| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasdsf1o.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 2 |
|
imasdsf1o.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 3 |
|
imasdsf1o.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 4 |
|
imasdsf1o.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) |
| 5 |
|
imasdsf1o.e |
⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) |
| 6 |
|
imasdsf1o.d |
⊢ 𝐷 = ( dist ‘ 𝑈 ) |
| 7 |
|
imasdsf1o.m |
⊢ ( 𝜑 → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 8 |
|
imasdsf1o.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 9 |
|
imasdsf1o.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 10 |
|
imasdsf1o.w |
⊢ 𝑊 = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) |
| 11 |
|
imasdsf1o.s |
⊢ 𝑆 = { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } |
| 12 |
|
imasdsf1o.t |
⊢ 𝑇 = ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 13 |
|
f1ofo |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 15 |
|
eqid |
⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 ) |
| 16 |
|
f1of |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 17 |
3 16
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 18 |
17 8
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
| 19 |
17 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ 𝐵 ) |
| 20 |
1 2 14 4 15 6 18 19 11 5
|
imasdsval2 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) ) = inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) |
| 21 |
12
|
infeq1i |
⊢ inf ( 𝑇 , ℝ* , < ) = inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) |
| 22 |
20 21
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) ) = inf ( 𝑇 , ℝ* , < ) ) |
| 23 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
| 24 |
|
xrsadd |
⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) |
| 25 |
|
xrsex |
⊢ ℝ*𝑠 ∈ V |
| 26 |
25
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ℝ*𝑠 ∈ V ) |
| 27 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1 ... 𝑛 ) ∈ Fin ) |
| 28 |
|
difss |
⊢ ( ℝ* ∖ { -∞ } ) ⊆ ℝ* |
| 29 |
28
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ* ∖ { -∞ } ) ⊆ ℝ* ) |
| 30 |
|
xmetf |
⊢ ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* ) |
| 31 |
|
ffn |
⊢ ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* → 𝐸 Fn ( 𝑉 × 𝑉 ) ) |
| 32 |
7 30 31
|
3syl |
⊢ ( 𝜑 → 𝐸 Fn ( 𝑉 × 𝑉 ) ) |
| 33 |
|
xmetcl |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) → ( 𝑓 𝐸 𝑔 ) ∈ ℝ* ) |
| 34 |
|
xmetge0 |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) → 0 ≤ ( 𝑓 𝐸 𝑔 ) ) |
| 35 |
|
ge0nemnf |
⊢ ( ( ( 𝑓 𝐸 𝑔 ) ∈ ℝ* ∧ 0 ≤ ( 𝑓 𝐸 𝑔 ) ) → ( 𝑓 𝐸 𝑔 ) ≠ -∞ ) |
| 36 |
33 34 35
|
syl2anc |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) → ( 𝑓 𝐸 𝑔 ) ≠ -∞ ) |
| 37 |
|
eldifsn |
⊢ ( ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ↔ ( ( 𝑓 𝐸 𝑔 ) ∈ ℝ* ∧ ( 𝑓 𝐸 𝑔 ) ≠ -∞ ) ) |
| 38 |
33 36 37
|
sylanbrc |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) → ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 39 |
38
|
3expb |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) ) → ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 40 |
7 39
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) ) → ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 41 |
40
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝑉 ∀ 𝑔 ∈ 𝑉 ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 42 |
|
ffnov |
⊢ ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ↔ ( 𝐸 Fn ( 𝑉 × 𝑉 ) ∧ ∀ 𝑓 ∈ 𝑉 ∀ 𝑔 ∈ 𝑉 ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) ) |
| 43 |
32 41 42
|
sylanbrc |
⊢ ( 𝜑 → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 44 |
43
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 45 |
11
|
ssrab3 |
⊢ 𝑆 ⊆ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) |
| 46 |
45
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑆 ⊆ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ) |
| 47 |
46
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ) |
| 48 |
|
elmapi |
⊢ ( 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) |
| 49 |
47 48
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) |
| 50 |
|
fco |
⊢ ( ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ∧ 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) → ( 𝐸 ∘ 𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 51 |
44 49 50
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ∘ 𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 52 |
|
0re |
⊢ 0 ∈ ℝ |
| 53 |
|
rexr |
⊢ ( 0 ∈ ℝ → 0 ∈ ℝ* ) |
| 54 |
|
renemnf |
⊢ ( 0 ∈ ℝ → 0 ≠ -∞ ) |
| 55 |
|
eldifsn |
⊢ ( 0 ∈ ( ℝ* ∖ { -∞ } ) ↔ ( 0 ∈ ℝ* ∧ 0 ≠ -∞ ) ) |
| 56 |
53 54 55
|
sylanbrc |
⊢ ( 0 ∈ ℝ → 0 ∈ ( ℝ* ∖ { -∞ } ) ) |
| 57 |
52 56
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 0 ∈ ( ℝ* ∖ { -∞ } ) ) |
| 58 |
|
xaddlid |
⊢ ( 𝑥 ∈ ℝ* → ( 0 +𝑒 𝑥 ) = 𝑥 ) |
| 59 |
|
xaddrid |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 +𝑒 0 ) = 𝑥 ) |
| 60 |
58 59
|
jca |
⊢ ( 𝑥 ∈ ℝ* → ( ( 0 +𝑒 𝑥 ) = 𝑥 ∧ ( 𝑥 +𝑒 0 ) = 𝑥 ) ) |
| 61 |
60
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑥 ∈ ℝ* ) → ( ( 0 +𝑒 𝑥 ) = 𝑥 ∧ ( 𝑥 +𝑒 0 ) = 𝑥 ) ) |
| 62 |
23 24 10 26 27 29 51 57 61
|
gsumress |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) = ( 𝑊 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 63 |
10 23
|
ressbas2 |
