Metamath Proof Explorer


Theorem imasdsf1olem

Description: Lemma for imasdsf1o . (Contributed by Mario Carneiro, 21-Aug-2015) (Proof shortened by AV, 6-Oct-2020)

Ref Expression
Hypotheses imasdsf1o.u ( 𝜑𝑈 = ( 𝐹s 𝑅 ) )
imasdsf1o.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
imasdsf1o.f ( 𝜑𝐹 : 𝑉1-1-onto𝐵 )
imasdsf1o.r ( 𝜑𝑅𝑍 )
imasdsf1o.e 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) )
imasdsf1o.d 𝐷 = ( dist ‘ 𝑈 )
imasdsf1o.m ( 𝜑𝐸 ∈ ( ∞Met ‘ 𝑉 ) )
imasdsf1o.x ( 𝜑𝑋𝑉 )
imasdsf1o.y ( 𝜑𝑌𝑉 )
imasdsf1o.w 𝑊 = ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) )
imasdsf1o.s 𝑆 = { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) }
imasdsf1o.t 𝑇 = 𝑛 ∈ ℕ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) )
Assertion imasdsf1olem ( 𝜑 → ( ( 𝐹𝑋 ) 𝐷 ( 𝐹𝑌 ) ) = ( 𝑋 𝐸 𝑌 ) )

Proof

Step Hyp Ref Expression
1 imasdsf1o.u ( 𝜑𝑈 = ( 𝐹s 𝑅 ) )
2 imasdsf1o.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
3 imasdsf1o.f ( 𝜑𝐹 : 𝑉1-1-onto𝐵 )
4 imasdsf1o.r ( 𝜑𝑅𝑍 )
5 imasdsf1o.e 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) )
6 imasdsf1o.d 𝐷 = ( dist ‘ 𝑈 )
7 imasdsf1o.m ( 𝜑𝐸 ∈ ( ∞Met ‘ 𝑉 ) )
8 imasdsf1o.x ( 𝜑𝑋𝑉 )
9 imasdsf1o.y ( 𝜑𝑌𝑉 )
10 imasdsf1o.w 𝑊 = ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) )
11 imasdsf1o.s 𝑆 = { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) }
12 imasdsf1o.t 𝑇 = 𝑛 ∈ ℕ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) )
13 f1ofo ( 𝐹 : 𝑉1-1-onto𝐵𝐹 : 𝑉onto𝐵 )
14 3 13 syl ( 𝜑𝐹 : 𝑉onto𝐵 )
15 eqid ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 )
16 f1of ( 𝐹 : 𝑉1-1-onto𝐵𝐹 : 𝑉𝐵 )
17 3 16 syl ( 𝜑𝐹 : 𝑉𝐵 )
18 17 8 ffvelrnd ( 𝜑 → ( 𝐹𝑋 ) ∈ 𝐵 )
19 17 9 ffvelrnd ( 𝜑 → ( 𝐹𝑌 ) ∈ 𝐵 )
20 1 2 14 4 15 6 18 19 11 5 imasdsval2 ( 𝜑 → ( ( 𝐹𝑋 ) 𝐷 ( 𝐹𝑌 ) ) = inf ( 𝑛 ∈ ℕ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) , ℝ* , < ) )
21 12 infeq1i inf ( 𝑇 , ℝ* , < ) = inf ( 𝑛 ∈ ℕ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) , ℝ* , < )
22 20 21 eqtr4di ( 𝜑 → ( ( 𝐹𝑋 ) 𝐷 ( 𝐹𝑌 ) ) = inf ( 𝑇 , ℝ* , < ) )
23 xrsbas * = ( Base ‘ ℝ*𝑠 )
24 xrsadd +𝑒 = ( +g ‘ ℝ*𝑠 )
25 xrsex *𝑠 ∈ V
26 25 a1i ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ℝ*𝑠 ∈ V )
27 fzfid ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 1 ... 𝑛 ) ∈ Fin )
28 difss ( ℝ* ∖ { -∞ } ) ⊆ ℝ*
29 28 a1i ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( ℝ* ∖ { -∞ } ) ⊆ ℝ* )
30 xmetf ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* )
31 ffn ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ*𝐸 Fn ( 𝑉 × 𝑉 ) )
32 7 30 31 3syl ( 𝜑𝐸 Fn ( 𝑉 × 𝑉 ) )
33 xmetcl ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓𝑉𝑔𝑉 ) → ( 𝑓 𝐸 𝑔 ) ∈ ℝ* )
34 xmetge0 ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓𝑉𝑔𝑉 ) → 0 ≤ ( 𝑓 𝐸 𝑔 ) )
35 ge0nemnf ( ( ( 𝑓 𝐸 𝑔 ) ∈ ℝ* ∧ 0 ≤ ( 𝑓 𝐸 𝑔 ) ) → ( 𝑓 𝐸 𝑔 ) ≠ -∞ )
36 33 34 35 syl2anc ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓𝑉𝑔𝑉 ) → ( 𝑓 𝐸 𝑔 ) ≠ -∞ )
37 eldifsn ( ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ↔ ( ( 𝑓 𝐸 𝑔 ) ∈ ℝ* ∧ ( 𝑓 𝐸 𝑔 ) ≠ -∞ ) )
38 33 36 37 sylanbrc ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓𝑉𝑔𝑉 ) → ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) )
39 38 3expb ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑓𝑉𝑔𝑉 ) ) → ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) )
40 7 39 sylan ( ( 𝜑 ∧ ( 𝑓𝑉𝑔𝑉 ) ) → ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) )
41 40 ralrimivva ( 𝜑 → ∀ 𝑓𝑉𝑔𝑉 ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) )
42 ffnov ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ↔ ( 𝐸 Fn ( 𝑉 × 𝑉 ) ∧ ∀ 𝑓𝑉𝑔𝑉 ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) )
43 32 41 42 sylanbrc ( 𝜑𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) )
44 43 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) )
45 11 ssrab3 𝑆 ⊆ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) )
46 45 a1i ( ( 𝜑𝑛 ∈ ℕ ) → 𝑆 ⊆ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) )
47 46 sselda ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) )
48 elmapi ( 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) )
49 47 48 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) )
50 fco ( ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ∧ 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) → ( 𝐸𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) )
51 44 49 50 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝐸𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) )
52 0re 0 ∈ ℝ
53 rexr ( 0 ∈ ℝ → 0 ∈ ℝ* )
54 renemnf ( 0 ∈ ℝ → 0 ≠ -∞ )
55 eldifsn ( 0 ∈ ( ℝ* ∖ { -∞ } ) ↔ ( 0 ∈ ℝ* ∧ 0 ≠ -∞ ) )
56 53 54 55 sylanbrc ( 0 ∈ ℝ → 0 ∈ ( ℝ* ∖ { -∞ } ) )
57 52 56 mp1i ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 0 ∈ ( ℝ* ∖ { -∞ } ) )
58 xaddid2 ( 𝑥 ∈ ℝ* → ( 0 +𝑒 𝑥 ) = 𝑥 )
59 xaddid1 ( 𝑥 ∈ ℝ* → ( 𝑥 +𝑒 0 ) = 𝑥 )
60 58 59 jca ( 𝑥 ∈ ℝ* → ( ( 0 +𝑒 𝑥 ) = 𝑥 ∧ ( 𝑥 +𝑒 0 ) = 𝑥 ) )
61 60 adantl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ 𝑥 ∈ ℝ* ) → ( ( 0 +𝑒 𝑥 ) = 𝑥 ∧ ( 𝑥 +𝑒 0 ) = 𝑥 ) )
62 23 24 10 26 27 29 51 57 61 gsumress ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) = ( 𝑊 Σg ( 𝐸𝑔 ) ) )
63 10 23 ressbas2 ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑊 ) )
64 28 63 ax-mp ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑊 )
65 10 xrs10 0 = ( 0g𝑊 )
66 10 xrs1cmn 𝑊 ∈ CMnd
67 66 a1i ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 𝑊 ∈ CMnd )
68 c0ex 0 ∈ V
