Metamath Proof Explorer


Theorem dvlip

Description: A function with derivative bounded by M is M-Lipschitz continuous. (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses dvlip.a φ A
dvlip.b φ B
dvlip.f φ F : A B cn
dvlip.d φ dom F = A B
dvlip.m φ M
dvlip.l φ x A B F x M
Assertion dvlip φ X A B Y A B F X F Y M X Y

Proof

Step Hyp Ref Expression
1 dvlip.a φ A
2 dvlip.b φ B
3 dvlip.f φ F : A B cn
4 dvlip.d φ dom F = A B
5 dvlip.m φ M
6 dvlip.l φ x A B F x M
7 fveq2 a = Y F a = F Y
8 7 oveq2d a = Y F b F a = F b F Y
9 8 fveq2d a = Y F b F a = F b F Y
10 oveq2 a = Y b a = b Y
11 10 fveq2d a = Y b a = b Y
12 11 oveq2d a = Y M b a = M b Y
13 9 12 breq12d a = Y F b F a M b a F b F Y M b Y
14 13 imbi2d a = Y φ F b F a M b a φ F b F Y M b Y
15 fveq2 b = X F b = F X
16 15 fvoveq1d b = X F b F Y = F X F Y
17 fvoveq1 b = X b Y = X Y
18 17 oveq2d b = X M b Y = M X Y
19 16 18 breq12d b = X F b F Y M b Y F X F Y M X Y
20 19 imbi2d b = X φ F b F Y M b Y φ F X F Y M X Y
21 fveq2 y = b F y = F b
22 fveq2 x = a F x = F a
23 21 22 oveqan12d y = b x = a F y F x = F b F a
24 23 fveq2d y = b x = a F y F x = F b F a
25 oveq12 y = b x = a y x = b a
26 25 fveq2d y = b x = a y x = b a
27 26 oveq2d y = b x = a M y x = M b a
28 24 27 breq12d y = b x = a F y F x M y x F b F a M b a
29 28 ancoms x = a y = b F y F x M y x F b F a M b a
30 fveq2 y = a F y = F a
31 fveq2 x = b F x = F b
32 30 31 oveqan12d y = a x = b F y F x = F a F b
33 32 fveq2d y = a x = b F y F x = F a F b
34 oveq12 y = a x = b y x = a b
35 34 fveq2d y = a x = b y x = a b
36 35 oveq2d y = a x = b M y x = M a b
37 33 36 breq12d y = a x = b F y F x M y x F a F b M a b
38 37 ancoms x = b y = a F y F x M y x F a F b M a b
39 iccssre A B A B
40 1 2 39 syl2anc φ A B
41 cncff F : A B cn F : A B
42 3 41 syl φ F : A B
43 ffvelrn F : A B a A B F a
44 ffvelrn F : A B b A B F b
45 43 44 anim12dan F : A B a A B b A B F a F b
46 42 45 sylan φ a A B b A B F a F b
47 46 simprd φ a A B b A B F b
48 46 simpld φ a A B b A B F a
49 47 48 abssubd φ a A B b A B F b F a = F a F b
50 ax-resscn
51 40 50 sstrdi φ A B
52 51 sselda φ b A B b
53 52 adantrl φ a A B b A B b
54 51 sselda φ a A B a
55 54 adantrr φ a A B b A B a
56 53 55 abssubd φ a A B b A B b a = a b
57 56 oveq2d φ a A B b A B M b a = M a b
58 49 57 breq12d φ a A B b A B F b F a M b a F a F b M a b
59 42 adantr φ a A B b A B a b F : A B
60 simpr2 φ a A B b A B a b b A B
61 59 60 ffvelrnd φ a A B b A B a b F b
62 simpr1 φ a A B b A B a b a A B
63 59 62 ffvelrnd φ a A B b A B a b F a
64 61 63 subeq0ad φ a A B b A B a b F b F a = 0 F b = F a
65 64 biimpar φ a A B b A B a b F b = F a F b F a = 0
66 65 abs00bd φ a A B b A B a b F b = F a F b F a = 0
67 40 adantr φ a A B b A B a b A B