⊢ ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑊 ) ) |
| 64 |
28 63
|
ax-mp |
⊢ ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑊 ) |
| 65 |
10
|
xrs10 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 66 |
10
|
xrs1cmn |
⊢ 𝑊 ∈ CMnd |
| 67 |
66
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑊 ∈ CMnd ) |
| 68 |
|
c0ex |
⊢ 0 ∈ V |
| 69 |
68
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 0 ∈ V ) |
| 70 |
51 27 69
|
fdmfifsupp |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ∘ 𝑔 ) finSupp 0 ) |
| 71 |
64 65 67 27 51 70
|
gsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( 𝐸 ∘ 𝑔 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 72 |
62 71
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 73 |
72
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ∈ ℝ* ) |
| 74 |
73
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) : 𝑆 ⟶ ℝ* ) |
| 75 |
74
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ) |
| 76 |
75
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ) |
| 77 |
|
iunss |
⊢ ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ↔ ∀ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ) |
| 78 |
76 77
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ) |
| 79 |
12 78
|
eqsstrid |
⊢ ( 𝜑 → 𝑇 ⊆ ℝ* ) |
| 80 |
|
infxrcl |
⊢ ( 𝑇 ⊆ ℝ* → inf ( 𝑇 , ℝ* , < ) ∈ ℝ* ) |
| 81 |
79 80
|
syl |
⊢ ( 𝜑 → inf ( 𝑇 , ℝ* , < ) ∈ ℝ* ) |
| 82 |
|
xmetcl |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ) |
| 83 |
7 8 9 82
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ) |
| 84 |
|
1nn |
⊢ 1 ∈ ℕ |
| 85 |
|
1ex |
⊢ 1 ∈ V |
| 86 |
|
opex |
⊢ 〈 𝑋 , 𝑌 〉 ∈ V |
| 87 |
85 86
|
f1osn |
⊢ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } –1-1-onto→ { 〈 𝑋 , 𝑌 〉 } |
| 88 |
|
f1of |
⊢ ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } –1-1-onto→ { 〈 𝑋 , 𝑌 〉 } → { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ { 〈 𝑋 , 𝑌 〉 } ) |
| 89 |
87 88
|
ax-mp |
⊢ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ { 〈 𝑋 , 𝑌 〉 } |
| 90 |
8 9
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝑉 × 𝑉 ) ) |
| 91 |
90
|
snssd |
⊢ ( 𝜑 → { 〈 𝑋 , 𝑌 〉 } ⊆ ( 𝑉 × 𝑉 ) ) |
| 92 |
|
fss |
⊢ ( ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ { 〈 𝑋 , 𝑌 〉 } ∧ { 〈 𝑋 , 𝑌 〉 } ⊆ ( 𝑉 × 𝑉 ) ) → { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉 × 𝑉 ) ) |
| 93 |
89 91 92
|
sylancr |
⊢ ( 𝜑 → { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉 × 𝑉 ) ) |
| 94 |
7
|
elfvexd |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 95 |
94 94
|
xpexd |
⊢ ( 𝜑 → ( 𝑉 × 𝑉 ) ∈ V ) |
| 96 |
|
snex |
⊢ { 1 } ∈ V |
| 97 |
|
elmapg |
⊢ ( ( ( 𝑉 × 𝑉 ) ∈ V ∧ { 1 } ∈ V ) → ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ↔ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉 × 𝑉 ) ) ) |
| 98 |
95 96 97
|
sylancl |
⊢ ( 𝜑 → ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ↔ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉 × 𝑉 ) ) ) |
| 99 |
93 98
|
mpbird |
⊢ ( 𝜑 → { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ) |
| 100 |
|
op1stg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑋 ) |
| 101 |
8 9 100
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑋 ) |
| 102 |
101
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 103 |
|
op2ndg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
| 104 |
8 9 103
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
| 105 |
104
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 106 |
102 105
|
jca |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 107 |
25
|
a1i |
⊢ ( 𝜑 → ℝ*𝑠 ∈ V ) |
| 108 |
|
snfi |
⊢ { 1 } ∈ Fin |
| 109 |
108
|
a1i |
⊢ ( 𝜑 → { 1 } ∈ Fin ) |
| 110 |
28
|
a1i |
⊢ ( 𝜑 → ( ℝ* ∖ { -∞ } ) ⊆ ℝ* ) |
| 111 |
|
xmetge0 |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 0 ≤ ( 𝑋 𝐸 𝑌 ) ) |
| 112 |
7 8 9 111
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ( 𝑋 𝐸 𝑌 ) ) |
| 113 |
|
ge0nemnf |
⊢ ( ( ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ∧ 0 ≤ ( 𝑋 𝐸 𝑌 ) ) → ( 𝑋 𝐸 𝑌 ) ≠ -∞ ) |
| 114 |
83 112 113
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ≠ -∞ ) |
| 115 |
|
eldifsn |
⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) ↔ ( ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ∧ ( 𝑋 𝐸 𝑌 ) ≠ -∞ ) ) |
| 116 |
83 114 115
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 117 |
|
fconst6g |
⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) → ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 118 |
116 117
|
syl |
⊢ ( 𝜑 → ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 119 |
|
fcoconst |
⊢ ( ( 𝐸 Fn ( 𝑉 × 𝑉 ) ∧ 〈 𝑋 , 𝑌 〉 ∈ ( 𝑉 × 𝑉 ) ) → ( 𝐸 ∘ ( { 1 } × { 〈 𝑋 , 𝑌 〉 } ) ) = ( { 1 } × { ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) } ) ) |
| 120 |
32 90 119
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ∘ ( { 1 } × { 〈 𝑋 , 𝑌 〉 } ) ) = ( { 1 } × { ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) } ) ) |
| 121 |
85 86
|
xpsn |
⊢ ( { 1 } × { 〈 𝑋 , 𝑌 〉 } ) = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } |
| 122 |
121
|
coeq2i |
⊢ ( 𝐸 ∘ ( { 1 } × { 〈 𝑋 , 𝑌 〉 } ) ) = ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) |
| 123 |
|
df-ov |
⊢ ( 𝑋 𝐸 𝑌 ) = ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) |
| 124 |
123
|
eqcomi |
⊢ ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) = ( 𝑋 𝐸 𝑌 ) |
| 125 |
124
|
sneqi |
⊢ { ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) } = { ( 𝑋 𝐸 𝑌 ) } |
