) Fn ( 1 ... 𝑛 ) ) |
431 |
|
fnresdm |
⊢ ( ( 𝐸 ∘ 𝑔 ) Fn ( 1 ... 𝑛 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) = ( 𝐸 ∘ 𝑔 ) ) |
432 |
51 430 431
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) = ( 𝐸 ∘ 𝑔 ) ) |
433 |
432
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) = ( 𝑊 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
434 |
62 433
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) |
435 |
429 434
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 𝑌 ) ≤ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
436 |
|
breq2 |
⊢ ( 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) → ( ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ↔ ( 𝑋 𝐸 𝑌 ) ≤ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
437 |
435 436
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
438 |
437
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑔 ∈ 𝑆 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
439 |
216 438
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
440 |
439
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
441 |
214 440
|
syl5bi |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝑇 → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
442 |
441
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑇 ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) |
443 |
|
infxrgelb |
⊢ ( ( 𝑇 ⊆ ℝ* ∧ ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ) → ( ( 𝑋 𝐸 𝑌 ) ≤ inf ( 𝑇 , ℝ* , < ) ↔ ∀ 𝑝 ∈ 𝑇 ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
444 |
79 83 443
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 𝐸 𝑌 ) ≤ inf ( 𝑇 , ℝ* , < ) ↔ ∀ 𝑝 ∈ 𝑇 ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
445 |
442 444
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ≤ inf ( 𝑇 , ℝ* , < ) ) |
446 |
81 83 211 445
|
xrletrid |
⊢ ( 𝜑 → inf ( 𝑇 , ℝ* , < ) = ( 𝑋 𝐸 𝑌 ) ) |
447 |
22 446
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) ) = ( 𝑋 𝐸 𝑌 ) ) |