Metamath Proof Explorer


Theorem dchrptlem2

Description: Lemma for dchrpt . (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrpt.g G=DChrN
dchrpt.z Z=/N
dchrpt.d D=BaseG
dchrpt.b B=BaseZ
dchrpt.1 1˙=1Z
dchrpt.n φN
dchrpt.n1 φA1˙
dchrpt.u U=UnitZ
dchrpt.h H=mulGrpZ𝑠U
dchrpt.m ·˙=H
dchrpt.s S=kdomWrannn·˙Wk
dchrpt.au φAU
dchrpt.w φWWordU
dchrpt.2 φHdomDProdS
dchrpt.3 φHDProdS=U
dchrpt.p P=HdProjS
dchrpt.o O=odH
dchrpt.t T=12OWI
dchrpt.i φIdomW
dchrpt.4 φPIA1˙
dchrpt.5 X=uUιh|mPIu=m·˙WIh=Tm
Assertion dchrptlem2 φxDxA1

Proof

Step Hyp Ref Expression
1 dchrpt.g G=DChrN
2 dchrpt.z Z=/N
3 dchrpt.d D=BaseG
4 dchrpt.b B=BaseZ
5 dchrpt.1 1˙=1Z
6 dchrpt.n φN
7 dchrpt.n1 φA1˙
8 dchrpt.u U=UnitZ
9 dchrpt.h H=mulGrpZ𝑠U
10 dchrpt.m ·˙=H
11 dchrpt.s S=kdomWrannn·˙Wk
12 dchrpt.au φAU
13 dchrpt.w φWWordU
14 dchrpt.2 φHdomDProdS
15 dchrpt.3 φHDProdS=U
16 dchrpt.p P=HdProjS
17 dchrpt.o O=odH
18 dchrpt.t T=12OWI
19 dchrpt.i φIdomW
20 dchrpt.4 φPIA1˙
21 dchrpt.5 X=uUιh|mPIu=m·˙WIh=Tm
22 fveq2 v=xXv=Xx
23 fveq2 v=yXv=Xy
24 fveq2 v=xZyXv=XxZy
25 fveq2 v=1ZXv=X1Z
26 zex V
27 26 mptex nn·˙WkV
28 27 rnex rannn·˙WkV
29 28 11 dmmpti domS=domW
30 29 a1i φdomS=domW
31 14 30 16 19 dpjf φPI:HDProdSSI
32 15 feq2d φPI:HDProdSSIPI:USI
33 31 32 mpbid φPI:USI
34 33 ffvelcdmda φvUPIvSI
35 19 adantr φvUIdomW
36 oveq1 n=an·˙Wk=a·˙Wk
37 36 cbvmptv nn·˙Wk=aa·˙Wk
38 fveq2 k=IWk=WI
39 38 oveq2d k=Ia·˙Wk=a·˙WI
40 39 mpteq2dv k=Iaa·˙Wk=aa·˙WI
41 37 40 eqtrid k=Inn·˙Wk=aa·˙WI
42 41 rneqd k=Irannn·˙Wk=ranaa·˙WI
43 42 11 28 fvmpt3i IdomWSI=ranaa·˙WI
44 35 43 syl φvUSI=ranaa·˙WI
45 34 44 eleqtrd φvUPIvranaa·˙WI
46 eqid aa·˙WI=aa·˙WI
47 ovex a·˙WIV
48 46 47 elrnmpti PIvranaa·˙WIaPIv=a·˙WI
49 45 48 sylib φvUaPIv=a·˙WI
50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 dchrptlem1 φvUaPIv=a·˙WIXv=Ta
51 neg1cn 1
52 2re 2
53 6 nnnn0d φN0
54 2 zncrng N0ZCRing
55 crngring ZCRingZRing
56 53 54 55 3syl φZRing
57 8 9 unitgrp ZRingHGrp
58 56 57 syl φHGrp
59 2 4 znfi NBFin
60 6 59 syl φBFin
61 4 8 unitss UB
62 ssfi BFinUBUFin
63 60 61 62 sylancl φUFin
64 wrdf WWordUW:0..^WU
65 13 64 syl φW:0..^WU
66 65 fdmd φdomW=0..^W
67 19 66 eleqtrd φI0..^W
68 65 67 ffvelcdmd φWIU
69 8 9 unitgrpbas U=BaseH
70 69 17 odcl2 HGrpUFinWIUOWI
71 58 63 68 70 syl3anc φOWI
72 nndivre 2OWI2OWI
73 52 71 72 sylancr φ2OWI
74 73 recnd φ2OWI
75 cxpcl 12OWI12OWI
76 51 74 75 sylancr φ12OWI
77 18 76 eqeltrid φT
78 77 ad2antrr φvUaPIv=a·˙WIT
79 51 a1i φ1
80 neg1ne0 10
81 80 a1i φ10
82 79 81 74 cxpne0d φ12OWI0
83 18 neeq1i T012OWI0
84 82 83 sylibr φT0
85 84 ad2antrr φvUaPIv=a·˙WIT0