| 126 |
125
|
xpeq2i |
⊢ ( { 1 } × { ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) } ) = ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) |
| 127 |
120 122 126
|
3eqtr3g |
⊢ ( 𝜑 → ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) = ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) ) |
| 128 |
127
|
feq1d |
⊢ ( 𝜑 → ( ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ↔ ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ) ) |
| 129 |
118 128
|
mpbird |
⊢ ( 𝜑 → ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 130 |
52 56
|
mp1i |
⊢ ( 𝜑 → 0 ∈ ( ℝ* ∖ { -∞ } ) ) |
| 131 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ( 0 +𝑒 𝑥 ) = 𝑥 ∧ ( 𝑥 +𝑒 0 ) = 𝑥 ) ) |
| 132 |
23 24 10 107 109 110 129 130 131
|
gsumress |
⊢ ( 𝜑 → ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) = ( 𝑊 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) |
| 133 |
|
fconstmpt |
⊢ ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) |
| 134 |
127 133
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) |
| 135 |
134
|
oveq2d |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) = ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) ) |
| 136 |
|
cmnmnd |
⊢ ( 𝑊 ∈ CMnd → 𝑊 ∈ Mnd ) |
| 137 |
66 136
|
mp1i |
⊢ ( 𝜑 → 𝑊 ∈ Mnd ) |
| 138 |
84
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 139 |
|
eqidd |
⊢ ( 𝑗 = 1 → ( 𝑋 𝐸 𝑌 ) = ( 𝑋 𝐸 𝑌 ) ) |
| 140 |
64 139
|
gsumsn |
⊢ ( ( 𝑊 ∈ Mnd ∧ 1 ∈ ℕ ∧ ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) ) → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) = ( 𝑋 𝐸 𝑌 ) ) |
| 141 |
137 138 116 140
|
syl3anc |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) = ( 𝑋 𝐸 𝑌 ) ) |
| 142 |
132 135 141
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) |
| 143 |
|
fveq1 |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 𝑔 ‘ 1 ) = ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ‘ 1 ) ) |
| 144 |
85 86
|
fvsn |
⊢ ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ‘ 1 ) = 〈 𝑋 , 𝑌 〉 |
| 145 |
143 144
|
eqtrdi |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 𝑔 ‘ 1 ) = 〈 𝑋 , 𝑌 〉 ) |
| 146 |
145
|
fveq2d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 1st ‘ ( 𝑔 ‘ 1 ) ) = ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 147 |
146
|
fveqeq2d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 148 |
145
|
fveq2d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 2nd ‘ ( 𝑔 ‘ 1 ) ) = ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 149 |
148
|
fveqeq2d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 150 |
147 149
|
anbi12d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 151 |
|
coeq2 |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 𝐸 ∘ 𝑔 ) = ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) |
| 152 |
151
|
oveq2d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) |
| 153 |
152
|
eqeq2d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) ) |
| 154 |
150 153
|
anbi12d |
⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) ) ) |
| 155 |
154
|
rspcev |
⊢ ( ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ∧ ( ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) ) → ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 156 |
99 106 142 155
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 157 |
|
ovex |
⊢ ( 𝑋 𝐸 𝑌 ) ∈ V |
| 158 |
|
eqid |
⊢ ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) = ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 159 |
158
|
elrnmpt |
⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ V → ( ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 160 |
157 159
|
ax-mp |
⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 161 |
11
|
rexeqi |
⊢ ( ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 162 |
|
fveq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ‘ 1 ) = ( 𝑔 ‘ 1 ) ) |
| 163 |
162
|
fveq2d |
⊢ ( ℎ = 𝑔 → ( 1st ‘ ( ℎ ‘ 1 ) ) = ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) |
| 164 |
163
|
fveqeq2d |
⊢ ( ℎ = 𝑔 → ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 165 |
|
fveq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ‘ 𝑛 ) = ( 𝑔 ‘ 𝑛 ) ) |
| 166 |
165
|
fveq2d |
⊢ ( ℎ = 𝑔 → ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 167 |
166
|
fveqeq2d |
⊢ ( ℎ = 𝑔 → ( ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 168 |
|
fveq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ‘ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) |
| 169 |
168
|
fveq2d |
⊢ ( ℎ = 𝑔 → ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
| 170 |
169
|
fveq2d |
⊢ ( ℎ = 𝑔 → ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 171 |
|
fveq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ‘ ( 𝑖 + 1 ) ) = ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) |
| 172 |
171
|
fveq2d |
⊢ ( ℎ = 𝑔 → ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) |
| 173 |
172
|
fveq2d |
⊢ ( ℎ = 𝑔 → ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 174 |
170 173
|
eqeq12d |
⊢ ( ℎ = 𝑔 → ( ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 175 |
174
|
ralbidv |
⊢ ( ℎ = 𝑔 → ( ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 176 |
164 167 175
|
3anbi123d |
⊢ ( ℎ = 𝑔 → ( ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 177 |
176
|
rexrab |
⊢ ( ∃ 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 178 |