69 68 a1i ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 0 ∈ V )
70 51 27 69 fdmfifsupp ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝐸𝑔 ) finSupp 0 )
71 64 65 67 27 51 70 gsumcl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑊 Σg ( 𝐸𝑔 ) ) ∈ ( ℝ* ∖ { -∞ } ) )
72 62 71 eqeltrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ∈ ( ℝ* ∖ { -∞ } ) )
73 72 eldifad ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ∈ ℝ* )
74 73 fmpttd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) : 𝑆 ⟶ ℝ* )
75 74 frnd ( ( 𝜑𝑛 ∈ ℕ ) → ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ⊆ ℝ* )
76 75 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ⊆ ℝ* )
77 iunss ( 𝑛 ∈ ℕ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ⊆ ℝ* ↔ ∀ 𝑛 ∈ ℕ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ⊆ ℝ* )
78 76 77 sylibr ( 𝜑 𝑛 ∈ ℕ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ⊆ ℝ* )
79 12 78 eqsstrid ( 𝜑𝑇 ⊆ ℝ* )
80 infxrcl ( 𝑇 ⊆ ℝ* → inf ( 𝑇 , ℝ* , < ) ∈ ℝ* )
81 79 80 syl ( 𝜑 → inf ( 𝑇 , ℝ* , < ) ∈ ℝ* )
82 xmetcl ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 𝐸 𝑌 ) ∈ ℝ* )
83 7 8 9 82 syl3anc ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ ℝ* )
84 1nn 1 ∈ ℕ
85 1ex 1 ∈ V
86 opex 𝑋 , 𝑌 ⟩ ∈ V
87 85 86 f1osn { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } : { 1 } –1-1-onto→ { ⟨ 𝑋 , 𝑌 ⟩ }
88 f1of ( { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } : { 1 } –1-1-onto→ { ⟨ 𝑋 , 𝑌 ⟩ } → { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } : { 1 } ⟶ { ⟨ 𝑋 , 𝑌 ⟩ } )
89 87 88 ax-mp { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } : { 1 } ⟶ { ⟨ 𝑋 , 𝑌 ⟩ }
90 8 9 opelxpd ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝑉 × 𝑉 ) )
91 90 snssd ( 𝜑 → { ⟨ 𝑋 , 𝑌 ⟩ } ⊆ ( 𝑉 × 𝑉 ) )
92 fss ( ( { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } : { 1 } ⟶ { ⟨ 𝑋 , 𝑌 ⟩ } ∧ { ⟨ 𝑋 , 𝑌 ⟩ } ⊆ ( 𝑉 × 𝑉 ) ) → { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } : { 1 } ⟶ ( 𝑉 × 𝑉 ) )
93 89 91 92 sylancr ( 𝜑 → { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } : { 1 } ⟶ ( 𝑉 × 𝑉 ) )
94 7 elfvexd ( 𝜑𝑉 ∈ V )
95 94 94 xpexd ( 𝜑 → ( 𝑉 × 𝑉 ) ∈ V )
96 snex { 1 } ∈ V
97 elmapg ( ( ( 𝑉 × 𝑉 ) ∈ V ∧ { 1 } ∈ V ) → ( { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ↔ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } : { 1 } ⟶ ( 𝑉 × 𝑉 ) ) )
98 95 96 97 sylancl ( 𝜑 → ( { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ↔ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } : { 1 } ⟶ ( 𝑉 × 𝑉 ) ) )
99 93 98 mpbird ( 𝜑 → { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) )
100 op1stg ( ( 𝑋𝑉𝑌𝑉 ) → ( 1st ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = 𝑋 )
101 8 9 100 syl2anc ( 𝜑 → ( 1st ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = 𝑋 )
102 101 fveq2d ( 𝜑 → ( 𝐹 ‘ ( 1st ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ) = ( 𝐹𝑋 ) )
103 op2ndg ( ( 𝑋𝑉𝑌𝑉 ) → ( 2nd ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = 𝑌 )
104 8 9 103 syl2anc ( 𝜑 → ( 2nd ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = 𝑌 )
105 104 fveq2d ( 𝜑 → ( 𝐹 ‘ ( 2nd ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ) = ( 𝐹𝑌 ) )
106 102 105 jca ( 𝜑 → ( ( 𝐹 ‘ ( 1st ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ) = ( 𝐹𝑌 ) ) )
107 25 a1i ( 𝜑 → ℝ*𝑠 ∈ V )
108 snfi { 1 } ∈ Fin
109 108 a1i ( 𝜑 → { 1 } ∈ Fin )
110 28 a1i ( 𝜑 → ( ℝ* ∖ { -∞ } ) ⊆ ℝ* )
111 xmetge0 ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋𝑉𝑌𝑉 ) → 0 ≤ ( 𝑋 𝐸 𝑌 ) )
112 7 8 9 111 syl3anc ( 𝜑 → 0 ≤ ( 𝑋 𝐸 𝑌 ) )
113 ge0nemnf ( ( ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ∧ 0 ≤ ( 𝑋 𝐸 𝑌 ) ) → ( 𝑋 𝐸 𝑌 ) ≠ -∞ )
114 83 112 113 syl2anc ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ≠ -∞ )
115 eldifsn ( ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) ↔ ( ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ∧ ( 𝑋 𝐸 𝑌 ) ≠ -∞ ) )
116 83 114 115 sylanbrc ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) )
117 fconst6g ( ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) → ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) )
118 116 117 syl ( 𝜑 → ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) )
119 fcoconst ( ( 𝐸 Fn ( 𝑉 × 𝑉 ) ∧ ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝑉 × 𝑉 ) ) → ( 𝐸 ∘ ( { 1 } × { ⟨ 𝑋 , 𝑌 ⟩ } ) ) = ( { 1 } × { ( 𝐸 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) } ) )
120 32 90 119 syl2anc ( 𝜑 → ( 𝐸 ∘ ( { 1 } × { ⟨ 𝑋 , 𝑌 ⟩ } ) ) = ( { 1 } × { ( 𝐸 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) } ) )
121 85 86 xpsn ( { 1 } × { ⟨ 𝑋 , 𝑌 ⟩ } ) = { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ }
122 121 coeq2i ( 𝐸 ∘ ( { 1 } × { ⟨ 𝑋 , 𝑌 ⟩ } ) ) = ( 𝐸 ∘ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } )
123 df-ov ( 𝑋 𝐸 𝑌 ) = ( 𝐸 ‘ ⟨ 𝑋 , 𝑌 ⟩ )
124 123 eqcomi ( 𝐸 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = ( 𝑋 𝐸 𝑌 )
125 124 sneqi { ( 𝐸 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) } = { ( 𝑋 𝐸 𝑌 ) }
126 125 xpeq2i ( { 1 } × { ( 𝐸 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) } ) = ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } )
127 120 122 126 3eqtr3g ( 𝜑 → ( 𝐸 ∘ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ) = ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) )
128 127 feq1d ( 𝜑 → ( ( 𝐸 ∘ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ↔ ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ) )
