Metamath Proof Explorer


Theorem etransclem32

Description: This is the proof for the last equation in the proof of the derivative calculated in Juillerat p. 12, just after equation *(6) . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem32.s φS
etransclem32.x φXTopOpenfld𝑡S
etransclem32.p φP
etransclem32.m φM0
etransclem32.f F=xXxP1j=1MxjP
etransclem32.n φN0
etransclem32.ngt φMP+P-1<N
etransclem32.h H=j0MxXxjifj=0P1P
Assertion etransclem32 φSDnFN=xX0

Proof

Step Hyp Ref Expression
1 etransclem32.s φS
2 etransclem32.x φXTopOpenfld𝑡S
3 etransclem32.p φP
4 etransclem32.m φM0
5 etransclem32.f F=xXxP1j=1MxjP
6 etransclem32.n φN0
7 etransclem32.ngt φMP+P-1<N
8 etransclem32.h H=j0MxXxjifj=0P1P
9 etransclem11 m0d0m0M|k=0Mdk=m=n0c0n0M|j=0Mcj=n
10 1 2 3 4 5 6 8 9 etransclem30 φSDnFN=xXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!j=0MSDnHjcjx
11 simpr φcm0d0m0M|k=0Mdk=mNcm0d0m0M|k=0Mdk=mN
12 9 6 etransclem12 φm0d0m0M|k=0Mdk=mN=c0N0M|j=0Mcj=N
13 12 adantr φcm0d0m0M|k=0Mdk=mNm0d0m0M|k=0Mdk=mN=c0N0M|j=0Mcj=N
14 11 13 eleqtrd φcm0d0m0M|k=0Mdk=mNcc0N0M|j=0Mcj=N
15 14 adantlr φxXcm0d0m0M|k=0Mdk=mNcc0N0M|j=0Mcj=N
16 nfv kφcc0N0M|j=0Mcj=N
17 nfre1 kk0Mifk=0P1P<ck
18 17 nfn k¬k0Mifk=0P1P<ck
19 16 18 nfan kφcc0N0M|j=0Mcj=N¬k0Mifk=0P1P<ck
20 fzssre 0N
21 rabid cc0N0M|j=0Mcj=Nc0N0Mj=0Mcj=N
22 21 simplbi cc0N0M|j=0Mcj=Nc0N0M
23 elmapi c0N0Mc:0M0N
24 22 23 syl cc0N0M|j=0Mcj=Nc:0M0N
25 24 adantl φcc0N0M|j=0Mcj=Nc:0M0N
26 25 ffvelcdmda φcc0N0M|j=0Mcj=Nk0Mck0N
27 20 26 sselid φcc0N0M|j=0Mcj=Nk0Mck
28 27 adantlr φcc0N0M|j=0Mcj=N¬k0Mifk=0P1P<ckk0Mck
29 nnm1nn0 PP10
30 3 29 syl φP10
31 30 nn0red φP1
32 3 nnred φP
33 31 32 ifcld φifk=0P1P
34 33 ad3antrrr φcc0N0M|j=0Mcj=N¬k0Mifk=0P1P<ckk0Mifk=0P1P
35 ralnex k0M¬ifk=0P1P<ck¬k0Mifk=0P1P<ck
36 35 biimpri ¬k0Mifk=0P1P<ckk0M¬ifk=0P1P<ck
37 36 r19.21bi ¬k0Mifk=0P1P<ckk0M¬ifk=0P1P<ck
38 37 adantll φcc0N0M|j=0Mcj=N¬k0Mifk=0P1P<ckk0M¬ifk=0P1P<ck
39 28 34 38 nltled φcc0N0M|j=0Mcj=N¬k0Mifk=0P1P<ckk0Mckifk=0P1P
40 39 ex φcc0N0M|j=0Mcj=N¬k0Mifk=0P1P<ckk0Mckifk=0P1P
41 19 40 ralrimi φcc0N0M|j=0Mcj=N¬k0Mifk=0P1P<ckk0Mckifk=0P1P
42 21 simprbi cc0N0M|j=0Mcj=Nj=0Mcj=N
43 fveq2 j=kcj=ck
44 43 cbvsumv j=0Mcj=k=0Mck
45 42 44 eqtr3di cc0N0M|j=0Mcj=NN=k=0Mck
46 45 ad2antlr φcc0N0M|j=0Mcj=Nk0Mckifk=0P1PN=k=0Mck
47 fveq2 k=hck=ch
48 47 cbvsumv k=0Mck=h=0Mch
49 fzfid φcc0N0M|j=0Mcj=Nk0Mckifk=0P1P0MFin
50 25 ffvelcdmda φcc0N0M|j=0Mcj=Nh0Mch0N
51 20 50 sselid φcc0N0M|j=0Mcj=Nh0Mch
52 51 adantlr φcc0N0M|j=0Mcj=Nk0Mckifk=0P1Ph0Mch
53 31 32 ifcld φifh=0P1P
54 53 ad3antrrr φcc0N0M|j=0Mcj=Nk0Mckifk=0P1Ph0Mifh=0P1P
55 eqeq1 k=hk=0h=0
56 55 ifbid k=hifk=0P1P=ifh=0P1P
57 47 56 breq12d k=hckifk=0P1Pchifh=0P1P
58 57 rspccva k0Mckifk=0P1Ph0Mchifh=0P1P
59 58 adantll φcc0N0M|j=0Mcj=Nk0Mckifk=0P1Ph0Mchifh=0P1P
60 49 52 54 59 fsumle φcc0N0M|j=0Mcj=Nk0Mckifk=0P1Ph=0Mchh=0Mifh=0P1P
61 nn0uz 0=0
62 4 61 eleqtrdi φM0
63 3 nnnn0d φP0
