Metamath Proof Explorer


Theorem etransclem48

Description: _e is transcendental. Section *5 of Juillerat p. 11 can be used as a reference for this proof. In this lemma, a large enough prime p is chosen: it will be used by subsequent lemmas. (Contributed by Glauco Siliprandi, 5-Apr-2020) (Revised by AV, 28-Sep-2020)

Ref Expression
Hypotheses etransclem48.q φQPoly0𝑝
etransclem48.qe0 φQe=0
etransclem48.a A=coeffQ
etransclem48.a0 φA00
etransclem48.m M=degQ
etransclem48.c C=j=0MAjejMMM+1
etransclem48.s S=n0CMM+1nn!
etransclem48.i I=supi0|niSn<1<
etransclem48.t T=supA0M!I*<
Assertion etransclem48 φkk0k<1

Proof

Step Hyp Ref Expression
1 etransclem48.q φQPoly0𝑝
2 etransclem48.qe0 φQe=0
3 etransclem48.a A=coeffQ
4 etransclem48.a0 φA00
5 etransclem48.m M=degQ
6 etransclem48.c C=j=0MAjejMMM+1
7 etransclem48.s S=n0CMM+1nn!
8 etransclem48.i I=supi0|niSn<1<
9 etransclem48.t T=supA0M!I*<
10 1 eldifad φQPoly
11 0zd φ0
12 3 coef2 QPoly0A:0
13 10 11 12 syl2anc φA:0
14 0nn0 00
15 14 a1i φ00
16 13 15 ffvelcdmd φA0
17 zabscl A0A0
18 16 17 syl φA0
19 dgrcl QPolydegQ0
20 10 19 syl φdegQ0
21 5 20 eqeltrid φM0
22 21 faccld φM!
23 22 nnzd φM!
24 ssrab2 i0|niSn<10
25 nn0ssz 0
26 24 25 sstri i0|niSn<1
27 nn0uz 0=0
28 24 27 sseqtri i0|niSn<10
29 1rp 1+
30 nfv nφ
31 nfmpt1 _nn0C
32 nfmpt1 _nn0MM+1nn!
33 nfmpt1 _nn0CMM+1nn!
34 7 33 nfcxfr _nS
35 nn0ex 0V
36 35 mptex n0CV
37 36 a1i φn0CV
38 fzfid φ0MFin
39 13 adantr φj0MA:0
40 elfznn0 j0Mj0
41 40 adantl φj0Mj0
42 39 41 ffvelcdmd φj0MAj
43 42 zcnd φj0MAj
44 ere e
45 44 recni e
46 45 a1i φj0Me
47 elfzelz j0Mj
48 47 zcnd j0Mj
49 48 adantl φj0Mj
50 46 49 cxpcld φj0Mej
51 43 50 mulcld φj0MAjej
52 51 abscld φj0MAjej
53 52 recnd φj0MAjej
54 21 nn0cnd φM
55 peano2nn0 M0M+10
56 21 55 syl φM+10
57 54 56 expcld φMM+1
58 54 57 mulcld φMMM+1
59 58 adantr φj0MMMM+1
60 53 59 mulcld φj0MAjejMMM+1
61 38 60 fsumcl φj=0MAjejMMM+1
62 6 61 eqeltrid φC
63 eqidd φi0n0C=n0C
64 eqidd φi0n=iC=C
65 simpr φi0i0
66 62 adantr φi0C
67 63 64 65 66 fvmptd φi0n0Ci=C
68 27 11 37 62 67 climconst φn0CC
69 35 mptex n0CMM+1nn!V
70 7 69 eqeltri SV
71 70 a1i φSV
72 eqid n0MM+1nn!=n0MM+1nn!
73 72 expfac MM+1n0MM+1nn!0
74 57 73 syl φn0MM+1nn!0
75 simpr φn0n0
76 62 adantr φn0C
77 eqid n0C=n0C
78 77 fvmpt2 n0Cn0Cn=C
79 75 76 78 syl2anc φn0n0Cn=C
80 79 76 eqeltrd φn0n0Cn
81 ovex MM+1nn!V
82 72 fvmpt2 n0MM+1nn!Vn0MM+1nn!n=MM+1nn!
83 81 82 mpan2 n0n0MM+1nn!n=MM+1nn!