129 118 128 mpbird ( 𝜑 → ( 𝐸 ∘ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) )
130 52 56 mp1i ( 𝜑 → 0 ∈ ( ℝ* ∖ { -∞ } ) )
131 60 adantl ( ( 𝜑𝑥 ∈ ℝ* ) → ( ( 0 +𝑒 𝑥 ) = 𝑥 ∧ ( 𝑥 +𝑒 0 ) = 𝑥 ) )
132 23 24 10 107 109 110 129 130 131 gsumress ( 𝜑 → ( ℝ*𝑠 Σg ( 𝐸 ∘ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ) ) = ( 𝑊 Σg ( 𝐸 ∘ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ) ) )
133 fconstmpt ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) )
134 127 133 eqtrdi ( 𝜑 → ( 𝐸 ∘ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) )
135 134 oveq2d ( 𝜑 → ( 𝑊 Σg ( 𝐸 ∘ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ) ) = ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) )
136 cmnmnd ( 𝑊 ∈ CMnd → 𝑊 ∈ Mnd )
137 66 136 mp1i ( 𝜑𝑊 ∈ Mnd )
138 84 a1i ( 𝜑 → 1 ∈ ℕ )
139 eqidd ( 𝑗 = 1 → ( 𝑋 𝐸 𝑌 ) = ( 𝑋 𝐸 𝑌 ) )
140 64 139 gsumsn ( ( 𝑊 ∈ Mnd ∧ 1 ∈ ℕ ∧ ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) ) → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) = ( 𝑋 𝐸 𝑌 ) )
141 137 138 116 140 syl3anc ( 𝜑 → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) = ( 𝑋 𝐸 𝑌 ) )
142 132 135 141 3eqtrrd ( 𝜑 → ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ) ) )
143 fveq1 ( 𝑔 = { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } → ( 𝑔 ‘ 1 ) = ( { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ‘ 1 ) )
144 85 86 fvsn ( { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ‘ 1 ) = ⟨ 𝑋 , 𝑌
145 143 144 eqtrdi ( 𝑔 = { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } → ( 𝑔 ‘ 1 ) = ⟨ 𝑋 , 𝑌 ⟩ )
146 145 fveq2d ( 𝑔 = { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } → ( 1st ‘ ( 𝑔 ‘ 1 ) ) = ( 1st ‘ ⟨ 𝑋 , 𝑌 ⟩ ) )
147 146 fveqeq2d ( 𝑔 = { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ↔ ( 𝐹 ‘ ( 1st ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ) = ( 𝐹𝑋 ) ) )
148 145 fveq2d ( 𝑔 = { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } → ( 2nd ‘ ( 𝑔 ‘ 1 ) ) = ( 2nd ‘ ⟨ 𝑋 , 𝑌 ⟩ ) )
149 148 fveqeq2d ( 𝑔 = { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑌 ) ↔ ( 𝐹 ‘ ( 2nd ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ) = ( 𝐹𝑌 ) ) )
150 147 149 anbi12d ( 𝑔 = { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑌 ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ) = ( 𝐹𝑌 ) ) ) )
151 coeq2 ( 𝑔 = { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } → ( 𝐸𝑔 ) = ( 𝐸 ∘ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ) )
152 151 oveq2d ( 𝑔 = { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } → ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ) ) )
153 152 eqeq2d ( 𝑔 = { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } → ( ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ↔ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ) ) ) )
154 150 153 anbi12d ( 𝑔 = { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } → ( ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ) = ( 𝐹𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ) ) ) ) )
155 154 rspcev ( ( { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ∧ ( ( ( 𝐹 ‘ ( 1st ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ) = ( 𝐹𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { ⟨ 1 , ⟨ 𝑋 , 𝑌 ⟩ ⟩ } ) ) ) ) → ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
156 99 106 142 155 syl12anc ( 𝜑 → ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
157 ovex ( 𝑋 𝐸 𝑌 ) ∈ V
158 eqid ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) = ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) )
159 158 elrnmpt ( ( 𝑋 𝐸 𝑌 ) ∈ V → ( ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ↔ ∃ 𝑔𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
160 157 159 ax-mp ( ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ↔ ∃ 𝑔𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) )
161 11 rexeqi ( ∃ 𝑔𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ↔ ∃ 𝑔 ∈ { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) )
162 fveq1 ( = 𝑔 → ( ‘ 1 ) = ( 𝑔 ‘ 1 ) )
163 162 fveq2d ( = 𝑔 → ( 1st ‘ ( ‘ 1 ) ) = ( 1st ‘ ( 𝑔 ‘ 1 ) ) )
164 163 fveqeq2d ( = 𝑔 → ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = ( 𝐹𝑋 ) ↔ ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ) )
165 fveq1 ( = 𝑔 → ( 𝑛 ) = ( 𝑔𝑛 ) )
166 165 fveq2d ( = 𝑔 → ( 2nd ‘ ( 𝑛 ) ) = ( 2nd ‘ ( 𝑔𝑛 ) ) )
167 166 fveqeq2d ( = 𝑔 → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = ( 𝐹𝑌 ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ) )
168 fveq1 ( = 𝑔 → ( 𝑖 ) = ( 𝑔𝑖 ) )
169 168 fveq2d ( = 𝑔 → ( 2nd ‘ ( 𝑖 ) ) = ( 2nd ‘ ( 𝑔𝑖 ) ) )
170 169 fveq2d ( = 𝑔 → ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) )
171 fveq1 ( = 𝑔 → ( ‘ ( 𝑖 + 1 ) ) = ( 𝑔 ‘ ( 𝑖 + 1 ) ) )
172 171 fveq2d ( = 𝑔 → ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) )
173 172 fveq2d ( = 𝑔 → ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) )
174 170 173 eqeq12d ( = 𝑔 → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) )
175 174 ralbidv ( = 𝑔 → ( ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) )
176 164 167 175 3anbi123d ( = 𝑔 → ( ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) )
177 176 rexrab ( ∃ 𝑔 ∈ { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
178 161 177 bitri ( ∃ 𝑔𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
179 oveq2 ( 𝑛 = 1 → ( 1 ... 𝑛 ) = ( 1 ... 1 ) )
180 1z 1 ∈ ℤ
181 fzsn ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } )
182 180 181 ax-mp ( 1 ... 1 ) = { 1 }
183 179 182 eqtrdi ( 𝑛 = 1 → ( 1 ... 𝑛 ) = { 1 } )
184 183 oveq2d ( 𝑛 = 1 → ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) = ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) )
185 df-3an ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) )
186 ral0 𝑖 ∈ ∅ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) )
187 oveq1 ( 𝑛 = 1 → ( 𝑛 − 1 ) = ( 1 − 1 ) )
188 1m1e0 ( 1 − 1 ) = 0
189 187 188 eqtrdi ( 𝑛 = 1 → ( 𝑛 − 1 ) = 0 )
190 189 oveq2d ( 𝑛 = 1 → ( 1 ... ( 𝑛 − 1 ) ) = ( 1 ... 0 ) )
191 fz10 ( 1 ... 0 ) = ∅
192 190 191 eqtrdi ( 𝑛 = 1 → ( 1 ... ( 𝑛 − 1 ) ) = ∅ )
193 192 raleqdv ( 𝑛 = 1 → ( ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑖 ∈ ∅ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) )
194 186 193 mpbiri ( 𝑛 = 1 → ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) )
195 194 biantrud ( 𝑛 = 1 → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) )
196 2fveq3 ( 𝑛 = 1 → ( 2nd ‘ ( 𝑔𝑛 ) ) = ( 2nd ‘ ( 𝑔 ‘ 1 ) ) )
197 196 fveqeq2d ( 𝑛 = 1 → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑌 ) ) )
198 197 anbi2d ( 𝑛 = 1 → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑌 ) ) ) )
199 195 198 bitr3d ( 𝑛 = 1 → ( ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑌 ) ) ) )
200 185 199 syl5bb ( 𝑛 = 1 → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑌 ) ) ) )
201 200 anbi1d ( 𝑛 = 1 → ( ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ) )
202 184 201 rexeqbidv ( 𝑛 = 1 → ( ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ) )
203 178 202 syl5bb ( 𝑛 = 1 → ( ∃ 𝑔𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ) )
204 160 203 syl5bb ( 𝑛 = 1 → ( ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ) )
205 204 rspcev ( ( 1 ∈ ℕ ∧ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
206 84 156 205 sylancr ( 𝜑 → ∃ 𝑛 ∈ ℕ ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
207 eliun ( ( 𝑋 𝐸 𝑌 ) ∈ 𝑛 ∈ ℕ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ↔ ∃ 𝑛 ∈ ℕ ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
208 206 207 sylibr ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ 𝑛 ∈ ℕ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
209 208 12 eleqtrrdi ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ 𝑇 )
210 infxrlb ( ( 𝑇 ⊆ ℝ* ∧ ( 𝑋 𝐸 𝑌 ) ∈ 𝑇 ) → inf ( 𝑇 , ℝ* , < ) ≤ ( 𝑋 𝐸 𝑌 ) )
211 79 209 210 syl2anc ( 𝜑 → inf ( 𝑇 , ℝ* , < ) ≤ ( 𝑋 𝐸 𝑌 ) )
212 12 eleq2i ( 𝑝𝑇𝑝 𝑛 ∈ ℕ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
213 eliun ( 𝑝 𝑛 ∈ ℕ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑝 ∈ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
214 212 213 bitri ( 𝑝𝑇 ↔ ∃ 𝑛 ∈ ℕ 𝑝 ∈ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
215 158 elrnmpt ( 𝑝 ∈ V → ( 𝑝 ∈ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ↔ ∃ 𝑔𝑆 𝑝 = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
216 215 elv ( 𝑝 ∈ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) ↔ ∃ 𝑔𝑆 𝑝 = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) )
217 176 11 elrab2 ( 𝑔𝑆 ↔ ( 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∧ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) )
218 217 simprbi ( 𝑔𝑆 → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) )
219 218 adantl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) )
220 219 simp2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) )
221 3 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 𝐹 : 𝑉1-1-onto𝐵 )
222 f1of1 ( 𝐹 : 𝑉1-1-onto𝐵𝐹 : 𝑉1-1𝐵 )
223 221 222 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 𝐹 : 𝑉1-1𝐵 )
224 simplr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 𝑛 ∈ ℕ )
225 elfz1end ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( 1 ... 𝑛 ) )
226 224 225 sylib ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 𝑛 ∈ ( 1 ... 𝑛 ) )
227 49 226 ffvelrnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑔𝑛 ) ∈ ( 𝑉 × 𝑉 ) )
228 xp2nd ( ( 𝑔𝑛 ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔𝑛 ) ) ∈ 𝑉 )
229 227 228 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 2nd ‘ ( 𝑔𝑛 ) ) ∈ 𝑉 )
230 9 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 𝑌𝑉 )
231 f1fveq ( ( 𝐹 : 𝑉1-1𝐵 ∧ ( ( 2nd ‘ ( 𝑔𝑛 ) ) ∈ 𝑉𝑌𝑉 ) ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ↔ ( 2nd ‘ ( 𝑔𝑛 ) ) = 𝑌 ) )
232 223 229 230 231 syl12anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝐹𝑌 ) ↔ ( 2nd ‘ ( 𝑔𝑛 ) ) = 𝑌 ) )
233 220 232 mpbid ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 2nd ‘ ( 𝑔𝑛 ) ) = 𝑌 )
234 233 oveq2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑛 ) ) ) = ( 𝑋 𝐸 𝑌 ) )
235 eleq1 ( 𝑚 = 1 → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ 1 ∈ ( 1 ... 𝑛 ) ) )
236 2fveq3 ( 𝑚 = 1 → ( 2nd ‘ ( 𝑔𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ 1 ) ) )
237 236 oveq2d ( 𝑚 = 1 → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) )
238 oveq2 ( 𝑚 = 1 → ( 1 ... 𝑚 ) = ( 1 ... 1 ) )
239 238 182 eqtrdi ( 𝑚 = 1 → ( 1 ... 𝑚 ) = { 1 } )
240 239 reseq2d ( 𝑚 = 1 → ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸𝑔 ) ↾ { 1 } ) )
241 240 oveq2d ( 𝑚 = 1 → ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ { 1 } ) ) )
242 237 241 breq12d ( 𝑚 = 1 → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ { 1 } ) ) ) )
243 235 242 imbi12d ( 𝑚 = 1 → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( 1 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ { 1 } ) ) ) ) )