86 simprl φvUaPIv=a·˙WIa
87 78 85 86 expclzd φvUaPIv=a·˙WITa
88 50 87 eqeltrd φvUaPIv=a·˙WIXv
89 49 88 rexlimddv φvUXv
90 fveqeq2 v=xPIv=a·˙WIPIx=a·˙WI
91 90 rexbidv v=xaPIv=a·˙WIaPIx=a·˙WI
92 49 ralrimiva φvUaPIv=a·˙WI
93 92 adantr φxUyUvUaPIv=a·˙WI
94 simprl φxUyUxU
95 91 93 94 rspcdva φxUyUaPIx=a·˙WI
96 fveqeq2 v=yPIv=a·˙WIPIy=a·˙WI
97 96 rexbidv v=yaPIv=a·˙WIaPIy=a·˙WI
98 oveq1 a=ba·˙WI=b·˙WI
99 98 eqeq2d a=bPIy=a·˙WIPIy=b·˙WI
100 99 cbvrexvw aPIy=a·˙WIbPIy=b·˙WI
101 97 100 bitrdi v=yaPIv=a·˙WIbPIy=b·˙WI
102 simprr φxUyUyU
103 101 93 102 rspcdva φxUyUbPIy=b·˙WI
104 reeanv abPIx=a·˙WIPIy=b·˙WIaPIx=a·˙WIbPIy=b·˙WI
105 77 ad2antrr φxUyUabPIx=a·˙WIPIy=b·˙WIT
106 84 ad2antrr φxUyUabPIx=a·˙WIPIy=b·˙WIT0
107 simprll φxUyUabPIx=a·˙WIPIy=b·˙WIa
108 simprlr φxUyUabPIx=a·˙WIPIy=b·˙WIb
109 expaddz TT0abTa+b=TaTb
110 105 106 107 108 109 syl22anc φxUyUabPIx=a·˙WIPIy=b·˙WITa+b=TaTb
111 simpll φxUyUabPIx=a·˙WIPIy=b·˙WIφ
112 56 ad2antrr φxUyUabPIx=a·˙WIPIy=b·˙WIZRing
113 94 adantr φxUyUabPIx=a·˙WIPIy=b·˙WIxU
114 102 adantr φxUyUabPIx=a·˙WIPIy=b·˙WIyU
115 eqid Z=Z
116 8 115 unitmulcl ZRingxUyUxZyU
117 112 113 114 116 syl3anc φxUyUabPIx=a·˙WIPIy=b·˙WIxZyU
118 107 108 zaddcld φxUyUabPIx=a·˙WIPIy=b·˙WIa+b
119 simprrl φxUyUabPIx=a·˙WIPIy=b·˙WIPIx=a·˙WI
120 simprrr φxUyUabPIx=a·˙WIPIy=b·˙WIPIy=b·˙WI
121 119 120 oveq12d φxUyUabPIx=a·˙WIPIy=b·˙WIPIxZPIy=a·˙WIZb·˙WI
122 14 30 16 19 dpjghm φPIH𝑠HDProdSGrpHomH
123 15 oveq2d φH𝑠HDProdS=H𝑠U
124 9 ovexi HV
125 69 ressid HVH𝑠U=H
126 124 125 ax-mp H𝑠U=H
127 123 126 eqtrdi φH𝑠HDProdS=H
128 127 oveq1d φH𝑠HDProdSGrpHomH=HGrpHomH
129 122 128 eleqtrd φPIHGrpHomH
130 129 ad2antrr φxUyUabPIx=a·˙WIPIy=b·˙WIPIHGrpHomH
131 8 fvexi UV
132 eqid mulGrpZ=mulGrpZ
133 132 115 mgpplusg Z=+mulGrpZ
134 9 133 ressplusg UVZ=+H
135 131 134 ax-mp Z=+H
136 69 135 135 ghmlin PIHGrpHomHxUyUPIxZy=PIxZPIy
137 130 113 114 136 syl3anc φxUyUabPIx=a·˙WIPIy=b·˙WIPIxZy=PIxZPIy
138 58 ad2antrr φxUyUabPIx=a·˙WIPIy=b·˙WIHGrp
139 68 ad2antrr φxUyUabPIx=a·˙WIPIy=b·˙WIWIU
140 69 10 135 mulgdir HGrpabWIUa+b·˙WI=a·˙WIZb·˙WI
141 138 107 108 139 140 syl13anc φxUyUabPIx=a·˙WIPIy=b·˙WIa+b·˙WI=a·˙WIZb·˙WI
142 121 137 141 3eqtr4d φxUyUabPIx=a·˙WIPIy=b·˙WIPIxZy=a+b·˙WI
143 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 dchrptlem1 φxZyUa+bPIxZy=a+b·˙WIXxZy=Ta+b
144 111 117 118 142 143 syl22anc φxUyUabPIx=a·˙WIPIy=b·˙WIXxZy=Ta+b
145 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 dchrptlem1 φxUaPIx=a·˙WIXx=Ta
146 111 113 107 119 145 syl22anc φxUyUabPIx=a·˙WIPIy=b·˙WIXx=Ta
