Metamath Proof Explorer


Theorem axlowdimlem16

Description: Lemma for axlowdim . Set up a summation that will help establish distance. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypotheses axlowdimlem16.1 P=311N3×0
axlowdimlem16.2 Q=I+111NI+1×0
Assertion axlowdimlem16 N3I2N1i=3NPi2=i=3NQi2

Proof

Step Hyp Ref Expression
1 axlowdimlem16.1 P=311N3×0
2 axlowdimlem16.2 Q=I+111NI+1×0
3 elfz1eq I22I=2
4 3z 3
5 ax-1cn 1
6 5 sqcli 12
7 fveq2 i=3Pi=P3
8 1 axlowdimlem8 P3=1
9 7 8 eqtrdi i=3Pi=1
10 9 oveq1d i=3Pi2=12
11 sqneg 112=12
12 5 11 ax-mp 12=12
13 10 12 eqtrdi i=3Pi2=12
14 13 fsum1 312i=33Pi2=12
15 4 6 14 mp2an i=33Pi2=12
16 df-3 3=2+1
17 oveq1 I=2I+1=2+1
18 16 17 eqtr4id I=23=I+1
19 18 18 oveq12d I=233=I+1I+1
20 19 sumeq1d I=2i=33Qi2=i=I+1I+1Qi2
21 17 16 eqtr4di I=2I+1=3
22 21 4 eqeltrdi I=2I+1
23 fveq2 i=I+1Qi=QI+1
24 2 axlowdimlem11 QI+1=1
25 23 24 eqtrdi i=I+1Qi=1
26 25 oveq1d i=I+1Qi2=12
27 26 fsum1 I+112i=I+1I+1Qi2=12
28 22 6 27 sylancl I=2i=I+1I+1Qi2=12
29 20 28 eqtrd I=2i=33Qi2=12
30 15 29 eqtr4id I=2i=33Pi2=i=33Qi2
31 3 30 syl I22i=33Pi2=i=33Qi2
32 31 a1i N=3I22i=33Pi2=i=33Qi2
33 oveq1 N=3N1=31
34 3m1e2 31=2
35 33 34 eqtrdi N=3N1=2
36 35 oveq2d N=32N1=22
37 36 eleq2d N=3I2N1I22
38 oveq2 N=33N=33
39 38 sumeq1d N=3i=3NPi2=i=33Pi2
40 38 sumeq1d N=3i=3NQi2=i=33Qi2
41 39 40 eqeq12d N=3i=3NPi2=i=3NQi2i=33Pi2=i=33Qi2
42 32 37 41 3imtr4d N=3I2N1i=3NPi2=i=3NQi2
43 42 adantld N=3N3I2N1i=3NPi2=i=3NQi2
44 simprl N3N3I2N1N3
45 eluzle N33N
46 45 adantl N3N33N
47 simpl N3N3N3
48 3re 3
49 eluzelre N3N
50 49 adantl N3N3N
51 ltlen 3N3<N3NN3
52 48 50 51 sylancr N3N33<N3NN3
53 46 47 52 mpbir2and N3N33<N
54 53 adantrr N3N3I2N13<N
55 simprr N3N3I2N1I2N1
56 fzssp1 2N12N-1+1
57 simp3 N33<NI2N1I2N1
58 56 57 sselid N33<NI2N1I2N-1+1
59 eluzelz N3N
60 59 3ad2ant1 N33<NI2N1N
61 60 zcnd N33<NI2N1N
62 npcan N1N-1+1=N
63 61 5 62 sylancl N33<NI2N1N-1+1=N
64 63 oveq2d N33<NI2N12N-1+1=2N
65 58 64 eleqtrd N33<NI2N1I2N
66 elfzelz I2NI
67 65 66 syl N33<NI2N1I
68 67 zred N33<NI2N1I
69 68 ltp1d N33<NI2N1I<I+1
70 fzdisj I<I+12II+1N=
71 69 70 syl N33<NI2N12II+1N=
72 fzsplit I2N2N=2II+1N
73 65 72 syl N33<NI2N12N=2II+1N
74 fzfid N33<NI2N12NFin
75 eluzge3nn N3N
76 2eluzge1 21
77 fzss1 212N11N1
78 76 77 ax-mp 2N11N1
79 78 sseli I2N1I1N1
80 2 axlowdimlem10 NI1N1Q𝔼N
81 75 79 80 syl2an N3I2N1Q𝔼N
82 fzss1 212N1N
83 76 82 ax-mp 2N1N
84 83 sseli i2Ni1N
85 fveecn Q𝔼Ni1NQi
86 81 84 85 syl2an N3I2N1i2NQi
