Metamath Proof Explorer


Theorem dvlip

Description: A function with derivative bounded by M is M-Lipschitz continuous. (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses dvlip.a φA
dvlip.b φB
dvlip.f φF:ABcn
dvlip.d φdomF=AB
dvlip.m φM
dvlip.l φxABFxM
Assertion dvlip φXABYABFXFYMXY

Proof

Step Hyp Ref Expression
1 dvlip.a φA
2 dvlip.b φB
3 dvlip.f φF:ABcn
4 dvlip.d φdomF=AB
5 dvlip.m φM
6 dvlip.l φxABFxM
7 fveq2 a=YFa=FY
8 7 oveq2d a=YFbFa=FbFY
9 8 fveq2d a=YFbFa=FbFY
10 oveq2 a=Yba=bY
11 10 fveq2d a=Yba=bY
12 11 oveq2d a=YMba=MbY
13 9 12 breq12d a=YFbFaMbaFbFYMbY
14 13 imbi2d a=YφFbFaMbaφFbFYMbY
15 fveq2 b=XFb=FX
16 15 fvoveq1d b=XFbFY=FXFY
17 fvoveq1 b=XbY=XY
18 17 oveq2d b=XMbY=MXY
19 16 18 breq12d b=XFbFYMbYFXFYMXY
20 19 imbi2d b=XφFbFYMbYφFXFYMXY
21 fveq2 y=bFy=Fb
22 fveq2 x=aFx=Fa
23 21 22 oveqan12d y=bx=aFyFx=FbFa
24 23 fveq2d y=bx=aFyFx=FbFa
25 oveq12 y=bx=ayx=ba
26 25 fveq2d y=bx=ayx=ba
27 26 oveq2d y=bx=aMyx=Mba
28 24 27 breq12d y=bx=aFyFxMyxFbFaMba
29 28 ancoms x=ay=bFyFxMyxFbFaMba
30 fveq2 y=aFy=Fa
31 fveq2 x=bFx=Fb
32 30 31 oveqan12d y=ax=bFyFx=FaFb
33 32 fveq2d y=ax=bFyFx=FaFb
34 oveq12 y=ax=byx=ab
35 34 fveq2d y=ax=byx=ab
36 35 oveq2d y=ax=bMyx=Mab
37 33 36 breq12d y=ax=bFyFxMyxFaFbMab
38 37 ancoms x=by=aFyFxMyxFaFbMab
39 iccssre ABAB
40 1 2 39 syl2anc φAB
41 cncff F:ABcnF:AB
42 3 41 syl φF:AB
43 ffvelcdm F:ABaABFa
44 ffvelcdm F:ABbABFb
45 43 44 anim12dan F:ABaABbABFaFb
46 42 45 sylan φaABbABFaFb
47 46 simprd φaABbABFb
48 46 simpld φaABbABFa
49 47 48 abssubd φaABbABFbFa=FaFb
50 ax-resscn
51 40 50 sstrdi φAB
52 51 sselda φbABb
53 52 adantrl φaABbABb
54 51 sselda φaABa
55 54 adantrr φaABbABa
56 53 55 abssubd φaABbABba=ab
57 56 oveq2d φaABbABMba=Mab
58 49 57 breq12d φaABbABFbFaMbaFaFbMab
59 42 adantr φaABbABabF:AB
60 simpr2 φaABbABabbAB
61 59 60 ffvelcdmd φaABbABabFb
62 simpr1 φaABbABabaAB
63 59 62 ffvelcdmd φaABbABabFa
64 61 63 subeq0ad φaABbABabFbFa=0Fb=Fa
65 64 biimpar φaABbABabFb=FaFbFa=0
66 65 abs00bd φaABbABabFb=FaFbFa=0
67 40 adantr φaABbABabAB
68 67 62 sseldd φaABbABaba
69 68 rexrd φaABbABaba*
70 67 60 sseldd φaABbABabb
71 70 rexrd φaABbABabb*
72 ioon0 a*b*aba<b
73 69 71 72 syl2anc φaABbABababa<b
74 5 ad2antrr φaABbABababM
75 70 68 resubcld φaABbABabba
76 75 adantr φaABbABababba