68 67 62 sseldd φ a A B b A B a b a
69 68 rexrd φ a A B b A B a b a *
70 67 60 sseldd φ a A B b A B a b b
71 70 rexrd φ a A B b A B a b b *
72 ioon0 a * b * a b a < b
73 69 71 72 syl2anc φ a A B b A B a b a b a < b
74 5 ad2antrr φ a A B b A B a b a b M
75 70 68 resubcld φ a A B b A B a b b a
76 75 adantr φ a A B b A B a b a b b a
77 1 adantr φ a A B b A B a b A
78 77 rexrd φ a A B b A B a b A *
79 2 adantr φ a A B b A B a b B
80 elicc2 A B a A B a A a a B
81 77 79 80 syl2anc φ a A B b A B a b a A B a A a a B
82 62 81 mpbid φ a A B b A B a b a A a a B
83 82 simp2d φ a A B b A B a b A a
84 iooss1 A * A a a b A b
85 78 83 84 syl2anc φ a A B b A B a b a b A b
86 79 rexrd φ a A B b A B a b B *
87 elicc2 A B b A B b A b b B
88 77 79 87 syl2anc φ a A B b A B a b b A B b A b b B
89 60 88 mpbid φ a A B b A B a b b A b b B
90 89 simp3d φ a A B b A B a b b B
91 iooss2 B * b B A b A B
92 86 90 91 syl2anc φ a A B b A B a b A b A B
93 85 92 sstrd φ a A B b A B a b a b A B
94 ssn0 a b A B a b A B
95 93 94 sylan φ a A B b A B a b a b A B
96 n0 A B x x A B
97 0red φ x A B 0
98 dvf F : dom F
99 4 feq2d φ F : dom F F : A B
100 98 99 mpbii φ F : A B
101 100 ffvelrnda φ x A B F x
102 101 abscld φ x A B F x
103 5 adantr φ x A B M
104 101 absge0d φ x A B 0 F x
105 97 102 103 104 6 letrd φ x A B 0 M
106 105 ex φ x A B 0 M
107 106 exlimdv φ x x A B 0 M
108 107 imp φ x x A B 0 M
109 96 108 sylan2b φ A B 0 M
110 109 adantlr φ a A B b A B a b A B 0 M
111 95 110 syldan φ a A B b A B a b a b 0 M
112 simpr3 φ a A B b A B a b a b
113 70 68 subge0d φ a A B b A B a b 0 b a a b
114 112 113 mpbird φ a A B b A B a b 0 b a
115 114 adantr φ a A B b A B a b a b 0 b a
116 74 76 111 115 mulge0d φ a A B b A B a b a b 0 M b a
117 116 ex φ a A B b A B a b a b 0 M b a
118 73 117 sylbird φ a A B b A B a b a < b 0 M b a
119 70 recnd φ a A B b A B a b b
120 68 recnd φ a A B b A B a b a
121 119 120 subeq0ad φ a A B b A B a b b a = 0 b = a
122 equcom b = a a = b
123 121 122 bitrdi φ a A B b A B a b b a = 0 a = b
124 0re 0
125 5 adantr φ a A B b A B a b M
126 125 recnd φ a A B b A B a b M
127 126 mul01d φ a A B b A B a b M 0 = 0
128 127 eqcomd φ a A B b A B a b 0 = M 0
129 eqle 0 0 = M 0 0 M 0
130 124 128 129 sylancr φ a A B b A B a b 0 M 0
131 oveq2 b a = 0 M b a = M 0
132 131 breq2d b a = 0 0 M b a 0 M 0
133 130 132 syl5ibrcom φ a A B b A B a b b a = 0 0 M b a
134 123 133 sylbird φ a A B b A B a b a = b 0 M b a
135 68 70 leloed φ a A B b A B a b a b a < b a = b
136 112 135 mpbid φ a A B b A B a b a < b a = b
137 118 134 136 mpjaod φ a A B b A B a b 0 M b a
138 137 adantr φ a A B b A B a b F b = F a 0 M b a
139 66 138 eqbrtrd φ a A B b A B a b F b = F a F b F a M b a
140 61 63 subcld φ a A B b A B a b F b F a
141 140 adantr φ a A B b A B a b F b F a F b F a