161 177
|
bitri |
⊢ ( ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 179 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = ( 1 ... 1 ) ) |
| 180 |
|
1z |
⊢ 1 ∈ ℤ |
| 181 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
| 182 |
180 181
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
| 183 |
179 182
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = { 1 } ) |
| 184 |
183
|
oveq2d |
⊢ ( 𝑛 = 1 → ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) = ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ) |
| 185 |
|
df-3an |
⊢ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 186 |
|
ral0 |
⊢ ∀ 𝑖 ∈ ∅ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) |
| 187 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 − 1 ) = ( 1 − 1 ) ) |
| 188 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 189 |
187 188
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 𝑛 − 1 ) = 0 ) |
| 190 |
189
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 1 ... ( 𝑛 − 1 ) ) = ( 1 ... 0 ) ) |
| 191 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
| 192 |
190 191
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 1 ... ( 𝑛 − 1 ) ) = ∅ ) |
| 193 |
192
|
raleqdv |
⊢ ( 𝑛 = 1 → ( ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑖 ∈ ∅ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 194 |
186 193
|
mpbiri |
⊢ ( 𝑛 = 1 → ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 195 |
194
|
biantrud |
⊢ ( 𝑛 = 1 → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 196 |
|
2fveq3 |
⊢ ( 𝑛 = 1 → ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) = ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) |
| 197 |
196
|
fveqeq2d |
⊢ ( 𝑛 = 1 → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 198 |
197
|
anbi2d |
⊢ ( 𝑛 = 1 → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 199 |
195 198
|
bitr3d |
⊢ ( 𝑛 = 1 → ( ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 200 |
185 199
|
bitrid |
⊢ ( 𝑛 = 1 → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 201 |
200
|
anbi1d |
⊢ ( 𝑛 = 1 → ( ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) ) |
| 202 |
184 201
|
rexeqbidv |
⊢ ( 𝑛 = 1 → ( ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) ) |
| 203 |
178 202
|
bitrid |
⊢ ( 𝑛 = 1 → ( ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) ) |
| 204 |
160 203
|
bitrid |
⊢ ( 𝑛 = 1 → ( ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) ) |
| 205 |
204
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 206 |
84 156 205
|
sylancr |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 207 |
|
eliun |
⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑛 ∈ ℕ ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 208 |
206 207
|
sylibr |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 209 |
208 12
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ 𝑇 ) |
| 210 |
|
infxrlb |
⊢ ( ( 𝑇 ⊆ ℝ* ∧ ( 𝑋 𝐸 𝑌 ) ∈ 𝑇 ) → inf ( 𝑇 , ℝ* , < ) ≤ ( 𝑋 𝐸 𝑌 ) ) |
| 211 |
79 209 210
|
syl2anc |
⊢ ( 𝜑 → inf ( 𝑇 , ℝ* , < ) ≤ ( 𝑋 𝐸 𝑌 ) ) |
| 212 |
12
|
eleq2i |
⊢ ( 𝑝 ∈ 𝑇 ↔ 𝑝 ∈ ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 213 |
|
eliun |
⊢ ( 𝑝 ∈ ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 214 |
212 213
|
bitri |
⊢ ( 𝑝 ∈ 𝑇 ↔ ∃ 𝑛 ∈ ℕ 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 215 |
158
|
elrnmpt |
⊢ ( 𝑝 ∈ V → ( 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ 𝑆 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 216 |
215
|
elv |
⊢ ( 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ 𝑆 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 217 |
176 11
|
elrab2 |
⊢ ( 𝑔 ∈ 𝑆 ↔ ( 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∧ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 218 |
217
|
simprbi |
⊢ ( 𝑔 ∈ 𝑆 → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 219 |
218
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 220 |
219
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 221 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 222 |
|
f1of1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –1-1→ 𝐵 ) |
| 223 |
221 222
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐹 : 𝑉 –1-1→ 𝐵 ) |
| 224 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑛 ∈ ℕ ) |
| 225 |
|
elfz1end |
⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( 1 ... 𝑛 ) ) |
| 226 |
224 225
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑛 ∈ ( 1 ... 𝑛 ) ) |
| 227 |
49 226
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑔 ‘ 𝑛 ) ∈ ( 𝑉 × 𝑉 ) ) |
| 228 |
|
xp2nd |
⊢ ( ( 𝑔 ‘ 𝑛 ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ 𝑉 ) |
| 229 |
227 228
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ 𝑉 ) |
| 230 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑌 ∈ 𝑉 ) |
| 231 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ ( ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) = 𝑌 ) ) |
| 232 |
223 229 230 231
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) = 𝑌 ) ) |
| 233 |
220 232
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) = 𝑌 ) |
| 234 |
233
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝑋 𝐸 𝑌 ) ) |
| 235 |
|
eleq1 |
⊢ ( 𝑚 = 1 → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ 1 ∈ ( 1 ... 𝑛 ) ) ) |
| 236 |
|
2fveq3 |
⊢ ( 𝑚 = 1 → ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) |