244 243 imbi2d ( 𝑚 = 1 → ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 1 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ { 1 } ) ) ) ) ) )
245 eleq1 ( 𝑚 = 𝑥 → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ 𝑥 ∈ ( 1 ... 𝑛 ) ) )
246 2fveq3 ( 𝑚 = 𝑥 → ( 2nd ‘ ( 𝑔𝑚 ) ) = ( 2nd ‘ ( 𝑔𝑥 ) ) )
247 246 oveq2d ( 𝑚 = 𝑥 → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) )
248 oveq2 ( 𝑚 = 𝑥 → ( 1 ... 𝑚 ) = ( 1 ... 𝑥 ) )
249 248 reseq2d ( 𝑚 = 𝑥 → ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) )
250 249 oveq2d ( 𝑚 = 𝑥 → ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) )
251 247 250 breq12d ( 𝑚 = 𝑥 → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) )
252 245 251 imbi12d ( 𝑚 = 𝑥 → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) )
253 252 imbi2d ( 𝑚 = 𝑥 → ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) ) )
254 eleq1 ( 𝑚 = ( 𝑥 + 1 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) )
255 2fveq3 ( 𝑚 = ( 𝑥 + 1 ) → ( 2nd ‘ ( 𝑔𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) )
256 255 oveq2d ( 𝑚 = ( 𝑥 + 1 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) )
257 oveq2 ( 𝑚 = ( 𝑥 + 1 ) → ( 1 ... 𝑚 ) = ( 1 ... ( 𝑥 + 1 ) ) )
258 257 reseq2d ( 𝑚 = ( 𝑥 + 1 ) → ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) )
259 258 oveq2d ( 𝑚 = ( 𝑥 + 1 ) → ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) )
260 256 259 breq12d ( 𝑚 = ( 𝑥 + 1 ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) )
261 254 260 imbi12d ( 𝑚 = ( 𝑥 + 1 ) → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) )
262 261 imbi2d ( 𝑚 = ( 𝑥 + 1 ) → ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) ) )
263 eleq1 ( 𝑚 = 𝑛 → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ 𝑛 ∈ ( 1 ... 𝑛 ) ) )
264 2fveq3 ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑔𝑚 ) ) = ( 2nd ‘ ( 𝑔𝑛 ) ) )
265 264 oveq2d ( 𝑚 = 𝑛 → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑛 ) ) ) )
266 oveq2 ( 𝑚 = 𝑛 → ( 1 ... 𝑚 ) = ( 1 ... 𝑛 ) )
267 266 reseq2d ( 𝑚 = 𝑛 → ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑛 ) ) )
268 267 oveq2d ( 𝑚 = 𝑛 → ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) )
269 265 268 breq12d ( 𝑚 = 𝑛 → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) )
270 263 269 imbi12d ( 𝑚 = 𝑛 → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) )
271 270 imbi2d ( 𝑚 = 𝑛 → ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) ) )
272 7 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) )
273 8 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 𝑋𝑉 )
274 nnuz ℕ = ( ℤ ‘ 1 )
275 224 274 eleqtrdi ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 𝑛 ∈ ( ℤ ‘ 1 ) )
276 eluzfz1 ( 𝑛 ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... 𝑛 ) )
277 275 276 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 1 ∈ ( 1 ... 𝑛 ) )
278 49 277 ffvelrnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) )
279 xp2nd ( ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 )
280 278 279 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 )
281 xmetcl ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ∈ ℝ* )
282 272 273 280 281 syl3anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ∈ ℝ* )
283 282 xrleidd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) )
284 137 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 𝑊 ∈ Mnd )
285 84 a1i ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 1 ∈ ℕ )
286 44 278 ffvelrnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ∈ ( ℝ* ∖ { -∞ } ) )
287 2fveq3 ( 𝑗 = 1 → ( 𝐸 ‘ ( 𝑔𝑗 ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) )
288 64 287 gsumsn ( ( 𝑊 ∈ Mnd ∧ 1 ∈ ℕ ∧ ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) )
289 284 285 286 288 syl3anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) )
290 272 30 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* )
291 fcompt ( ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ*𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) → ( 𝐸𝑔 ) = ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) )
292 290 49 291 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝐸𝑔 ) = ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) )
293 292 reseq1d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( ( 𝐸𝑔 ) ↾ { 1 } ) = ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) ↾ { 1 } ) )
294 277 snssd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → { 1 } ⊆ ( 1 ... 𝑛 ) )
295 294 resmptd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) ↾ { 1 } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) )
296 293 295 eqtrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( ( 𝐸𝑔 ) ↾ { 1 } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) )
297 296 oveq2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ { 1 } ) ) = ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) ) )
298 df-ov ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐸 ‘ ⟨ 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ⟩ )
299 1st2nd2 ( ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) → ( 𝑔 ‘ 1 ) = ⟨ ( 1st ‘ ( 𝑔 ‘ 1 ) ) , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ⟩ )
300 278 299 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑔 ‘ 1 ) = ⟨ ( 1st ‘ ( 𝑔 ‘ 1 ) ) , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ⟩ )
301 219 simp1d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) )