64 30 63 ifcld φifh=0P1P0
65 64 adantr φh0Mifh=0P1P0
66 65 nn0cnd φh0Mifh=0P1P
67 iftrue h=0ifh=0P1P=P1
68 62 66 67 fsum1p φh=0Mifh=0P1P=P-1+h=0+1Mifh=0P1P
69 0p1e1 0+1=1
70 69 oveq1i 0+1M=1M
71 70 a1i φ0+1M=1M
72 71 sumeq1d φh=0+1Mifh=0P1P=h=1Mifh=0P1P
73 0red h1M0
74 1red h1M1
75 elfzelz h1Mh
76 75 zred h1Mh
77 0lt1 0<1
78 77 a1i h1M0<1
79 elfzle1 h1M1h
80 73 74 76 78 79 ltletrd h1M0<h
81 80 gt0ne0d h1Mh0
82 81 neneqd h1M¬h=0
83 82 iffalsed h1Mifh=0P1P=P
84 83 adantl φh1Mifh=0P1P=P
85 84 sumeq2dv φh=1Mifh=0P1P=h=1MP
86 fzfid φ1MFin
87 3 nncnd φP
88 fsumconst 1MFinPh=1MP=1MP
89 86 87 88 syl2anc φh=1MP=1MP
90 hashfz1 M01M=M
91 4 90 syl φ1M=M
92 91 oveq1d φ1MP=MP
93 89 92 eqtrd φh=1MP=MP
94 72 85 93 3eqtrd φh=0+1Mifh=0P1P=MP
95 94 oveq2d φP-1+h=0+1Mifh=0P1P=P-1+MP
96 30 nn0cnd φP1
97 4 63 nn0mulcld φMP0
98 97 nn0cnd φMP
99 96 98 addcomd φP-1+MP=MP+P-1
100 68 95 99 3eqtrd φh=0Mifh=0P1P=MP+P-1
101 100 ad2antrr φcc0N0M|j=0Mcj=Nk0Mckifk=0P1Ph=0Mifh=0P1P=MP+P-1
102 60 101 breqtrd φcc0N0M|j=0Mcj=Nk0Mckifk=0P1Ph=0MchMP+P-1
103 48 102 eqbrtrid φcc0N0M|j=0Mcj=Nk0Mckifk=0P1Pk=0MckMP+P-1
104 46 103 eqbrtrd φcc0N0M|j=0Mcj=Nk0Mckifk=0P1PNMP+P-1
105 41 104 syldan φcc0N0M|j=0Mcj=N¬k0Mifk=0P1P<ckNMP+P-1
106 97 30 nn0addcld φMP+P-10
107 106 nn0red φMP+P-1
108 6 nn0red φN
109 107 108 ltnled φMP+P-1<N¬NMP+P-1
110 7 109 mpbid φ¬NMP+P-1
111 110 ad2antrr φcc0N0M|j=0Mcj=N¬k0Mifk=0P1P<ck¬NMP+P-1
112 105 111 condan φcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ck
113 112 adantlr φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ck
114 nfv jφxX
115 nfcv _j0M
116 115 nfsum1 _jj=0Mcj
117 116 nfeq1 jj=0Mcj=N
118 nfcv _j0N0M
119 117 118 nfrabw _jc0N0M|j=0Mcj=N
120 119 nfcri jcc0N0M|j=0Mcj=N
121 114 120 nfan jφxXcc0N0M|j=0Mcj=N
122 nfv jk0M
123 nfv jifk=0P1P<ck
124 121 122 123 nf3an jφxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ck
125 nfcv _jSDnHkckx
126 fzfid φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ck0MFin
127 1 ad3antrrr φxXcc0N0M|j=0Mcj=Nj0MS
128 2 ad3antrrr φxXcc0N0M|j=0Mcj=Nj0MXTopOpenfld𝑡S
129 3 ad3antrrr φxXcc0N0M|j=0Mcj=Nj0MP
130 etransclem5 j0MxXxjifj=0P1P=k0MyXykifk=0P1P
131 8 130 eqtri H=k0MyXykifk=0P1P
132 simpr φxXcc0N0M|j=0Mcj=Nj0Mj0M
133 24 ad2antlr φcc0N0M|j=0Mcj=Nj0Mc:0M0N
134 simpr φcc0N0M|j=0Mcj=Nj0Mj0M
135 133 134 ffvelcdmd φcc0N0M|j=0Mcj=Nj0Mcj0N
136 135 adantllr φxXcc0N0M|j=0Mcj=Nj0Mcj0N
137 elfznn0 cj0Ncj0
138 136 137 syl φxXcc0N0M|j=0Mcj=Nj0Mcj0
139 127 128 129 131 132 138 etransclem20 φxXcc0N0M|j=0Mcj=Nj0MSDnHjcj:X
140 simpllr φxXcc0N0M|j=0Mcj=Nj0MxX
141 139 140 ffvelcdmd φxXcc0N0M|j=0Mcj=Nj0MSDnHjcjx
142 141 3ad2antl1 φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ckj0MSDnHjcjx
143 fveq2 j=kHj=Hk
144 143 oveq2d j=kSDnHj=SDnHk
145 144 43 fveq12d j=kSDnHjcj=SDnHkck
146 145 fveq1d j=kSDnHjcjx=SDnHkckx
147 simp2 φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ckk0M
148 1 ad2antrr φxXcc0N0M|j=0Mcj=NS