| 237 |
236
|
oveq2d |
⊢ ( 𝑚 = 1 → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ) |
| 238 |
|
oveq2 |
⊢ ( 𝑚 = 1 → ( 1 ... 𝑚 ) = ( 1 ... 1 ) ) |
| 239 |
238 182
|
eqtrdi |
⊢ ( 𝑚 = 1 → ( 1 ... 𝑚 ) = { 1 } ) |
| 240 |
239
|
reseq2d |
⊢ ( 𝑚 = 1 → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) |
| 241 |
240
|
oveq2d |
⊢ ( 𝑚 = 1 → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) |
| 242 |
237 241
|
breq12d |
⊢ ( 𝑚 = 1 → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) ) |
| 243 |
235 242
|
imbi12d |
⊢ ( 𝑚 = 1 → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( 1 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) ) ) |
| 244 |
243
|
imbi2d |
⊢ ( 𝑚 = 1 → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) ) ) ) |
| 245 |
|
eleq1 |
⊢ ( 𝑚 = 𝑥 → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ 𝑥 ∈ ( 1 ... 𝑛 ) ) ) |
| 246 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑥 → ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
| 247 |
246
|
oveq2d |
⊢ ( 𝑚 = 𝑥 → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 248 |
|
oveq2 |
⊢ ( 𝑚 = 𝑥 → ( 1 ... 𝑚 ) = ( 1 ... 𝑥 ) ) |
| 249 |
248
|
reseq2d |
⊢ ( 𝑚 = 𝑥 → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) |
| 250 |
249
|
oveq2d |
⊢ ( 𝑚 = 𝑥 → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) |
| 251 |
247 250
|
breq12d |
⊢ ( 𝑚 = 𝑥 → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) |
| 252 |
245 251
|
imbi12d |
⊢ ( 𝑚 = 𝑥 → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) ) |
| 253 |
252
|
imbi2d |
⊢ ( 𝑚 = 𝑥 → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) ) ) |
| 254 |
|
eleq1 |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) |
| 255 |
|
2fveq3 |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) |
| 256 |
255
|
oveq2d |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 257 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 1 ... 𝑚 ) = ( 1 ... ( 𝑥 + 1 ) ) ) |
| 258 |
257
|
reseq2d |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) |
| 259 |
258
|
oveq2d |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) |
| 260 |
256 259
|
breq12d |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) |
| 261 |
254 260
|
imbi12d |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) ) |
| 262 |
261
|
imbi2d |
⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) ) ) |
| 263 |
|
eleq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ 𝑛 ∈ ( 1 ... 𝑛 ) ) ) |
| 264 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 265 |
264
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 266 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 1 ... 𝑚 ) = ( 1 ... 𝑛 ) ) |
| 267 |
266
|
reseq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) |
| 268 |
267
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) |
| 269 |
265 268
|
breq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) |
| 270 |
263 269
|
imbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) ) |
| 271 |
270
|
imbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) ) ) |
| 272 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 273 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑋 ∈ 𝑉 ) |
| 274 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 275 |
224 274
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 276 |
|
eluzfz1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑛 ) ) |
| 277 |
275 276
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 1 ∈ ( 1 ... 𝑛 ) ) |
| 278 |
49 277
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) ) |
| 279 |
|
xp2nd |
⊢ ( ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) |
| 280 |
278 279
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) |
| 281 |
|
xmetcl |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ∈ ℝ* ) |
| 282 |
272 273 280 281
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ∈ ℝ* ) |
| 283 |
282
|
xrleidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ) |
| 284 |
137
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑊 ∈ Mnd ) |
| 285 |
84
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 1 ∈ ℕ ) |
| 286 |
44 278
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 287 |
|
2fveq3 |
⊢ ( 𝑗 = 1 → ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) |
| 288 |
64 287
|
gsumsn |
⊢ ( ( 𝑊 ∈ Mnd ∧ 1 ∈ ℕ ∧ ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) |
| 289 |
284 285 286 288
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) |
| 290 |
272 30
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* ) |
| 291 |
|
fcompt |
⊢ ( ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* ∧ 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) → ( 𝐸 ∘ 𝑔 ) = ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 292 |
290 49 291
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ∘ 𝑔 ) = ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 293 |
292
|
reseq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) = ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ { 1 } ) ) |
| 294 |
277
|
snssd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → { 1 } ⊆ ( 1 ... 𝑛 ) ) |
| 295 |
294
|
resmptd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ { 1 } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 296 |
293 295
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 297 |
296