302 xp1st ( ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) → ( 1st ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 )
303 278 302 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 1st ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 )
304 f1fveq ( ( 𝐹 : 𝑉1-1𝐵 ∧ ( ( 1st ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉𝑋𝑉 ) ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ↔ ( 1st ‘ ( 𝑔 ‘ 1 ) ) = 𝑋 ) )
305 223 303 273 304 syl12anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹𝑋 ) ↔ ( 1st ‘ ( 𝑔 ‘ 1 ) ) = 𝑋 ) )
306 301 305 mpbid ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 1st ‘ ( 𝑔 ‘ 1 ) ) = 𝑋 )
307 306 opeq1d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ⟨ ( 1st ‘ ( 𝑔 ‘ 1 ) ) , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ⟩ = ⟨ 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ⟩ )
308 300 307 eqtr2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ⟨ 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ⟩ = ( 𝑔 ‘ 1 ) )
309 308 fveq2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝐸 ‘ ⟨ 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ⟩ ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) )
310 298 309 eqtrid ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) )
311 289 297 310 3eqtr4d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ { 1 } ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) )
312 283 311 breqtrrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ { 1 } ) ) )
313 312 a1d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 1 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ { 1 } ) ) ) )
314 simprl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ℕ )
315 314 274 eleqtrdi ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ( ℤ ‘ 1 ) )
316 simprr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) )
317 peano2fzr ( ( 𝑥 ∈ ( ℤ ‘ 1 ) ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) → 𝑥 ∈ ( 1 ... 𝑛 ) )
318 315 316 317 syl2anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ( 1 ... 𝑛 ) )
319 318 expr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → 𝑥 ∈ ( 1 ... 𝑛 ) ) )
320 319 imim1d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) )
321 272 adantr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) )
322 273 adantr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑋𝑉 )
323 49 adantr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) )
324 323 318 ffvelrnd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔𝑥 ) ∈ ( 𝑉 × 𝑉 ) )
325 xp2nd ( ( 𝑔𝑥 ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔𝑥 ) ) ∈ 𝑉 )
326 324 325 syl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 2nd ‘ ( 𝑔𝑥 ) ) ∈ 𝑉 )
327 xmetcl ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋𝑉 ∧ ( 2nd ‘ ( 𝑔𝑥 ) ) ∈ 𝑉 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ∈ ℝ* )
328 321 322 326 327 syl3anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ∈ ℝ* )
329 66 a1i ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑊 ∈ CMnd )
330 fzfid ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... 𝑥 ) ∈ Fin )
331 51 adantr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) )
332 fzsuc ( 𝑥 ∈ ( ℤ ‘ 1 ) → ( 1 ... ( 𝑥 + 1 ) ) = ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) )
333 315 332 syl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... ( 𝑥 + 1 ) ) = ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) )
334 elfzuz3 ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → 𝑛 ∈ ( ℤ ‘ ( 𝑥 + 1 ) ) )
335 334 ad2antll ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑛 ∈ ( ℤ ‘ ( 𝑥 + 1 ) ) )
336 fzss2 ( 𝑛 ∈ ( ℤ ‘ ( 𝑥 + 1 ) ) → ( 1 ... ( 𝑥 + 1 ) ) ⊆ ( 1 ... 𝑛 ) )
337 335 336 syl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... ( 𝑥 + 1 ) ) ⊆ ( 1 ... 𝑛 ) )
338 333 337 eqsstrrd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ⊆ ( 1 ... 𝑛 ) )
339 338 unssad ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... 𝑥 ) ⊆ ( 1 ... 𝑛 ) )
340 331 339 fssresd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) : ( 1 ... 𝑥 ) ⟶ ( ℝ* ∖ { -∞ } ) )
341 68 a1i ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 0 ∈ V )
342 340 330 341 fdmfifsupp ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) finSupp 0 )
343 64 65 329 330 340 342 gsumcl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ( ℝ* ∖ { -∞ } ) )
344 343 eldifad ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ℝ* )
345 321 30 syl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* )
346 323 316 ffvelrnd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) )
347 345 346 ffvelrnd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ℝ* )
348 xleadd1a ( ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ∈ ℝ* ∧ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ℝ* ∧ ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ℝ* ) ∧ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) )
349 348 ex ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ∈ ℝ* ∧ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ℝ* ∧ ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ℝ* ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) )
350 328 344 347 349 syl3anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) )
351 xp2nd ( ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 )
352 346 351 syl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 )