149 148 3ad2ant1 φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ckS
150 2 ad2antrr φxXcc0N0M|j=0Mcj=NXTopOpenfld𝑡S
151 150 3ad2ant1 φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ckXTopOpenfld𝑡S
152 3 ad2antrr φxXcc0N0M|j=0Mcj=NP
153 152 3ad2ant1 φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ckP
154 etransclem5 j0MxXxjifj=0P1P=h0MyXyhifh=0P1P
155 8 154 eqtri H=h0MyXyhifh=0P1P
156 26 elfzelzd φcc0N0M|j=0Mcj=Nk0Mck
157 156 adantllr φxXcc0N0M|j=0Mcj=Nk0Mck
158 157 3adant3 φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ckck
159 simp3 φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ckifk=0P1P<ck
160 149 151 153 155 147 158 159 etransclem19 φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ckSDnHkck=yX0
161 eqidd φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<cky=x0=0
162 simp1lr φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ckxX
163 0red φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ck0
164 160 161 162 163 fvmptd φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ckSDnHkckx=0
165 124 125 126 142 146 147 164 fprod0 φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ckj=0MSDnHjcjx=0
166 165 rexlimdv3a φxXcc0N0M|j=0Mcj=Nk0Mifk=0P1P<ckj=0MSDnHjcjx=0
167 113 166 mpd φxXcc0N0M|j=0Mcj=Nj=0MSDnHjcjx=0
168 15 167 syldan φxXcm0d0m0M|k=0Mdk=mNj=0MSDnHjcjx=0
169 168 oveq2d φxXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!j=0MSDnHjcjx=N!j=0Mcj!0
170 6 faccld φN!
171 170 nncnd φN!
172 171 adantr φcm0d0m0M|k=0Mdk=mNN!
173 fzfid φcm0d0m0M|k=0Mdk=mN0MFin
174 simpll φcm0d0m0M|k=0Mdk=mNj0Mφ
175 14 adantr φcm0d0m0M|k=0Mdk=mNj0Mcc0N0M|j=0Mcj=N
176 simpr φcm0d0m0M|k=0Mdk=mNj0Mj0M
177 174 175 176 135 syl21anc φcm0d0m0M|k=0Mdk=mNj0Mcj0N
178 177 137 syl φcm0d0m0M|k=0Mdk=mNj0Mcj0
179 178 faccld φcm0d0m0M|k=0Mdk=mNj0Mcj!
180 179 nncnd φcm0d0m0M|k=0Mdk=mNj0Mcj!
181 173 180 fprodcl φcm0d0m0M|k=0Mdk=mNj=0Mcj!
182 179 nnne0d φcm0d0m0M|k=0Mdk=mNj0Mcj!0
183 173 180 182 fprodn0 φcm0d0m0M|k=0Mdk=mNj=0Mcj!0
184 172 181 183 divcld φcm0d0m0M|k=0Mdk=mNN!j=0Mcj!
185 184 mul01d φcm0d0m0M|k=0Mdk=mNN!j=0Mcj!0=0
186 185 adantlr φxXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!0=0
187 169 186 eqtrd φxXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!j=0MSDnHjcjx=0
188 187 sumeq2dv φxXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!j=0MSDnHjcjx=cm0d0m0M|k=0Mdk=mN0
189 eqid m0d0m0M|k=0Mdk=m=m0d0m0M|k=0Mdk=m
190 189 6 etransclem16 φm0d0m0M|k=0Mdk=mNFin
191 190 olcd φm0d0m0M|k=0Mdk=mNAm0d0m0M|k=0Mdk=mNFin
192 191 adantr φxXm0d0m0M|k=0Mdk=mNAm0d0m0M|k=0Mdk=mNFin
193 sumz m0d0m0M|k=0Mdk=mNAm0d0m0M|k=0Mdk=mNFincm0d0m0M|k=0Mdk=mN0=0
194 192 193 syl φxXcm0d0m0M|k=0Mdk=mN0=0
195 188 194 eqtrd φxXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!j=0MSDnHjcjx=0
196 195 mpteq2dva φxXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!j=0MSDnHjcjx=xX0
197 10 196 eqtrd φSDnFN=xX0