77 1 adantr φaABbABabA
78 77 rexrd φaABbABabA*
79 2 adantr φaABbABabB
80 elicc2 ABaABaAaaB
81 77 79 80 syl2anc φaABbABabaABaAaaB
82 62 81 mpbid φaABbABabaAaaB
83 82 simp2d φaABbABabAa
84 iooss1 A*AaabAb
85 78 83 84 syl2anc φaABbABababAb
86 79 rexrd φaABbABabB*
87 elicc2 ABbABbAbbB
88 77 79 87 syl2anc φaABbABabbABbAbbB
89 60 88 mpbid φaABbABabbAbbB
90 89 simp3d φaABbABabbB
91 iooss2 B*bBAbAB
92 86 90 91 syl2anc φaABbABabAbAB
93 85 92 sstrd φaABbABababAB
94 ssn0 abABabAB
95 93 94 sylan φaABbABababAB
96 n0 ABxxAB
97 0red φxAB0
98 dvf F:domF
99 4 feq2d φF:domFF:AB
100 98 99 mpbii φF:AB
101 100 ffvelcdmda φxABFx
102 101 abscld φxABFx
103 5 adantr φxABM
104 101 absge0d φxAB0Fx
105 97 102 103 104 6 letrd φxAB0M
106 105 ex φxAB0M
107 106 exlimdv φxxAB0M
108 107 imp φxxAB0M
109 96 108 sylan2b φAB0M
110 109 adantlr φaABbABabAB0M
111 95 110 syldan φaABbABabab0M
112 simpr3 φaABbABabab
113 70 68 subge0d φaABbABab0baab
114 112 113 mpbird φaABbABab0ba
115 114 adantr φaABbABabab0ba
116 74 76 111 115 mulge0d φaABbABabab0Mba
117 116 ex φaABbABabab0Mba
118 73 117 sylbird φaABbABaba<b0Mba
119 70 recnd φaABbABabb
120 68 recnd φaABbABaba
121 119 120 subeq0ad φaABbABabba=0b=a
122 equcom b=aa=b
123 121 122 bitrdi φaABbABabba=0a=b
124 0re 0
125 5 adantr φaABbABabM
126 125 recnd φaABbABabM
127 126 mul01d φaABbABab M0=0
128 127 eqcomd φaABbABab0= M0
129 eqle 00= M00 M0
130 124 128 129 sylancr φaABbABab0 M0
131 oveq2 ba=0Mba= M0
132 131 breq2d ba=00Mba0 M0
133 130 132 syl5ibrcom φaABbABabba=00Mba
134 123 133 sylbird φaABbABaba=b0Mba
135 68 70 leloed φaABbABababa<ba=b
136 112 135 mpbid φaABbABaba<ba=b
137 118 134 136 mpjaod φaABbABab0Mba
138 137 adantr φaABbABabFb=Fa0Mba
139 66 138 eqbrtrd φaABbABabFb=FaFbFaMba
140 61 63 subcld φaABbABabFbFa
141 140 adantr φaABbABabFbFaFbFa
142 141 abscld φaABbABabFbFaFbFa
143 142 recnd φaABbABabFbFaFbFa
144 75 adantr φaABbABabFbFaba
145 144 recnd φaABbABabFbFaba
146 136 ord φaABbABab¬a<ba=b
147 fveq2 a=bFa=Fb
148 147 eqcomd a=bFb=Fa
149 146 148 syl6 φaABbABab¬a<bFb=Fa
150 149 necon1ad φaABbABabFbFaa<b
151 150 imp φaABbABabFbFaa<b
152 68 adantr φaABbABabFbFaa
153 70 adantr φaABbABabFbFab
154 152 153 posdifd φaABbABabFbFaa<b0<ba
155 151 154 mpbid φaABbABabFbFa0<ba
156 155 gt0ne0d φaABbABabFbFaba0