142 141 abscld φ a A B b A B a b F b F a F b F a
143 142 recnd φ a A B b A B a b F b F a F b F a
144 75 adantr φ a A B b A B a b F b F a b a
145 144 recnd φ a A B b A B a b F b F a b a
146 136 ord φ a A B b A B a b ¬ a < b a = b
147 fveq2 a = b F a = F b
148 147 eqcomd a = b F b = F a
149 146 148 syl6 φ a A B b A B a b ¬ a < b F b = F a
150 149 necon1ad φ a A B b A B a b F b F a a < b
151 150 imp φ a A B b A B a b F b F a a < b
152 68 adantr φ a A B b A B a b F b F a a
153 70 adantr φ a A B b A B a b F b F a b
154 152 153 posdifd φ a A B b A B a b F b F a a < b 0 < b a
155 151 154 mpbid φ a A B b A B a b F b F a 0 < b a
156 155 gt0ne0d φ a A B b A B a b F b F a b a 0
157 143 145 156 divrec2d φ a A B b A B a b F b F a F b F a b a = 1 b a F b F a
158 iccss2 a A B b A B a b A B
159 62 60 158 syl2anc φ a A B b A B a b a b A B
160 159 adantr φ a A B b A B a b F b F a a b A B
161 160 sselda φ a A B b A B a b F b F a y a b y A B
162 42 ad2antrr φ a A B b A B a b F b F a F : A B
163 162 ffvelrnda φ a A B b A B a b F b F a y A B F y
164 161 163 syldan φ a A B b A B a b F b F a y a b F y
165 140 ad2antrr φ a A B b A B a b F b F a y a b F b F a
166 64 necon3bid φ a A B b A B a b F b F a 0 F b F a
167 166 biimpar φ a A B b A B a b F b F a F b F a 0
168 167 adantr φ a A B b A B a b F b F a y a b F b F a 0
169 164 165 168 divcld φ a A B b A B a b F b F a y a b F y F b F a
170 162 160 feqresmpt φ a A B b A B a b F b F a F a b = y a b F y
171 eqidd φ a A B b A B a b F b F a x x F b F a = x x F b F a
172 oveq1 x = F y x F b F a = F y F b F a
173 164 170 171 172 fmptco φ a A B b A B a b F b F a x x F b F a F a b = y a b F y F b F a
174 ref :
175 174 a1i φ a A B b A B a b F b F a :
176 175 feqmptd φ a A B b A B a b F b F a = x x
177 fveq2 x = F y F b F a x = F y F b F a
178 169 173 176 177 fmptco φ a A B b A B a b F b F a x x F b F a F a b = y a b F y F b F a
179 3 adantr φ a A B b A B a b F : A B cn
180 rescncf a b A B F : A B cn F a b : a b cn
181 159 179 180 sylc φ a A B b A B a b F a b : a b cn
182 181 adantr φ a A B b A B a b F b F a F a b : a b cn
183 eqid x x F b F a = x x F b F a
184 183 divccncf F b F a F b F a 0 x x F b F a : cn
185 141 167 184 syl2anc φ a A B b A B a b F b F a x x F b F a : cn
186 182 185 cncfco φ a A B b A B a b F b F a x x F b F a F a b : a b cn
187 recncf : cn
188 187 a1i φ a A B b A B a b F b F a : cn
189 186 188 cncfco φ a A B b A B a b F b F a x x F b F a F a b : a b cn
190 178 189 eqeltrrd φ a A B b A B a b F b F a y a b F y F b F a : a b cn
191 50 a1i φ a A B b A B a b F b F a
192 iccssre a b a b
193 152 153 192 syl2anc φ a A B b A B a b F b F a a b
194 169 recld φ a A B b A B a b F b F a y a b F y F b F a
195 194 recnd φ a A B b A B a b F b F a y a b F y F b F a