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) = ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) ) |
| 298 |
|
df-ov |
⊢ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐸 ‘ 〈 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) |
| 299 |
|
1st2nd2 |
⊢ ( ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) → ( 𝑔 ‘ 1 ) = 〈 ( 1st ‘ ( 𝑔 ‘ 1 ) ) , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) |
| 300 |
278 299
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑔 ‘ 1 ) = 〈 ( 1st ‘ ( 𝑔 ‘ 1 ) ) , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) |
| 301 |
219
|
simp1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 302 |
|
xp1st |
⊢ ( ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) → ( 1st ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) |
| 303 |
278 302
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1st ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) |
| 304 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ ( ( 1st ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 1st ‘ ( 𝑔 ‘ 1 ) ) = 𝑋 ) ) |
| 305 |
223 303 273 304
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 1st ‘ ( 𝑔 ‘ 1 ) ) = 𝑋 ) ) |
| 306 |
301 305
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1st ‘ ( 𝑔 ‘ 1 ) ) = 𝑋 ) |
| 307 |
306
|
opeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 〈 ( 1st ‘ ( 𝑔 ‘ 1 ) ) , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 = 〈 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) |
| 308 |
300 307
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 〈 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 = ( 𝑔 ‘ 1 ) ) |
| 309 |
308
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ‘ 〈 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) |
| 310 |
298 309
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) |
| 311 |
289 297 310
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ) |
| 312 |
283 311
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) |
| 313 |
312
|
a1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) ) |
| 314 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ℕ ) |
| 315 |
314 274
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) |
| 316 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) |
| 317 |
|
peano2fzr |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) → 𝑥 ∈ ( 1 ... 𝑛 ) ) |
| 318 |
315 316 317
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ( 1 ... 𝑛 ) ) |
| 319 |
318
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → 𝑥 ∈ ( 1 ... 𝑛 ) ) ) |
| 320 |
319
|
imim1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) ) |
| 321 |
272
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 322 |
273
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑋 ∈ 𝑉 ) |
| 323 |
49
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) |
| 324 |
323 318
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑉 × 𝑉 ) ) |
| 325 |
|
xp2nd |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ) |
| 326 |
324 325
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ) |
| 327 |
|
xmetcl |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ* ) |
| 328 |
321 322 326 327
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ* ) |
| 329 |
66
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑊 ∈ CMnd ) |
| 330 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... 𝑥 ) ∈ Fin ) |
| 331 |
51
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ∘ 𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 332 |
|
fzsuc |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑥 + 1 ) ) = ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ) |
| 333 |
315 332
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... ( 𝑥 + 1 ) ) = ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ) |
| 334 |
|
elfzuz3 |
⊢ ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑥 + 1 ) ) ) |
| 335 |
334
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑥 + 1 ) ) ) |
| 336 |
|
fzss2 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑥 + 1 ) ) → ( 1 ... ( 𝑥 + 1 ) ) ⊆ ( 1 ... 𝑛 ) ) |
| 337 |
335 336
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... ( 𝑥 + 1 ) ) ⊆ ( 1 ... 𝑛 ) ) |
| 338 |
333 337
|
eqsstrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ⊆ ( 1 ... 𝑛 ) ) |
| 339 |
338
|
unssad |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... 𝑥 ) ⊆ ( 1 ... 𝑛 ) ) |
| 340 |
331 339
|
fssresd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) : ( 1 ... 𝑥 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 341 |
68
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 0 ∈ V ) |
| 342 |
340 330 341
|
fdmfifsupp |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) finSupp 0 ) |
| 343 |
64 65 329 330 340 342
|
gsumcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 344 |
343
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ℝ* ) |
| 345 |
321 30
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* ) |
| 346 |
323 316
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) ) |
| 347 |
345 346
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ℝ* ) |
| 348 |
|
xleadd1a |
⊢ ( ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ* ∧ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ℝ* ∧ ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ℝ* ) ∧ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 349 |
348
|