157 143 145 156 divrec2d φaABbABabFbFaFbFaba=1baFbFa
158 iccss2 aABbABabAB
159 62 60 158 syl2anc φaABbABababAB
160 159 adantr φaABbABabFbFaabAB
161 160 sselda φaABbABabFbFayabyAB
162 42 ad2antrr φaABbABabFbFaF:AB
163 162 ffvelcdmda φaABbABabFbFayABFy
164 161 163 syldan φaABbABabFbFayabFy
165 140 ad2antrr φaABbABabFbFayabFbFa
166 64 necon3bid φaABbABabFbFa0FbFa
167 166 biimpar φaABbABabFbFaFbFa0
168 167 adantr φaABbABabFbFayabFbFa0
169 164 165 168 divcld φaABbABabFbFayabFyFbFa
170 162 160 feqresmpt φaABbABabFbFaFab=yabFy
171 eqidd φaABbABabFbFaxxFbFa=xxFbFa
172 oveq1 x=FyxFbFa=FyFbFa
173 164 170 171 172 fmptco φaABbABabFbFaxxFbFaFab=yabFyFbFa
174 ref :
175 174 a1i φaABbABabFbFa:
176 175 feqmptd φaABbABabFbFa=xx
177 fveq2 x=FyFbFax=FyFbFa
178 169 173 176 177 fmptco φaABbABabFbFaxxFbFaFab=yabFyFbFa
179 3 adantr φaABbABabF:ABcn
180 rescncf abABF:ABcnFab:abcn
181 159 179 180 sylc φaABbABabFab:abcn
182 181 adantr φaABbABabFbFaFab:abcn
183 eqid xxFbFa=xxFbFa
184 183 divccncf FbFaFbFa0xxFbFa:cn
185 141 167 184 syl2anc φaABbABabFbFaxxFbFa:cn
186 182 185 cncfco φaABbABabFbFaxxFbFaFab:abcn
187 recncf :cn
188 187 a1i φaABbABabFbFa:cn
189 186 188 cncfco φaABbABabFbFaxxFbFaFab:abcn
190 178 189 eqeltrrd φaABbABabFbFayabFyFbFa:abcn
191 50 a1i φaABbABabFbFa
192 iccssre abab
193 152 153 192 syl2anc φaABbABabFbFaab
194 169 recld φaABbABabFbFayabFyFbFa
195 194 recnd φaABbABabFbFayabFyFbFa
196 eqid TopOpenfld=TopOpenfld
197 196 tgioo2 topGenran.=TopOpenfld𝑡
198 iccntr abinttopGenran.ab=ab
199 68 70 198 syl2anc φaABbABabinttopGenran.ab=ab
200 199 adantr φaABbABabFbFainttopGenran.ab=ab
201 191 193 195 197 196 200 dvmptntr φaABbABabFbFadyabFyFbFady=dyabFyFbFady
202 ioossicc abab
203 202 sseli yabyab
204 203 169 sylan2 φaABbABabFbFayabFyFbFa
205 ovexd φaABbABabFbFayabFyFbFaV
206 reelprrecn
207 206 a1i φaABbABabFbFa
208 203 164 sylan2 φaABbABabFbFayabFy
209 93 adantr φaABbABabFbFaabAB
210 209 sselda φaABbABabFbFayabyAB
211 100 ad2antrr φaABbABabFbFaF:AB
212 211 ffvelcdmda φaABbABabFbFayABFy
213 210 212 syldan φaABbABabFbFayabFy
214 40 ad2antrr φaABbABabFbFaAB
215 ioossre ab
216 215 a1i φaABbABabFbFaab
217 196 197 dvres F:ABABabDFab=FinttopGenran.ab
218 191 162 214 216 217 syl22anc φaABbABabFbFaDFab=FinttopGenran.ab
219 retop topGenran.Top
220 iooretop abtopGenran.