196 eqid TopOpen fld = TopOpen fld
197 196 tgioo2 topGen ran . = TopOpen fld 𝑡
198 iccntr a b int topGen ran . a b = a b
199 68 70 198 syl2anc φ a A B b A B a b int topGen ran . a b = a b
200 199 adantr φ a A B b A B a b F b F a int topGen ran . a b = a b
201 191 193 195 197 196 200 dvmptntr φ a A B b A B a b F b F a dy a b F y F b F a d y = dy a b F y F b F a d y
202 ioossicc a b a b
203 202 sseli y a b y a b
204 203 169 sylan2 φ a A B b A B a b F b F a y a b F y F b F a
205 ovexd φ a A B b A B a b F b F a y a b F y F b F a V
206 reelprrecn
207 206 a1i φ a A B b A B a b F b F a
208 203 164 sylan2 φ a A B b A B a b F b F a y a b F y
209 93 adantr φ a A B b A B a b F b F a a b A B
210 209 sselda φ a A B b A B a b F b F a y a b y A B
211 100 ad2antrr φ a A B b A B a b F b F a F : A B
212 211 ffvelrnda φ a A B b A B a b F b F a y A B F y
213 210 212 syldan φ a A B b A B a b F b F a y a b F y
214 40 ad2antrr φ a A B b A B a b F b F a A B
215 ioossre a b
216 215 a1i φ a A B b A B a b F b F a a b
217 196 197 dvres F : A B A B a b D F a b = F int topGen ran . a b
218 191 162 214 216 217 syl22anc φ a A B b A B a b F b F a D F a b = F int topGen ran . a b
219 retop topGen ran . Top
220 iooretop a b topGen ran .
221 isopn3i topGen ran . Top a b topGen ran . int topGen ran . a b = a b
222 219 220 221 mp2an int topGen ran . a b = a b
223 222 reseq2i F int topGen ran . a b = F a b
224 218 223 eqtrdi φ a A B b A B a b F b F a D F a b = F a b
225 202 160 sstrid φ a A B b A B a b F b F a a b A B
226 162 225 feqresmpt φ a A B b A B a b F b F a F a b = y a b F y
227 226 oveq2d φ a A B b A B a b F b F a D F a b = dy a b F y d y
228 100 adantr φ a A B b A B a b F : A B
229 228 93 fssresd φ a A B b A B a b F a b : a b
230 229 feqmptd φ a A B b A B a b F a b = y a b F a b y
231 230 adantr φ a A B b A B a b F b F a F a b = y a b F a b y
232 fvres y a b F a b y = F y
233 232 mpteq2ia y a b F a b y = y a b F y
234 231 233 eqtrdi φ a A B b A B a b F b F a F a b = y a b F y
235 224 227 234 3eqtr3d φ a A B b A B a b F b F a dy a b F y d y = y a b F y
236 207 208 213 235 141 167 dvmptdivc φ a A B b A B a b F b F a dy a b F y F b F a d y = y a b F y F b F a
237 204 205 236 dvmptre φ a A B b A B a b F b F a dy a b F y F b F a d y = y a b F y F b F a
238 201 237 eqtrd φ a A B b A B a b F b F a dy a b F y F b F a d y = y a b F y F b F a
239 238 dmeqd φ a A B b A B a b F b F a dom dy a b F y F b F a d y = dom y a b F y F b F a
240 dmmptg y a b F y F b F a V dom y a b F y F b F a = a b
241 fvex F y F b F a V
242 241 a1i y a b F y F b F a V
243 240 242 mprg dom y a b F y F b F a = a b
244 239 243 eqtrdi φ a A B b A B a b F b F a dom dy a b F y F b F a d y = a b