87 86 sqcld N3I2N1i2NQi2
88 87 3adantl2 N33<NI2N1i2NQi2
89 71 73 74 88 fsumsplit N33<NI2N1i=2NQi2=i=2IQi2+i=I+1NQi2
90 elfzelz I2N1I
91 90 zred I2N1I
92 91 3ad2ant3 N33<NI2N1I
93 49 3ad2ant1 N33<NI2N1N
94 peano2rem NN1
95 93 94 syl N33<NI2N1N1
96 elfzle2 I2N1IN1
97 96 3ad2ant3 N33<NI2N1IN1
98 93 ltm1d N33<NI2N1N1<N
99 92 95 93 97 98 lelttrd N33<NI2N1I<N
100 92 93 99 ltled N33<NI2N1IN
101 90 3ad2ant3 N33<NI2N1I
102 eluz INNIIN
103 101 60 102 syl2anc N33<NI2N1NIIN
104 100 103 mpbird N33<NI2N1NI
105 fzss2 NI1I1N
106 104 105 syl N33<NI2N11I1N
107 106 sseld N33<NI2N1i1Ii1N
108 fzss1 212I1I
109 76 108 ax-mp 2I1I
110 109 sseli i2Ii1I
111 107 110 impel N33<NI2N1i2Ii1N
112 elfzelz i2Ii
113 112 zred i2Ii
114 113 adantl N33<NI2N1i2Ii
115 92 adantr N33<NI2N1i2II
116 peano2re II+1
117 91 116 syl I2N1I+1
118 117 3ad2ant3 N33<NI2N1I+1
119 118 adantr N33<NI2N1i2II+1
120 elfzle2 i2IiI
121 120 adantl N33<NI2N1i2IiI
122 115 ltp1d N33<NI2N1i2II<I+1
123 114 115 119 121 122 lelttrd N33<NI2N1i2Ii<I+1
124 114 123 ltned N33<NI2N1i2IiI+1
125 2 axlowdimlem12 i1NiI+1Qi=0
126 111 124 125 syl2anc N33<NI2N1i2IQi=0
127 126 sq0id N33<NI2N1i2IQi2=0
128 127 sumeq2dv N33<NI2N1i=2IQi2=i=2I0
129 fzfi 2IFin
130 129 olci 2I12IFin
131 sumz 2I12IFini=2I0=0
132 130 131 ax-mp i=2I0=0
133 128 132 eqtrdi N33<NI2N1i=2IQi2=0
134 101 peano2zd N33<NI2N1I+1
135 sq1 12=1
136 26 135 eqtrdi i=I+1Qi2=1
137 136 fsum1 I+11i=I+1I+1Qi2=1
138 134 5 137 sylancl N33<NI2N1i=I+1I+1Qi2=1
139 oveq2 I+1=NI+1I+1=I+1N
140 139 sumeq1d I+1=Ni=I+1I+1Qi2=i=I+1NQi2
141 140 eqeq1d I+1=Ni=I+1I+1Qi2=1i=I+1NQi2=1
142 138 141 imbitrid I+1=NN33<NI2N1i=I+1NQi2=1
143 101 adantl I+1NN33<NI2N1I
144 143 zred I+1NN33<NI2N1I
145 60 adantl I+1NN33<NI2N1N
146 145 zred I+1NN33<NI2N1N
147 146 94 syl I+1NN33<NI2N1N1
148 97 adantl I+1NN33<NI2N1IN1
149 146 ltm1d I+1NN33<NI2N1N1<N
150 144 147 146 148 149 lelttrd I+1NN33<NI2N1I<N
151 1red I2N11
152 2re 2
153 152 a1i I2N12
154 1le2 12
155 154 a1i I2N112
156 elfzle1 I2N12I
157 151 153 91 155 156 letrd I2N11I
158 157 3ad2ant3 N33<NI2N11I
159 158 adantl I+1NN33<NI2N11I
160 elnnz1 II1I
161 143 159 160 sylanbrc I+1NN33<NI2N1I
162 75 3ad2ant1 N33<NI2N1N
163 162 adantl I+1NN33<NI2N1N
164 nnltp1le INI<NI+1N
165 161 163 164 syl2anc I+1NN33<NI2N1I<NI+1N
166 150 165 mpbid I+1NN33<NI2N1I+1N
167 eluz I+1NNI+1I+1N
168 134 145 167 syl2an2 I+1NN33<NI2N1NI+1I+1N
169 166 168 mpbird I+1NN33<NI2N1NI+1
170 simpr1 I+1NN33<NI2N1N3