221 isopn3i topGenran.TopabtopGenran.inttopGenran.ab=ab
222 219 220 221 mp2an inttopGenran.ab=ab
223 222 reseq2i FinttopGenran.ab=Fab
224 218 223 eqtrdi φaABbABabFbFaDFab=Fab
225 202 160 sstrid φaABbABabFbFaabAB
226 162 225 feqresmpt φaABbABabFbFaFab=yabFy
227 226 oveq2d φaABbABabFbFaDFab=dyabFydy
228 100 adantr φaABbABabF:AB
229 228 93 fssresd φaABbABabFab:ab
230 229 feqmptd φaABbABabFab=yabFaby
231 230 adantr φaABbABabFbFaFab=yabFaby
232 fvres yabFaby=Fy
233 232 mpteq2ia yabFaby=yabFy
234 231 233 eqtrdi φaABbABabFbFaFab=yabFy
235 224 227 234 3eqtr3d φaABbABabFbFadyabFydy=yabFy
236 207 208 213 235 141 167 dvmptdivc φaABbABabFbFadyabFyFbFady=yabFyFbFa
237 204 205 236 dvmptre φaABbABabFbFadyabFyFbFady=yabFyFbFa
238 201 237 eqtrd φaABbABabFbFadyabFyFbFady=yabFyFbFa
239 238 dmeqd φaABbABabFbFadomdyabFyFbFady=domyabFyFbFa
240 dmmptg yabFyFbFaVdomyabFyFbFa=ab
241 fvex FyFbFaV
242 241 a1i yabFyFbFaV
243 240 242 mprg domyabFyFbFa=ab
244 239 243 eqtrdi φaABbABabFbFadomdyabFyFbFady=ab
245 152 153 151 190 244 mvth φaABbABabFbFaxabdyabFyFbFadyx=yabFyFbFabyabFyFbFaaba
246 238 fveq1d φaABbABabFbFadyabFyFbFadyx=yabFyFbFax
247 fveq2 y=xFy=Fx
248 247 fvoveq1d y=xFyFbFa=FxFbFa
249 eqid yabFyFbFa=yabFyFbFa
250 fvex FxFbFaV
251 248 249 250 fvmpt xabyabFyFbFax=FxFbFa
252 246 251 sylan9eq φaABbABabFbFaxabdyabFyFbFadyx=FxFbFa
253 ubicc2 a*b*abbab
254 69 71 112 253 syl3anc φaABbABabbab
255 254 ad2antrr φaABbABabFbFaxabbab
256 21 fvoveq1d y=bFyFbFa=FbFbFa
257 eqid yabFyFbFa=yabFyFbFa
258 fvex FbFbFaV
259 256 257 258 fvmpt babyabFyFbFab=FbFbFa
260 255 259 syl φaABbABabFbFaxabyabFyFbFab=FbFbFa
261 lbicc2 a*b*abaab
262 69 71 112 261 syl3anc φaABbABabaab
263 262 ad2antrr φaABbABabFbFaxabaab
264 30 fvoveq1d y=aFyFbFa=FaFbFa
265 fvex FaFbFaV
266 264 257 265 fvmpt aabyabFyFbFaa=FaFbFa
267 263 266 syl φaABbABabFbFaxabyabFyFbFaa=FaFbFa
268 260 267 oveq12d φaABbABabFbFaxabyabFyFbFabyabFyFbFaa=FbFbFaFaFbFa
269 61 adantr φaABbABabFbFaFb
270 269 141 167 divcld φaABbABabFbFaFbFbFa
271 63 adantr φaABbABabFbFaFa
272 271 141 167 divcld φaABbABabFbFaFaFbFa
273 270 272 resubd φaABbABabFbFaFbFbFaFaFbFa=FbFbFaFaFbFa
274 269 271 141 167 divsubdird φaABbABabFbFaFbFaFbFa=FbFbFaFaFbFa
275 141 167 dividd φaABbABabFbFaFbFaFbFa=1
276 274 275 eqtr3d φaABbABabFbFaFbFbFaFaFbFa=1
277 276 fveq2d φaABbABabFbFaFbFbFaFaFbFa=1