353 xmettri ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑋𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔𝑥 ) ) ∈ 𝑉 ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( ( 2nd ‘ ( 𝑔𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) )
354 321 322 352 326 353 syl13anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( ( 2nd ‘ ( 𝑔𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) )
355 1st2nd2 ( ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) = ⟨ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ⟩ )
356 346 355 syl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) = ⟨ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ⟩ )
357 2fveq3 ( 𝑖 = 𝑥 → ( 2nd ‘ ( 𝑔𝑖 ) ) = ( 2nd ‘ ( 𝑔𝑥 ) ) )
358 357 fveq2d ( 𝑖 = 𝑥 → ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑥 ) ) ) )
359 fvoveq1 ( 𝑖 = 𝑥 → ( 𝑔 ‘ ( 𝑖 + 1 ) ) = ( 𝑔 ‘ ( 𝑥 + 1 ) ) )
360 359 fveq2d ( 𝑖 = 𝑥 → ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) )
361 360 fveq2d ( 𝑖 = 𝑥 → ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) )
362 358 361 eqeq12d ( 𝑖 = 𝑥 → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) )
363 219 simp3d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) )
364 363 adantr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) )
365 nnz ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ )
366 365 ad2antrl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ℤ )
367 eluzp1m1 ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ( ℤ ‘ ( 𝑥 + 1 ) ) ) → ( 𝑛 − 1 ) ∈ ( ℤ𝑥 ) )
368 366 335 367 syl2anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑛 − 1 ) ∈ ( ℤ𝑥 ) )
369 elfzuzb ( 𝑥 ∈ ( 1 ... ( 𝑛 − 1 ) ) ↔ ( 𝑥 ∈ ( ℤ ‘ 1 ) ∧ ( 𝑛 − 1 ) ∈ ( ℤ𝑥 ) ) )
370 315 368 369 sylanbrc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ( 1 ... ( 𝑛 − 1 ) ) )
371 362 364 370 rspcdva ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) )
372 223 adantr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐹 : 𝑉1-1𝐵 )
373 xp1st ( ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) → ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 )
374 346 373 syl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 )
375 f1fveq ( ( 𝐹 : 𝑉1-1𝐵 ∧ ( ( 2nd ‘ ( 𝑔𝑥 ) ) ∈ 𝑉 ∧ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ↔ ( 2nd ‘ ( 𝑔𝑥 ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) )
376 372 326 374 375 syl12anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ↔ ( 2nd ‘ ( 𝑔𝑥 ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) )
377 371 376 mpbid ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 2nd ‘ ( 𝑔𝑥 ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) )
378 377 opeq1d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ⟨ ( 2nd ‘ ( 𝑔𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ⟩ = ⟨ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ⟩ )
379 356 378 eqtr4d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) = ⟨ ( 2nd ‘ ( 𝑔𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ⟩ )
380 379 fveq2d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) = ( 𝐸 ‘ ⟨ ( 2nd ‘ ( 𝑔𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) )
381 df-ov ( ( 2nd ‘ ( 𝑔𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) = ( 𝐸 ‘ ⟨ ( 2nd ‘ ( 𝑔𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ⟩ )
382 380 381 eqtr4di ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) = ( ( 2nd ‘ ( 𝑔𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) )
383 382 oveq2d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) = ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( ( 2nd ‘ ( 𝑔𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) )
384 354 383 breqtrrd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) )
385 xmetcl ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* )
386 321 322 352 385 syl3anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* )
387 328 347 xaddcld ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* )
388 344 347 xaddcld ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* )
389 xrletr ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ∧ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ∧ ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) → ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∧ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) )
390 386 387 388 389 syl3anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∧ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) )
391 384 390 mpand ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) )
392 350 391 syld ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) )
393 xrex * ∈ V
394 393 difexi ( ℝ* ∖ { -∞ } ) ∈ V
395 10 24 ressplusg ( ( ℝ* ∖ { -∞ } ) ∈ V → +𝑒 = ( +g𝑊 ) )
396 394 395 ax-mp +𝑒 = ( +g𝑊 )
397 44 ad2antrr ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑥 ) ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) )
398 fzelp1 ( 𝑗 ∈ ( 1 ... 𝑥 ) → 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) )
399 49 ad2antrr ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) )
400 337 sselda ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) → 𝑗 ∈ ( 1 ... 𝑛 ) )
401 399 400 ffvelrnd ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) → ( 𝑔𝑗 ) ∈ ( 𝑉 × 𝑉 ) )
402 398 401 sylan2 ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑥 ) ) → ( 𝑔𝑗 ) ∈ ( 𝑉 × 𝑉 ) )