171 simpr3 I+1NN33<NI2N1I2N1
172 170 171 81 syl2anc I+1NN33<NI2N1Q𝔼N
173 172 adantr I+1NN33<NI2N1iI+1NQ𝔼N
174 161 peano2nnd I+1NN33<NI2N1I+1
175 nnuz =1
176 174 175 eleqtrdi I+1NN33<NI2N1I+11
177 fzss1 I+11I+1N1N
178 176 177 syl I+1NN33<NI2N1I+1N1N
179 178 sselda I+1NN33<NI2N1iI+1Ni1N
180 173 179 85 syl2anc I+1NN33<NI2N1iI+1NQi
181 180 sqcld I+1NN33<NI2N1iI+1NQi2
182 23 oveq1d i=I+1Qi2=QI+12
183 24 oveq1i QI+12=12
184 183 135 eqtri QI+12=1
185 182 184 eqtrdi i=I+1Qi2=1
186 169 181 185 fsum1p I+1NN33<NI2N1i=I+1NQi2=1+i=I+1+1NQi2
187 174 peano2nnd I+1NN33<NI2N1I+1+1
188 187 175 eleqtrdi I+1NN33<NI2N1I+1+11
189 fzss1 I+1+11I+1+1N1N
190 188 189 syl I+1NN33<NI2N1I+1+1N1N
191 190 sselda I+1NN33<NI2N1iI+1+1Ni1N
192 144 116 syl I+1NN33<NI2N1I+1
193 192 adantr I+1NN33<NI2N1iI+1+1NI+1
194 peano2re I+1I+1+1
195 193 194 syl I+1NN33<NI2N1iI+1+1NI+1+1
196 elfzelz iI+1+1Ni
197 196 zred iI+1+1Ni
198 197 adantl I+1NN33<NI2N1iI+1+1Ni
199 193 ltp1d I+1NN33<NI2N1iI+1+1NI+1<I+1+1
200 elfzle1 iI+1+1NI+1+1i
201 200 adantl I+1NN33<NI2N1iI+1+1NI+1+1i
202 193 195 198 199 201 ltletrd I+1NN33<NI2N1iI+1+1NI+1<i
203 193 202 gtned I+1NN33<NI2N1iI+1+1NiI+1
204 191 203 125 syl2anc I+1NN33<NI2N1iI+1+1NQi=0
205 204 sq0id I+1NN33<NI2N1iI+1+1NQi2=0
206 205 sumeq2dv I+1NN33<NI2N1i=I+1+1NQi2=i=I+1+1N0
207 fzfi I+1+1NFin
208 207 olci I+1+1N1I+1+1NFin
209 sumz I+1+1N1I+1+1NFini=I+1+1N0=0
210 208 209 ax-mp i=I+1+1N0=0
211 206 210 eqtrdi I+1NN33<NI2N1i=I+1+1NQi2=0
212 211 oveq2d I+1NN33<NI2N11+i=I+1+1NQi2=1+0
213 1p0e1 1+0=1
214 212 213 eqtrdi I+1NN33<NI2N11+i=I+1+1NQi2=1
215 186 214 eqtrd I+1NN33<NI2N1i=I+1NQi2=1
216 215 ex I+1NN33<NI2N1i=I+1NQi2=1
217 142 216 pm2.61ine N33<NI2N1i=I+1NQi2=1
218 133 217 oveq12d N33<NI2N1i=2IQi2+i=I+1NQi2=0+1
219 0p1e1 0+1=1
220 218 219 eqtrdi N33<NI2N1i=2IQi2+i=I+1NQi2=1
221 89 220 eqtrd N33<NI2N1i=2NQi2=1
222 simp1 N33<NI2N1N3
223 2lt3 2<3
224 152 48 223 ltleii 23
225 2z 2
226 225 eluz1i 32323
227 4 224 226 mpbir2an 32
228 uztrn N332N2
229 222 227 228 sylancl N33<NI2N1N2
230 fveq2 i=2Qi=Q2
231 230 oveq1d i=2Qi2=Q22
232 229 88 231 fsum1p N33<NI2N1i=2NQi2=Q22+i=2+1NQi2
233 59 adantr N33<NN
234 233 zred N33<NN
235 lttr 23N2<33<N2<N
236 152 48 235 mp3an12 N2<33<N2<N
237 223 236 mpani N3<N2<N
238 49 237 syl N33<N2<N
239 238 imp N33<N2<N
240 ltle 2N2<N2N
241 152 240 mpan N2<N2N
242 234 239 241 sylc N33<N2N
243 242 154 jctil N33<N122N
244 1z 1
245 elfz 21N21N122N
246 225 244 233 245 mp3an12i N33<N21N122N