ex |
⊢ ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ* ∧ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ℝ* ∧ ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ℝ* ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 350 |
328 344 347 349
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 351 |
|
xp2nd |
⊢ ( ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) |
| 352 |
346 351
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) |
| 353 |
|
xmettri |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 354 |
321 322 352 326 353
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 355 |
|
1st2nd2 |
⊢ ( ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) = 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
| 356 |
346 355
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) = 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
| 357 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑥 → ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
| 358 |
357
|
fveq2d |
⊢ ( 𝑖 = 𝑥 → ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 359 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝑥 → ( 𝑔 ‘ ( 𝑖 + 1 ) ) = ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) |
| 360 |
359
|
fveq2d |
⊢ ( 𝑖 = 𝑥 → ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) |
| 361 |
360
|
fveq2d |
⊢ ( 𝑖 = 𝑥 → ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 362 |
358 361
|
eqeq12d |
⊢ ( 𝑖 = 𝑥 → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 363 |
219
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 364 |
363
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 365 |
|
nnz |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ ) |
| 366 |
365
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ℤ ) |
| 367 |
|
eluzp1m1 |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑥 + 1 ) ) ) → ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) |
| 368 |
366 335 367
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) |
| 369 |
|
elfzuzb |
⊢ ( 𝑥 ∈ ( 1 ... ( 𝑛 − 1 ) ) ↔ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) ) |
| 370 |
315 368 369
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) |
| 371 |
362 364 370
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 372 |
223
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐹 : 𝑉 –1-1→ 𝐵 ) |
| 373 |
|
xp1st |
⊢ ( ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) → ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) |
| 374 |
346 373
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) |
| 375 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ∧ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ↔ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 376 |
372 326 374 375
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ↔ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 377 |
371 376
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) |
| 378 |
377
|
opeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 〈 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 = 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
| 379 |
356 378
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) = 〈 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
| 380 |
379
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) = ( 𝐸 ‘ 〈 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) ) |
| 381 |
|
df-ov |
⊢ ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) = ( 𝐸 ‘ 〈 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
| 382 |
380 381
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 383 |
382
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) = ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 384 |
354 383
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 385 |
|
xmetcl |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) |
| 386 |
321 322 352 385
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) |
| 387 |
328 347
|
xaddcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) |
| 388 |
344 347
|
xaddcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) |
| 389 |
|
xrletr |
⊢ ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ∧ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ∧ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) → ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∧ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 390 |
386 387 388 389
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∧ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 391 |
384 390
|
mpand |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 392 |
350 391
|
syld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 393 |
|
xrex |
⊢ ℝ* ∈ V |
| 394 |
393
|
difexi |
⊢ ( ℝ* ∖ { -∞ } ) ∈ V |
| 395 |
10 24
|
ressplusg |
⊢ ( ( ℝ* ∖ { -∞ } ) ∈ V → +𝑒 = ( +g ‘ 𝑊 ) ) |
| 396 |
394 395
|
ax-mp |
⊢ +𝑒 = ( +g ‘ 𝑊 ) |
| 397 |
44
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑥 ) ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 398 |
|
fzelp1 |
⊢ ( 𝑗 ∈ ( 1 ... 𝑥 ) → 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) |
| 399 |
49
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) |
| 400 |
337
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) → 𝑗 ∈ ( 1 ... 𝑛 ) ) |
| 401 |
399 400
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) → ( 𝑔 ‘ 𝑗 ) ∈ ( 𝑉 × 𝑉 ) ) |