84 83 adantl φn0n0MM+1nn!n=MM+1nn!
85 57 adantr φn0MM+1
86 85 75 expcld φn0MM+1n
87 75 faccld φn0n!
88 87 nncnd φn0n!
89 87 nnne0d φn0n!0
90 86 88 89 divcld φn0MM+1nn!
91 84 90 eqeltrd φn0n0MM+1nn!n
92 ovex CMM+1nn!V
93 7 fvmpt2 n0CMM+1nn!VSn=CMM+1nn!
94 92 93 mpan2 n0Sn=CMM+1nn!
95 94 adantl φn0Sn=CMM+1nn!
96 79 84 oveq12d φn0n0Cnn0MM+1nn!n=CMM+1nn!
97 95 96 eqtr4d φn0Sn=n0Cnn0MM+1nn!n
98 30 31 32 34 27 11 68 71 74 80 91 97 climmulf φSC0
99 62 mul01d φC0=0
100 98 99 breqtrd φS0
101 eqidd φn0Sn=Sn
102 80 91 mulcld φn0n0Cnn0MM+1nn!n
103 97 102 eqeltrd φn0Sn
104 34 27 11 71 101 103 clim0cf φS0e+i0niSn<e
105 100 104 mpbid φe+i0niSn<e
106 breq2 e=1Sn<eSn<1
107 106 rexralbidv e=1i0niSn<ei0niSn<1
108 107 rspcva 1+e+i0niSn<ei0niSn<1
109 29 105 108 sylancr φi0niSn<1
110 rabn0 i0|niSn<1i0niSn<1
111 109 110 sylibr φi0|niSn<1
112 infssuzcl i0|niSn<10i0|niSn<1supi0|niSn<1<i0|niSn<1
113 28 111 112 sylancr φsupi0|niSn<1<i0|niSn<1
114 8 113 eqeltrid φIi0|niSn<1
115 26 114 sselid φI
116 tpssi A0M!IA0M!I
117 18 23 115 116 syl3anc φA0M!I
118 xrltso <Or*
119 118 a1i φ<Or*
120 tpfi A0M!IFin
121 120 a1i φA0M!IFin
122 18 tpnzd φA0M!I
123 zssre
124 ressxr *
125 123 124 sstri *
126 117 125 sstrdi φA0M!I*
127 fisupcl <Or*A0M!IFinA0M!IA0M!I*supA0M!I*<A0M!I
128 119 121 122 126 127 syl13anc φsupA0M!I*<A0M!I
129 9 128 eqeltrid φTA0M!I
130 117 129 sseldd φT
131 0red φ0
132 22 nnred φM!
133 130 zred φT
134 22 nngt0d φ0<M!
135 fvex M!V
136 135 tpid2 M!A0M!I
137 supxrub A0M!I*M!A0M!IM!supA0M!I*<
138 126 136 137 sylancl φM!supA0M!I*<
139 138 9 breqtrrdi φM!T
140 131 132 133 134 139 ltletrd φ0<T
141 elnnz TT0<T
142 130 140 141 sylanbrc φT
143 prmunb TpT<p
144 142 143 syl φpT<p
145 1 3ad2ant1 φpT<pQPoly0𝑝
146 2 3ad2ant1 φpT<pQe=0
147 4 3ad2ant1 φpT<pA00
148 simp2 φpT<pp
149 16 zcnd φA0
150 149 3ad2ant1 φpT<pA0
151 150 abscld φpT<pA0
152 133 3ad2ant1 φpT<pT
153 prmz pp
154 153 zred pp
155 154 3ad2ant2 φpT<pp
156 126 adantr φpA0M!I*
157 fvex A0V
158 157 tpid1 A0A0M!I
159 supxrub A0M!I*A0A0M!IA0supA0M!I*<
160 156 158 159 sylancl φpA0supA0M!I*<
161 160 9 breqtrrdi φpA0T
162 161 3adant3 φpT<pA0T
163 simp3 φpT<pT<p
164 151 152 155 162 163 lelttrd φpT<pA0<p
165 132 3ad2ant1 φpT<pM!
166 139 3ad2ant1 φpT<pM!T
167 165 152 155 166 163 lelttrd φpT<pM!<p
168 6 a1i n=p1C=j=0MAjejMMM+1
169 oveq2 n=p1MM+1n=MM+1p1
170 fveq2 n=p1n!=p1!
171 169 170 oveq12d n=p1MM+1nn!=MM+1p1p1!
172 168 171 oveq12d n=p1CMM+1nn!=j=0MAjejMMM+1MM+1p1p1!