247 243 246 mpbird N33<N21N
248 247 3adant3 N33<NI2N121N
249 91 ltp1d I2N1I<I+1
250 153 91 117 156 249 lelttrd I2N12<I+1
251 250 3ad2ant3 N33<NI2N12<I+1
252 ltne 22<I+1I+12
253 152 251 252 sylancr N33<NI2N1I+12
254 253 necomd N33<NI2N12I+1
255 2 axlowdimlem12 21N2I+1Q2=0
256 248 254 255 syl2anc N33<NI2N1Q2=0
257 256 sq0id N33<NI2N1Q22=0
258 257 oveq1d N33<NI2N1Q22+i=2+1NQi2=0+i=2+1NQi2
259 16 oveq1i 3N=2+1N
260 259 sumeq1i i=3NQi2=i=2+1NQi2
261 260 oveq2i 0+i=3NQi2=0+i=2+1NQi2
262 258 261 eqtr4di N33<NI2N1Q22+i=2+1NQi2=0+i=3NQi2
263 fzfid N33<NI2N13NFin
264 3nn 3
265 264 175 eleqtri 31
266 fzss1 313N1N
267 265 266 ax-mp 3N1N
268 267 sseli i3Ni1N
269 81 268 85 syl2an N3I2N1i3NQi
270 269 sqcld N3I2N1i3NQi2
271 270 3adantl2 N33<NI2N1i3NQi2
272 263 271 fsumcl N33<NI2N1i=3NQi2
273 272 addlidd N33<NI2N10+i=3NQi2=i=3NQi2
274 232 262 273 3eqtrrd N33<NI2N1i=3NQi2=i=2NQi2
275 simpl N33<NN3
276 1 axlowdimlem7 N3P𝔼N
277 276 ad2antrr N33<Ni3NP𝔼N
278 268 adantl N33<Ni3Ni1N
279 fveecn P𝔼Ni1NPi
280 277 278 279 syl2anc N33<Ni3NPi
281 280 sqcld N33<Ni3NPi2
282 neg1sqe1 12=1
283 10 282 eqtrdi i=3Pi2=1
284 275 281 283 fsum1p N33<Ni=3NPi2=1+i=3+1NPi2
285 1re 1
286 zaddcl 313+1
287 4 244 286 mp2an 3+1
288 287 zrei 3+1
289 1lt3 1<3
290 48 ltp1i 3<3+1
291 285 48 288 lttri 1<33<3+11<3+1
292 289 290 291 mp2an 1<3+1
293 285 288 292 ltleii 13+1
294 eluz 13+13+1113+1
295 244 287 294 mp2an 3+1113+1
296 293 295 mpbir 3+11
297 fzss1 3+113+1N1N
298 296 297 ax-mp 3+1N1N
299 298 sseli i3+1Ni1N
300 48 288 ltnlei 3<3+1¬3+13
301 290 300 mpbi ¬3+13
302 301 intnanr ¬3+133N
303 elfz 33+1N33+1N3+133N
304 4 287 233 303 mp3an12i N33<N33+1N3+133N
305 302 304 mtbiri N33<N¬33+1N
306 eleq1 i=3i3+1N33+1N
307 306 notbid i=3¬i3+1N¬33+1N
308 305 307 syl5ibrcom N33<Ni=3¬i3+1N
309 308 necon2ad N33<Ni3+1Ni3
310 309 imp N33<Ni3+1Ni3
311 1 axlowdimlem9 i1Ni3Pi=0
312 299 310 311 syl2an2 N33<Ni3+1NPi=0
313 312 sq0id N33<Ni3+1NPi2=0
314 313 sumeq2dv N33<Ni=3+1NPi2=i=3+1N0
315 fzfi 3+1NFin
316 315 olci 3+1N13+1NFin
317 sumz 3+1N13+1NFini=3+1N0=0
318 316 317 ax-mp i=3+1N0=0
319 314 318 eqtrdi N33<Ni=3+1NPi2=0
320 319 oveq2d N33<N1+i=3+1NPi2=1+0
321 284 320 eqtrd N33<Ni=3NPi2=1+0
322 321 213 eqtrdi N33<Ni=3NPi2=1
323 322 3adant3 N33<NI2N1i=3NPi2=1
324 221 274 323 3eqtr4rd N33<NI2N1i=3NPi2=i=3NQi2
325 44 54 55 324 syl3anc N3N3I2N1i=3NPi2=i=3NQi2
326 325 ex N3N3I2N1i=3NPi2=i=3NQi2
327 43 326 pm2.61ine N3I2N1i=3NPi2=i=3NQi2