| 402 |
398 401
|
sylan2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑥 ) ) → ( 𝑔 ‘ 𝑗 ) ∈ ( 𝑉 × 𝑉 ) ) |
| 403 |
397 402
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑥 ) ) → ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 404 |
|
fzp1disj |
⊢ ( ( 1 ... 𝑥 ) ∩ { ( 𝑥 + 1 ) } ) = ∅ |
| 405 |
404
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 1 ... 𝑥 ) ∩ { ( 𝑥 + 1 ) } ) = ∅ ) |
| 406 |
|
disjsn |
⊢ ( ( ( 1 ... 𝑥 ) ∩ { ( 𝑥 + 1 ) } ) = ∅ ↔ ¬ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑥 ) ) |
| 407 |
405 406
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ¬ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑥 ) ) |
| 408 |
44
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 409 |
408 346
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 410 |
|
2fveq3 |
⊢ ( 𝑗 = ( 𝑥 + 1 ) → ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) |
| 411 |
64 396 329 330 403 316 407 409 410
|
gsumunsn |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) = ( ( 𝑊 Σg ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 412 |
292
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ∘ 𝑔 ) = ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 413 |
412 333
|
reseq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) = ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ) ) |
| 414 |
338
|
resmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ) = ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 415 |
413 414
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) = ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 416 |
415
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) = ( 𝑊 Σg ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) ) |
| 417 |
412
|
reseq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) = ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ ( 1 ... 𝑥 ) ) ) |
| 418 |
339
|
resmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ ( 1 ... 𝑥 ) ) = ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 419 |
417 418
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) = ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 420 |
419
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) = ( 𝑊 Σg ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) ) |
| 421 |
420
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) = ( ( 𝑊 Σg ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 422 |
411 416 421
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) = ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 423 |
422
|
breq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 424 |
392 423
|
sylibrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) |
| 425 |
320 424
|
animpimp2impd |
⊢ ( 𝑥 ∈ ℕ → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) → ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) ) ) |
| 426 |
244 253 262 271 313 425
|
nnind |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) ) |
| 427 |
224 426
|
mpcom |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) |
| 428 |
226 427
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) |
| 429 |
234 428
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 𝑌 ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) |
| 430 |
|
ffn |
⊢ ( ( 𝐸 ∘ 𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) → ( 𝐸 ∘ 𝑔 ) Fn ( 1 ... 𝑛 ) ) |
| 431 |
|
fnresdm |
⊢ ( ( 𝐸 ∘ 𝑔 ) Fn ( 1 ... 𝑛 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) = ( 𝐸 ∘ 𝑔 ) ) |
| 432 |
51 430 431
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) = ( 𝐸 ∘ 𝑔 ) ) |
| 433 |
432
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) = ( 𝑊 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 434 |
62 433
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) |
| 435 |
429 434
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 𝑌 ) ≤ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 436 |
|
breq2 |
⊢ ( 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) → ( ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ↔ ( 𝑋 𝐸 𝑌 ) ≤ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 437 |
435 436
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
| 438 |
437
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑔 ∈ 𝑆 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
| 439 |
216 438
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
| 440 |
439
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
| 441 |
214 440
|
biimtrid |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝑇 → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
| 442 |
441
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑇 ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) |
| 443 |
|
infxrgelb |
⊢ ( ( 𝑇 ⊆ ℝ* ∧ ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ) → ( ( 𝑋 𝐸 𝑌 ) ≤ inf ( 𝑇 , ℝ* , < ) ↔ ∀ 𝑝 ∈ 𝑇 ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
| 444 |
79 83 443
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 𝐸 𝑌 ) ≤ inf ( 𝑇 , ℝ* , < ) ↔ ∀ 𝑝 ∈ 𝑇 ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
| 445 |
442 444
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ≤ inf ( 𝑇 , ℝ* , < ) ) |
| 446 |
81 83 211 445
|
xrletrid |
⊢ ( 𝜑 → inf ( 𝑇 , ℝ* , < ) = ( 𝑋 𝐸 𝑌 ) ) |
| 447 |
22 446
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) ) = ( 𝑋 𝐸 𝑌 ) ) |