403 397 402 ffvelrnd ( ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑥 ) ) → ( 𝐸 ‘ ( 𝑔𝑗 ) ) ∈ ( ℝ* ∖ { -∞ } ) )
404 fzp1disj ( ( 1 ... 𝑥 ) ∩ { ( 𝑥 + 1 ) } ) = ∅
405 404 a1i ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 1 ... 𝑥 ) ∩ { ( 𝑥 + 1 ) } ) = ∅ )
406 disjsn ( ( ( 1 ... 𝑥 ) ∩ { ( 𝑥 + 1 ) } ) = ∅ ↔ ¬ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑥 ) )
407 405 406 sylib ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ¬ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑥 ) )
408 44 adantr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) )
409 408 346 ffvelrnd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ( ℝ* ∖ { -∞ } ) )
410 2fveq3 ( 𝑗 = ( 𝑥 + 1 ) → ( 𝐸 ‘ ( 𝑔𝑗 ) ) = ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) )
411 64 396 329 330 403 316 407 409 410 gsumunsn ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) ) = ( ( 𝑊 Σg ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) )
412 292 adantr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸𝑔 ) = ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) )
413 412 333 reseq12d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) = ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) ↾ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ) )
414 338 resmptd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) ↾ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ) = ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) )
415 413 414 eqtrd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) = ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) )
416 415 oveq2d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) = ( 𝑊 Σg ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) ) )
417 412 reseq1d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) = ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) ↾ ( 1 ... 𝑥 ) ) )
418 339 resmptd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) ↾ ( 1 ... 𝑥 ) ) = ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) )
419 417 418 eqtrd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) = ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) )
420 419 oveq2d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) = ( 𝑊 Σg ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) ) )
421 420 oveq1d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) = ( ( 𝑊 Σg ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔𝑗 ) ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) )
422 411 416 421 3eqtr4d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) = ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) )
423 422 breq2d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) )
424 392 423 sylibrd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) )
425 320 424 animpimp2impd ( 𝑥 ∈ ℕ → ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) → ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) ) )
426 244 253 262 271 313 425 nnind ( 𝑛 ∈ ℕ → ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) )
427 224 426 mpcom ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) )
428 226 427 mpd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) )
429 234 428 eqbrtrrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑋 𝐸 𝑌 ) ≤ ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) )
430 ffn ( ( 𝐸𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) → ( 𝐸𝑔 ) Fn ( 1 ... 𝑛 ) )
431 fnresdm ( ( 𝐸𝑔 ) Fn ( 1 ... 𝑛 ) → ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑛 ) ) = ( 𝐸𝑔 ) )
432 51 430 431 3syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑛 ) ) = ( 𝐸𝑔 ) )
433 432 oveq2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) = ( 𝑊 Σg ( 𝐸𝑔 ) ) )
434 62 433 eqtr4d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) = ( 𝑊 Σg ( ( 𝐸𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) )
435 429 434 breqtrrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑋 𝐸 𝑌 ) ≤ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) )
436 breq2 ( 𝑝 = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) → ( ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ↔ ( 𝑋 𝐸 𝑌 ) ≤ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
437 435 436 syl5ibrcom ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑔𝑆 ) → ( 𝑝 = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) )
438 437 rexlimdva ( ( 𝜑𝑛 ∈ ℕ ) → ( ∃ 𝑔𝑆 𝑝 = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) )
439 216 438 syl5bi ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑝 ∈ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) )
440 439 rexlimdva ( 𝜑 → ( ∃ 𝑛 ∈ ℕ 𝑝 ∈ ran ( 𝑔𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) )
441 214 440 syl5bi ( 𝜑 → ( 𝑝𝑇 → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) )
442 441 ralrimiv ( 𝜑 → ∀ 𝑝𝑇 ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 )
443 infxrgelb ( ( 𝑇 ⊆ ℝ* ∧ ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ) → ( ( 𝑋 𝐸 𝑌 ) ≤ inf ( 𝑇 , ℝ* , < ) ↔ ∀ 𝑝𝑇 ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) )
444 79 83 443 syl2anc ( 𝜑 → ( ( 𝑋 𝐸 𝑌 ) ≤ inf ( 𝑇 , ℝ* , < ) ↔ ∀ 𝑝𝑇 ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) )
445 442 444 mpbird ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ≤ inf ( 𝑇 , ℝ* , < ) )
446 81 83 211 445 xrletrid ( 𝜑 → inf ( 𝑇 , ℝ* , < ) = ( 𝑋 𝐸 𝑌 ) )
447 22 446 eqtrd ( 𝜑 → ( ( 𝐹𝑋 ) 𝐷 ( 𝐹𝑌 ) ) = ( 𝑋 𝐸 𝑌 ) )