173 prmnn pp
174 nnm1nn0 pp10
175 173 174 syl pp10
176 175 adantl φpp10
177 61 adantr φpj=0MAjejMMM+1
178 57 adantr φpMM+1
179 178 176 expcld φpMM+1p1
180 175 faccld pp1!
181 180 nncnd pp1!
182 181 adantl φpp1!
183 180 nnne0d pp1!0
184 183 adantl φpp1!0
185 179 182 184 divcld φpMM+1p1p1!
186 177 185 mulcld φpj=0MAjejMMM+1MM+1p1p1!
187 7 172 176 186 fvmptd3 φpSp1=j=0MAjejMMM+1MM+1p1p1!
188 187 eqcomd φpj=0MAjejMMM+1MM+1p1p1!=Sp1
189 188 3adant3 φpT<pj=0MAjejMMM+1MM+1p1p1!=Sp1
190 115 3ad2ant1 φpT<pI
191 1zzd p1
192 153 191 zsubcld pp1
193 192 3ad2ant2 φpT<pp1
194 190 zred φpT<pI
195 tpid3g IIA0M!I
196 115 195 syl φIA0M!I
197 supxrub A0M!I*IA0M!IIsupA0M!I*<
198 126 196 197 syl2anc φIsupA0M!I*<
199 198 9 breqtrrdi φIT
200 199 3ad2ant1 φpT<pIT
201 194 152 155 200 163 lelttrd φpT<pI<p
202 153 3ad2ant2 φpT<pp
203 zltlem1 IpI<pIp1
204 190 202 203 syl2anc φpT<pI<pIp1
205 201 204 mpbid φpT<pIp1
206 eluz2 p1IIp1Ip1
207 190 193 205 206 syl3anbrc φpT<pp1I
208 114 3ad2ant1 φpT<pIi0|niSn<1
209 fveq2 i=Ii=I
210 209 raleqdv i=IniSn<1nISn<1
211 210 elrab Ii0|niSn<1I0nISn<1
212 208 211 sylib φpT<pI0nISn<1
213 212 simprd φpT<pnISn<1
214 nfcv _nabs
215 nfcv _np1
216 34 215 nffv _nSp1
217 214 216 nffv _nSp1
218 nfcv _n<
219 nfcv _n1
220 217 218 219 nfbr nSp1<1
221 2fveq3 n=p1Sn=Sp1
222 221 breq1d n=p1Sn<1Sp1<1
223 220 222 rspc p1InISn<1Sp1<1
224 207 213 223 sylc φpT<pSp1<1
225 171 oveq2d n=p1CMM+1nn!=CMM+1p1p1!
226 ovexd φpCMM+1p1p1!V
227 7 225 176 226 fvmptd3 φpSp1=CMM+1p1p1!
228 21 nn0red φM
229 228 56 reexpcld φMM+1
230 228 229 remulcld φMMM+1
231 230 adantr φj0MMMM+1
232 52 231 remulcld φj0MAjejMMM+1
233 38 232 fsumrecl φj=0MAjejMMM+1
234 6 233 eqeltrid φC
235 234 adantr φpC
236 229 adantr φpMM+1
237 236 176 reexpcld φpMM+1p1
238 180 nnred pp1!
239 238 adantl φpp1!
240 237 239 184 redivcld φpMM+1p1p1!
241 235 240 remulcld φpCMM+1p1p1!
242 227 241 eqeltrd φpSp1
243 242 3adant3 φpT<pSp1
244 1red φpT<p1
245 243 244 absltd φpT<pSp1<11<Sp1Sp1<1
246 224 245 mpbid φpT<p1<Sp1Sp1<1
247 246 simprd φpT<pSp1<1
248 189 247 eqbrtrd φpT<pj=0MAjejMMM+1MM+1p1p1!<1
249 etransclem6 yyp1z=1Myzp=xxp1j=1Mxjp
250 eqid j=0MAjej0jexyyp1z=1Myzpxdx=j=0MAjej0jexyyp1z=1Myzpxdx
251 eqid j=0MAjej0jexyyp1z=1Myzpxdxp1!=j=0MAjej0jexyyp1z=1Myzpxdxp1!
252 145 146 3 147 5 148 164 167 248 249 250 251 etransclem47 φpT<pkk0k<1
253 252 rexlimdv3a φpT<pkk0k<1
254 144 253 mpd φkk0k<1