245 152 153 151 190 244 mvth φ a A B b A B a b F b F a x a b dy a b F y F b F a d y x = y a b F y F b F a b y a b F y F b F a a b a
246 238 fveq1d φ a A B b A B a b F b F a dy a b F y F b F a d y x = y a b F y F b F a x
247 fveq2 y = x F y = F x
248 247 fvoveq1d y = x F y F b F a = F x F b F a
249 eqid y a b F y F b F a = y a b F y F b F a
250 fvex F x F b F a V
251 248 249 250 fvmpt x a b y a b F y F b F a x = F x F b F a
252 246 251 sylan9eq φ a A B b A B a b F b F a x a b dy a b F y F b F a d y x = F x F b F a
253 ubicc2 a * b * a b b a b
254 69 71 112 253 syl3anc φ a A B b A B a b b a b
255 254 ad2antrr φ a A B b A B a b F b F a x a b b a b
256 21 fvoveq1d y = b F y F b F a = F b F b F a
257 eqid y a b F y F b F a = y a b F y F b F a
258 fvex F b F b F a V
259 256 257 258 fvmpt b a b y a b F y F b F a b = F b F b F a
260 255 259 syl φ a A B b A B a b F b F a x a b y a b F y F b F a b = F b F b F a
261 lbicc2 a * b * a b a a b
262 69 71 112 261 syl3anc φ a A B b A B a b a a b
263 262 ad2antrr φ a A B b A B a b F b F a x a b a a b
264 30 fvoveq1d y = a F y F b F a = F a F b F a
265 fvex F a F b F a V
266 264 257 265 fvmpt a a b y a b F y F b F a a = F a F b F a
267 263 266 syl φ a A B b A B a b F b F a x a b y a b F y F b F a a = F a F b F a
268 260 267 oveq12d φ a A B b A B a b F b F a x a b y a b F y F b F a b y a b F y F b F a a = F b F b F a F a F b F a
269 61 adantr φ a A B b A B a b F b F a F b
270 269 141 167 divcld φ a A B b A B a b F b F a F b F b F a
271 63 adantr φ a A B b A B a b F b F a F a
272 271 141 167 divcld φ a A B b A B a b F b F a F a F b F a
273 270 272 resubd φ a A B b A B a b F b F a F b F b F a F a F b F a = F b F b F a F a F b F a
274 269 271 141 167 divsubdird φ a A B b A B a b F b F a F b F a F b F a = F b F b F a F a F b F a
275 141 167 dividd φ a A B b A B a b F b F a F b F a F b F a = 1
276 274 275 eqtr3d φ a A B b A B a b F b F a F b F b F a F a F b F a = 1
277 276 fveq2d φ a A B b A B a b F b F a F b F b F a F a F b F a = 1
278 re1 1 = 1
279 277 278 eqtrdi φ a A B b A B a b F b F a F b F b F a F a F b F a = 1
280 273 279 eqtr3d φ a A B b A B a b F b F a F b F b F a F a F b F a = 1
281 280 adantr φ a A B b A B a b F b F a x a b F b F b F a F a F b F a = 1
282 268 281 eqtrd φ a A B b A B a b F b F a x a b y a b F y F b F a b y a b F y F b F a a = 1
283 282 oveq1d φ a A B b A B a b F b F a x a b y a b F y F b F a b y a b F y F b F a a b a = 1 b a
284 252 283 eqeq12d φ a A B b A B a b F b F a x a b dy a b F y F b F a d y x = y a b F y F b F a b y a b F y F b F a a b a F x F b F a = 1 b a
285 284 rexbidva φ a A B b A B a b F b F a x a b dy a b F y F b F a d y x = y a b F y F b F a b y a b F y F b F a a b a x a b F x F b F a = 1 b a
286 245 285 mpbid φ a A B b A B a b F b F a x a b F x F b F a = 1 b a