147 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 dchrptlem1 φyUbPIy=b·˙WIXy=Tb
148 111 114 108 120 147 syl22anc φxUyUabPIx=a·˙WIPIy=b·˙WIXy=Tb
149 146 148 oveq12d φxUyUabPIx=a·˙WIPIy=b·˙WIXxXy=TaTb
150 110 144 149 3eqtr4d φxUyUabPIx=a·˙WIPIy=b·˙WIXxZy=XxXy
151 150 expr φxUyUabPIx=a·˙WIPIy=b·˙WIXxZy=XxXy
152 151 rexlimdvva φxUyUabPIx=a·˙WIPIy=b·˙WIXxZy=XxXy
153 104 152 biimtrrid φxUyUaPIx=a·˙WIbPIy=b·˙WIXxZy=XxXy
154 95 103 153 mp2and φxUyUXxZy=XxXy
155 id φφ
156 eqid 1Z=1Z
157 8 156 1unit ZRing1ZU
158 56 157 syl φ1ZU
159 0zd φ0
160 eqid 0H=0H
161 160 160 ghmid PIHGrpHomHPI0H=0H
162 129 161 syl φPI0H=0H
163 8 9 156 unitgrpid ZRing1Z=0H
164 56 163 syl φ1Z=0H
165 164 fveq2d φPI1Z=PI0H
166 69 160 10 mulg0 WIU0·˙WI=0H
167 68 166 syl φ0·˙WI=0H
168 162 165 167 3eqtr4d φPI1Z=0·˙WI
169 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 dchrptlem1 φ1ZU0PI1Z=0·˙WIX1Z=T0
170 155 158 159 168 169 syl22anc φX1Z=T0
171 77 exp0d φT0=1
172 170 171 eqtrd φX1Z=1
173 1 2 4 8 6 3 22 23 24 25 89 154 172 dchrelbasd φvBifvUXv0D
174 61 12 sselid φAB
175 eleq1 v=AvUAU
176 fveq2 v=AXv=XA
177 175 176 ifbieq1d v=AifvUXv0=ifAUXA0
178 eqid vBifvUXv0=vBifvUXv0
179 fvex XvV
180 c0ex 0V
181 179 180 ifex ifvUXv0V
182 177 178 181 fvmpt3i ABvBifvUXv0A=ifAUXA0
183 174 182 syl φvBifvUXv0A=ifAUXA0
184 12 iftrued φifAUXA0=XA
185 183 184 eqtrd φvBifvUXv0A=XA
186 fveqeq2 v=APIv=a·˙WIPIA=a·˙WI
187 186 rexbidv v=AaPIv=a·˙WIaPIA=a·˙WI
188 187 92 12 rspcdva φaPIA=a·˙WI
189 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 dchrptlem1 φAUaPIA=a·˙WIXA=Ta
190 18 oveq1i Ta=-12OWIa
191 189 190 eqtrdi φAUaPIA=a·˙WIXA=-12OWIa
192 20 ad2antrr φAUaPIA=a·˙WIPIA1˙
193 58 ad2antrr φAUaPIA=a·˙WIHGrp
194 68 ad2antrr φAUaPIA=a·˙WIWIU
195 simprl φAUaPIA=a·˙WIa
196 69 17 10 160 oddvds HGrpWIUaOWIaa·˙WI=0H
197 193 194 195 196 syl3anc φAUaPIA=a·˙WIOWIaa·˙WI=0H
198 71 ad2antrr φAUaPIA=a·˙WIOWI
199 root1eq1 OWIa-12OWIa=1OWIa
200 198 195 199 syl2anc φAUaPIA=a·˙WI-12OWIa=1OWIa
201 simprr φAUaPIA=a·˙WIPIA=a·˙WI
202 5 164 eqtrid φ1˙=0H
203 202 ad2antrr φAUaPIA=a·˙WI1˙=0H
204 201 203 eqeq12d φAUaPIA=a·˙WIPIA=1˙a·˙WI=0H
205 197 200 204 3bitr4d φAUaPIA=a·˙WI-12OWIa=1PIA=1˙
206 205 necon3bid φAUaPIA=a·˙WI-12OWIa1PIA1˙
207 192 206 mpbird φAUaPIA=a·˙WI-12OWIa1
208 191 207 eqnetrd φAUaPIA=a·˙WIXA1
209 208 rexlimdvaa φAUaPIA=a·˙WIXA1
210 12 209 mpdan φaPIA=a·˙WIXA1
211 188 210 mpd φXA1
212 185 211 eqnetrd φvBifvUXv0A1
213 fveq1 x=vBifvUXv0xA=vBifvUXv0A
214 213 neeq1d x=vBifvUXv0xA1vBifvUXv0A1
215 214 rspcev vBifvUXv0DvBifvUXv0A1xDxA1
216 173 212 215 syl2anc φxDxA1