278 re1 1=1
279 277 278 eqtrdi φaABbABabFbFaFbFbFaFaFbFa=1
280 273 279 eqtr3d φaABbABabFbFaFbFbFaFaFbFa=1
281 280 adantr φaABbABabFbFaxabFbFbFaFaFbFa=1
282 268 281 eqtrd φaABbABabFbFaxabyabFyFbFabyabFyFbFaa=1
283 282 oveq1d φaABbABabFbFaxabyabFyFbFabyabFyFbFaaba=1ba
284 252 283 eqeq12d φaABbABabFbFaxabdyabFyFbFadyx=yabFyFbFabyabFyFbFaabaFxFbFa=1ba
285 284 rexbidva φaABbABabFbFaxabdyabFyFbFadyx=yabFyFbFabyabFyFbFaabaxabFxFbFa=1ba
286 245 285 mpbid φaABbABabFbFaxabFxFbFa=1ba
287 209 sselda φaABbABabFbFaxabxAB
288 211 ffvelcdmda φaABbABabFbFaxABFx
289 287 288 syldan φaABbABabFbFaxabFx
290 140 ad2antrr φaABbABabFbFaxabFbFa
291 167 adantr φaABbABabFbFaxabFbFa0
292 289 290 291 divcld φaABbABabFbFaxabFxFbFa
293 292 recld φaABbABabFbFaxabFxFbFa
294 142 adantr φaABbABabFbFaxabFbFa
295 293 294 remulcld φaABbABabFbFaxabFxFbFaFbFa
296 289 abscld φaABbABabFbFaxabFx
297 125 ad2antrr φaABbABabFbFaxabM
298 292 abscld φaABbABabFbFaxabFxFbFa
299 141 absge0d φaABbABabFbFa0FbFa
300 299 adantr φaABbABabFbFaxab0FbFa
301 292 releabsd φaABbABabFbFaxabFxFbFaFxFbFa
302 293 298 294 300 301 lemul1ad φaABbABabFbFaxabFxFbFaFbFaFxFbFaFbFa
303 292 290 absmuld φaABbABabFbFaxabFxFbFaFbFa=FxFbFaFbFa
304 289 290 291 divcan1d φaABbABabFbFaxabFxFbFaFbFa=Fx
305 304 fveq2d φaABbABabFbFaxabFxFbFaFbFa=Fx
306 303 305 eqtr3d φaABbABabFbFaxabFxFbFaFbFa=Fx
307 302 306 breqtrd φaABbABabFbFaxabFxFbFaFbFaFx
308 6 ad4ant14 φaABbABabFbFaxABFxM
309 287 308 syldan φaABbABabFbFaxabFxM
310 295 296 297 307 309 letrd φaABbABabFbFaxabFxFbFaFbFaM
311 oveq1 FxFbFa=1baFxFbFaFbFa=1baFbFa
312 311 breq1d FxFbFa=1baFxFbFaFbFaM1baFbFaM
313 310 312 syl5ibcom φaABbABabFbFaxabFxFbFa=1ba1baFbFaM
314 313 rexlimdva φaABbABabFbFaxabFxFbFa=1ba1baFbFaM
315 286 314 mpd φaABbABabFbFa1baFbFaM
316 157 315 eqbrtrd φaABbABabFbFaFbFabaM
317 5 ad2antrr φaABbABabFbFaM
318 ledivmul2 FbFaMba0<baFbFabaMFbFaMba
319 142 317 144 155 318 syl112anc φaABbABabFbFaFbFabaMFbFaMba
320 316 319 mpbid φaABbABabFbFaFbFaMba
321 139 320 pm2.61dane φaABbABabFbFaMba
322 68 70 112 abssubge0d φaABbABabba=ba
323 322 oveq2d φaABbABabMba=Mba
324 321 323 breqtrrd φaABbABabFbFaMba
325 29 38 40 58 324 wlogle φaABbABFbFaMba
326 325 expcom aABbABφFbFaMba
327 14 20 326 vtocl2ga YABXABφFXFYMXY
328 327 ancoms XABYABφFXFYMXY
329 328 impcom φXABYABFXFYMXY