287 209 sselda φ a A B b A B a b F b F a x a b x A B
288 211 ffvelrnda φ a A B b A B a b F b F a x A B F x
289 287 288 syldan φ a A B b A B a b F b F a x a b F x
290 140 ad2antrr φ a A B b A B a b F b F a x a b F b F a
291 167 adantr φ a A B b A B a b F b F a x a b F b F a 0
292 289 290 291 divcld φ a A B b A B a b F b F a x a b F x F b F a
293 292 recld φ a A B b A B a b F b F a x a b F x F b F a
294 142 adantr φ a A B b A B a b F b F a x a b F b F a
295 293 294 remulcld φ a A B b A B a b F b F a x a b F x F b F a F b F a
296 289 abscld φ a A B b A B a b F b F a x a b F x
297 125 ad2antrr φ a A B b A B a b F b F a x a b M
298 292 abscld φ a A B b A B a b F b F a x a b F x F b F a
299 141 absge0d φ a A B b A B a b F b F a 0 F b F a
300 299 adantr φ a A B b A B a b F b F a x a b 0 F b F a
301 292 releabsd φ a A B b A B a b F b F a x a b F x F b F a F x F b F a
302 293 298 294 300 301 lemul1ad φ a A B b A B a b F b F a x a b F x F b F a F b F a F x F b F a F b F a
303 292 290 absmuld φ a A B b A B a b F b F a x a b F x F b F a F b F a = F x F b F a F b F a
304 289 290 291 divcan1d φ a A B b A B a b F b F a x a b F x F b F a F b F a = F x
305 304 fveq2d φ a A B b A B a b F b F a x a b F x F b F a F b F a = F x
306 303 305 eqtr3d φ a A B b A B a b F b F a x a b F x F b F a F b F a = F x
307 302 306 breqtrd φ a A B b A B a b F b F a x a b F x F b F a F b F a F x
308 6 ad4ant14 φ a A B b A B a b F b F a x A B F x M
309 287 308 syldan φ a A B b A B a b F b F a x a b F x M
310 295 296 297 307 309 letrd φ a A B b A B a b F b F a x a b F x F b F a F b F a M
311 oveq1 F x F b F a = 1 b a F x F b F a F b F a = 1 b a F b F a
312 311 breq1d F x F b F a = 1 b a F x F b F a F b F a M 1 b a F b F a M
313 310 312 syl5ibcom φ a A B b A B a b F b F a x a b F x F b F a = 1 b a 1 b a F b F a M
314 313 rexlimdva φ a A B b A B a b F b F a x a b F x F b F a = 1 b a 1 b a F b F a M
315 286 314 mpd φ a A B b A B a b F b F a 1 b a F b F a M
316 157 315 eqbrtrd φ a A B b A B a b F b F a F b F a b a M
317 5 ad2antrr φ a A B b A B a b F b F a M
318 ledivmul2 F b F a M b a 0 < b a F b F a b a M F b F a M b a
319 142 317 144 155 318 syl112anc φ a A B b A B a b F b F a F b F a b a M F b F a M b a
320 316 319 mpbid φ a A B b A B a b F b F a F b F a M b a
321 139 320 pm2.61dane φ a A B b A B a b F b F a M b a
322 68 70 112 abssubge0d φ a A B b A B a b b a = b a
323 322 oveq2d φ a A B b A B a b M b a = M b a
324 321 323 breqtrrd φ a A B b A B a b F b F a M b a
325 29 38 40 58 324 wlogle φ a A B b A B F b F a M b a
326 325 expcom a A B b A B φ F b F a M b a
327 14 20 326 vtocl2ga Y A B X A B φ F X F Y M X Y
328 327 ancoms X A B Y A B φ F X F Y M X Y
329 328 impcom φ X A B Y A B F X F Y M X Y